Horst Herrlich
Reflective Mac Neille completions of fibre-small categories need not be fibre-small

Commentationes Mathematicae Universitatis Carolinae, Vol. 19 (1978), No. 1, 147--149

Persistent URL: http://dml.cz/dmlcz/105841

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
REFLECTIVE MAC NEILLE COMPLETIONS OF FIBRE-SMALL CATEGORIES
NEED NOT BE FIBRE-SMALL
Horst HERRLICH, Bremen

Abstract: See Title

Key words: Initial completion, universal initial completion, Mac Neille completion, semi-topological functor, topologically-algebraic functor, fibre-smallness, strong fibre-smallness.

AMS: 18D30, 18A35 Ref. Z.: 2.726.23

Mac Neille completions have been defined in [2]. Categories having reflective Mac Neille completions, have been characterized by Wischnewsky and Tholen [8], Hoffmann [5], Adámek [1] and by Herrlich and Strecker [3] as those (\mathbb{A},U), for which U is semi-topological. Categories, having fibre-small Mac Neille completions, have been characterized by Adámek [1] and by Herrlich and Strecker [41 as those (\mathbb{A},U), which are strongly fibre-small. The title statement provides a negative answer to a problem posed by Adámek [11, p. 22. The example is as follows.

Let (Ω,\preceq) be a large complete lattice. Let X be the following category:

Objects: X_0, B_α, C_α, D_α for all $\alpha \in \Omega$

Morphisms:

- 147 -
Composition is uniquely determined by the fact that morphism classes $\text{hom}(X,Y)$ contain at most one element.

Let \mathcal{A} be the subcategory of X, obtained by removing X_0, id_{X_0}, all r_α, p_α, q_α, e_α, and all $h_{\alpha\beta}$ with $\beta > \alpha$, and let $U: \mathcal{A} \to X$ be the embedding functor. Then U is not only semi-topological, but even topologically-algebraic in the sense of Y.H. Hong [7] and S.S. Hong [6], i.e. any U-source has some (generating, initial)-factorization

$$X \xrightarrow{f_i} UA_i = X \xrightarrow{g} UA \xrightarrow{U_{\text{mi}}} UA_i$$

as indicated by the following table:

<table>
<thead>
<tr>
<th>f_i</th>
<th>UA_i</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $X = B_\alpha$ and ${f_i\mid i \in I} \cap {r_\alpha } \cup {h_{\alpha\beta} \mid \beta > \alpha}$</td>
<td>ϕ</td>
<td>$\text{id}{B\alpha}$</td>
</tr>
</tbody>
</table>
| (2) $X = B_\alpha$ and $\{f_i\mid i \in I\} \cap (\{r_\alpha \} \cup \{h_{\alpha\beta} \mid \beta > \alpha\}) \neq \phi$ | r_α | $

Hence, by [31], (\mathcal{A}, U) has not only a reflective Mac Neille
completion but even a reflective universal initial completion. Since the $g_\beta : X_0 \rightarrow UD_\beta$ are pairwise non-equivalent semi-final U-morphisms, (A, U) is not strongly fibre-small. Hence its Mac Neille completion is not fibre-small.

References

F.S. Mathematik
Universität Bremen
28 Bremen
Fed. Rep. Germany

(Oblatum 21.12. 1977)