Hana Petzeltová; Pavla Vrbová

Factorization in the algebra of rapidly decreasing functions on \mathbb{R}^n

Persistent URL: http://dml.cz/dmlcz/105871

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
FACTORIZATION IN THE ALGEBRA OF RAPIDLY DECREASING FUNCTIONS ON \mathbb{R}^n

Hana PETZELTOVÁ and Pavla VHOVÁ, Praha

Abstract: A factorization theorem which is an analogy of factorization theorems in Banach algebras is proved in the algebra of rapidly decreasing functions on \mathbb{R}^n. The result is closely related to investigations of existence of factorization in Fréchet algebras with an approximate unit.

Key words: Rapidly decreasing function, approximate unit, Fréchet algebra.

AMS: 46E25

Let \mathbb{R}^n be n-dimensional Euclidean space. As usual, denote by $|t| = (t_1^2 + \ldots + t_n^2)^{1/2}$ for $t = (t_1, \ldots, t_n) \in \mathbb{R}^n$ and $D^k_x = \frac{\partial^{|k|}}{\partial t_1^{k_1} \ldots \partial t_n^{k_n}}$ for $x \in C^\infty(\mathbb{R}^n)$, $k = (k_1, \ldots, k_n) \geq 0$,

$|k| = k_1 + \ldots + k_n$. Let us recall that $i = (i_1, \ldots, i_n) \preceq k = (k_1, \ldots, k_n)$ by definition if $i_1 \leq k_1$, $i_2 \leq k_2$, \ldots, $i_n \leq k_n$ and $0 = (0, 0, \ldots, 0)$. As usual, $\binom{k}{i} = \binom{k_1}{i_1} \ldots \binom{k_n}{i_n}$.

We shall denote by \mathcal{Y} the subalgebra of $C^\infty(\mathbb{R}^n)$ consisting of all functions rapidly decreasing at infinity, i.e.

$\mathcal{Y} = \left\{ x \in C^\infty(\mathbb{R}^n) : \sup_{t \in \mathbb{R}^n} |t|^j |D^k x(t)| < \infty \text{ for all non-negative integers } j \text{ and multiindices } k \right\}$.
with the topology generated by the system of pseudonorms

\[|x|_{jk} = \max_{t \in R_n} \sum_{i=1}^n t_i^j |(D^k x)(t)|. \]

Concerning the problem of factorization in projective limits of Banach algebras there exists an approximate unit in the algebra \(\mathcal{G} \) which may be regarded as the projective limit of Banach algebras \(\mathcal{G}_{jk} \) consisting of all functions from \(C^\infty(R_n) \) for which the norm \(\max_{0 \leq i, k} |j_1| \) is finite. Namely, the system of characteristic functions of \(D_k = (t \in R_n, |t| \leq k) \) \((k = 1, 2, \ldots) \) in \(R_n \) smoothened by convolution with suitable functions from \(C^\infty(R_n) \) forms an approximate unit, unfortunately, this unit is unbounded in each \(\mathcal{G}_{jk} \). It turns out that the iterative process which often provides a positive solution in many proofs of factorization theorems (see, for example, [1] - [9]) fails to converge here. Nevertheless, it is possible to prove existence of power factorization on bounded subsets of \(\mathcal{G} \) with the help of special properties of the algebra \(\mathcal{G} \).

1. Preliminaries. Denote by \(w \) the function \(w(t) = |t| \) for \(0 \neq t \in R_n \). The function \(w \) is of class \(C^\infty \). Since

\[
\frac{\partial w^p}{\partial t_s} (t) = p \cdot w^{p-2}(t) \cdot t_s \quad \text{for every integer } p,
\]

it follows by induction that

\[
(D^k w^p)(t) = \sum_{0 \leq i, k} c(i, k, p) |t|^{|p-k|-1} t_i^1.
\]
If $e^s = (\sigma^s_1, \ldots, \sigma^s_n)$ ($s = 1, 2, \ldots, n$) then $(D^{k+e^s}w^p)(t) =$

$= \sum_{0 \leq l \leq k} c(1,k,p)(p-|k|-\|l\|)|t|^{p-|k|-\|l\|}t^l e^s + \sum_{0 \leq l \leq k} c(1,k,p) |t|^{p-|k|-\|l\|} t^l e^s$. Hence, if $p > 0$,

$|c(1,k + e^s,p)| \leq \max (2p,3|k|) \cdot \max |c(r,k,p)|$. The last inequality can be easily proved by considering all possible cases. This, together with $c(0,0,p) = 1$, yields

$|c(1,k,p)| \leq (\max (2p,3|k|)) |k|$

$(D^k w^p)(t) \leq d_k p |k| |t|^{p-|k|}$ for $t \neq 0$, $k \geq 0$, $p > 0$.

1.1. Lemma. There exist positive constants C, C_k ($k \geq 0$) such that, for every sequence $(m(p))_{p=1}^{\infty}$ of natural numbers with $m(p + 1) - m(p) \geq 5$ for $p = 1, 2, \ldots$ and $m(1) \geq 3$, there exists a positive function $b \in C^\infty(R_+)$ satisfying:

1^0 $b(t) = 1$ for $|t| < m(1) - 2$

2^0 $|D^k b(t)| \leq C_k (m(p) + 2)^P$

3^0 $b(t) \geq C \cdot (m(p) - 2)^{P-1}$

for $|t| \leq m(p) - 2, m(p) + 2$,$p = 1, 2, \ldots$, $k \geq 0$.

Proof. Let $(m(p))_{p=1}^{\infty}$ be a sequence of natural numbers satisfying $m(p + 1) - m(p) \geq 5$ ($p = 1, 2, \ldots$) and $m(1) \geq 3$. We shall construct a function b having the required properties and we shall show that the corresponding constants C_k, C do not depend on the choice of $(m(p))_{p=1}^{\infty}$. Let a be a positive function defined by

- 491 -
\[a(t) = \begin{cases}
1 & \text{for } |t| \leq m(1) \\
|t|^p & \text{for } |t| \geq (m(p), m(p + 1))
\end{cases} \quad p = 1, 2, \ldots \]

We shall modify the function \(a \) so as to obtain a \(C^\infty \) function. Take a function \(\varphi \in C^\infty (\mathbb{R}_0) \) such that \(0 \leq \varphi \leq 1 \), \(\varphi \equiv 1 \) in a neighbourhood of zero, \(\text{supp} \varphi \) is equal to the unit disc \(D_1 \) in \(\mathbb{R}_n \), \(\varphi \) positive inside \(D_1 \) and \(D^k \varphi = 0 \) on \(\partial D_1 \) for all nonnegative multiindices \(k \). Denote by \(N_k = \max |(D^k \varphi)(t)| \quad (k \geq 0) \). Let \(\varphi_p \) be the function defined as follows:

\[\varphi_p(t) = \begin{cases}
\varphi(t - m(p) \frac{t}{|t|}) & \text{for } t \neq 0 \\
0 & \text{for } t = 0
\end{cases} \]

Clearly, the function \(\varphi_p \) is a well defined function of class \(C^\infty \) and \(\text{supp} \varphi_p = \{ t : m(p) - 1 \leq |t| \leq m(p) + 1 \} \). We shall show that, for every \(k \geq 0 \), there exist constants \(K_k \) (depending on \(k \) only) such that \(\sup_{t \in \mathbb{R}_n} |(D^k \varphi_p)(t)| \leq K_k \) for all \(k \geq 0 \) and \(p = 1, 2, \ldots \). Denote \(\varphi^p_1(t) = t_i (1 - m(p)|t|^{-1}) \) for \(|t| \leq (m(p) - 1, m(p) + 1) \). Since

\[(D^s \varphi^p_1)(t) = \sum_{i=1}^n (D^s \varphi)(t(l - m(p)|t|^{-1}))(D^s \varphi^p_1)(t) \]

it follows by induction that \((D^k \varphi^p_1)(t) \) is a polynomial of order \(|k| + 1 \) in indeterminates \((D^j \varphi)(t(l - m(p)|t|^{-1}))(D^j \varphi^p_1)(t) \) (\(1 \leq j \leq |k| \), \(D^j \varphi^p_1)(t) \) \(0 \leq i \leq k, i = 1, 2, \ldots, n \)). Hence, it is sufficient to show that the derivatives of \(\varphi^p_1 \) are bounded by constants which do not depend on \(p \). We have

\[(D^j \varphi^p_1)(t) = \sigma_{ij} - \sigma_{ij} t_i (D^j \varphi)(t) + m(p) t_i t_j |t|^{-3} \quad \text{for } j = e^s \]

and

\[(D^j \varphi^p_1)(t) = -m(p) [t_i (D^j \varphi)(t) + j_1 (D^j - e^i \varphi)(t)] \quad \text{for } |j| \geq 2. \]
According to (1) there exist constants ε_j such that, for $|j| \geq 1$, $|t| \in (m(p) - 1, m(p) + 1)$,

$$|\langle D_j \varphi_{\lambda} \rangle(t) - \varepsilon_j m(p)| |t|^{-|j|} \leq 2\varepsilon_j.$$

Now, set

$$b(t) = \begin{cases}
\langle (\gamma_p \sigma \varphi_t) + (1 - \varphi_p(t))a(t) \rangle & \text{if } |t| \leq (m(p) - 2, m(p) + 2), \\
a(t) & \text{otherwise}.
\end{cases}$$

This function belongs to $C^\infty(R^n)$ and satisfies 1°. Given $a |t| \in (m(p) - 2, m(p) + 2)$, $t \notin m(p)$ we have, according to (1), (2),

$$|D^k b(t)| \leq \int \varphi_p(x) a(x) (D^k \varphi)(t-x) dx + \sum_{i \in \mathbb{Z}^k} \left(k \right)_i |(D^i (1 - \varphi_p))(t)(D^{k-i} a(t))| \leq N_k \sup_{|x| \leq (m(p) - 1, m(p) + 1)} a(x) \mathcal{H}_n \{x: |t-x| \leq 1\} + \sum_{i \in \mathbb{Z}^k} \left(k \right)_i K_i \sum_{0 \leq j \leq k-i} \max(2p, 3|k-i|)|k-i|.$$

$$|t|^{p-|k-i|-|j|} \leq N_k \mathcal{H}_n \{x: |t-x| \leq 1\} |(m(p) + 1)p + \sum_{i \in \mathbb{Z}^k} \left(k \right)_i K_i \sum_{0 \leq j \leq k-i} \max(2p, 3|k-i|)|k-i| \cdot |t|^{-|k-i| (m(p) + 1)p + 2p \leq m(p) - 2, p = 2, 3, \ldots}
$$

To obtain estimate (4) denote by $M = \{t; \varphi(t) \leq 1/2\}$ and $M_p = \{t; \varphi_p(t) \leq 1/2\}$. Then

$$- 493 -$$
\[b(t) \geq \frac{1}{2} a(t) \text{ for } t \in M_p \text{ and so } b(t) \geq \frac{1}{2} (m(p-2))^{P-1}\]

for \(t \in \{t \mid t < (m(p)-2, m(p)+2) \} \setminus M_p \). Observe that \(M_p = \{ t \mid t = m(p)t/t|t| \in M \} \). Take \(\varepsilon, \varepsilon' \) positive such that \(t; |t| < \varepsilon \} \subset M \setminus \{ t; |t| < \varepsilon' \} \) and \(\varepsilon + \varepsilon' < 1 \). If \(1 > \varepsilon > \varepsilon + \varepsilon' \) then, for each \(t \in M_p \), the set \(K_p = \{ x \in M : |x-t| < \varepsilon \} \)
contains a ball \(K'_p = \{ x \in \mathbb{R}^n : |x-m(p)t|t| < \varepsilon \} \) for all \(p = 1, 2, \ldots \). Then, for \(t \in M_p \), we have

\[b(t) \geq \int_{K_p} a(x) \varphi(t-x) dx \geq \inf_{x \in K_p} a(x). \inf_{z \in K'_p} \varphi(z).\]

where \(\varphi \) is a constant depending on \(\varepsilon, \varepsilon, n, \varphi \) only.

We have to show now that \(b^{-1} \in \mathcal{G} \), i.e.

\[\sup_{p} \max_{t \in (m(p)-2, m(p)+2)} |t|^{j} \langle D^{k}b^{-1}(t) \rangle < \infty \text{ for all } j, k \geq 0.\]

If \(f, f^{-1} \in C_0^{\infty}(\mathbb{R}^n) \) then \(D^{k}f^{-1} = P_k(f, \ldots, D^{k}f)/f^{(|k|+1)} \)

where \(P_k \) is a polynomial of order \(|k| \) in indeterminates \(D^i f \) for \(0 \leq i \leq k \) and the coefficients of \(P_k \) depend on \(k \) only.

Fix \(j \) and \(k \). First, let us take \(|t| < (m(p)+2, m(p+1)-2) \) for \(2p \geq |k| \). Then \(b(t) = w^p(t) = |t|^p \). According to (1), (2), and (5) we have, for arbitrary nonnegative multiindex \(m \leq k \)

\[|D^{m}w^p(t)| \leq d_m |t|^m |t|^p-|m| \leq d_m |t|^p\]

It follows that

\[|t|^{j} \langle D^{k}b^{-1}(t) \rangle = |t|^{j} \langle D^{k}w^{-p}(t) \rangle = |t|^{j} \langle P_k(w^p(t), \ldots, (D^{k}w^p)(t) \rangle \cdot w^{-p}(|k|+1) \cdot \max \{ |D^{j}w^p(t)\} \cdot |k| \cdot t|^{-p}(|k|+1) \cdot \bar{M}_k \cdot |t|^{-j-p} \cdot \bar{M}_k \cdot |t|^{-j-p} \]

where \(\bar{M}_k, M'_k \) are suitable constants.

\[\text{ - 494 -}\]
Now assume $|t| < m(p)^{-2}f^{ia(p)}$. We have, according to 2°, the following estimate

$$|t|^j ((p^k b^{-1})(t)| \leq |t|^j \frac{C_k'(m(p)+2)^p}{C_k|kl+1| (m(p)-2)(p-1)(l|kl+1|) \leq C_k''(1+\frac{4}{m(p)-2})^{p|kl+1|} \cdot (m(p)-2)^{-p+j+|kl+1|} \leq C_k''(1+\frac{4}{p})^{p|kl+1|} \cdot (m(p)-2)^{-p+j+|kl+1|}.$$

The last expression is bounded and so the proof is complete.

2.1. Theorem. Let K be a bounded subset of \mathcal{G}. Given $\varepsilon > 0$, s_0 natural and $j_0 \geq 0$, $k_0 = (k_1,\ldots,k_m) \geq 0$, there exists an a in \mathcal{G} and a sequence $(K_s)_{s=1}^\infty$ of bounded subsets of \mathcal{G} with the following property: for $x \in K$ there exists an $y_s \in K_s \cap (\mathcal{G}x)^-$ with

1° $x = a^s y_s$ for $s = 1,2,\ldots$
2° $|x-y_s|_{j_0 k_0} \leq \varepsilon$ for $s = 1,2,\ldots,s_0$.

Moreover, if $x_n \to 0$ in \mathcal{G} then the corresponding y_s in \mathcal{G} for each s.

Proof. The subset K is bounded, so there are a positive function h and nonnegative constants $(q_k)_{k \geq 0}$ such that

$$\sup_{t \in R_n} |t|^j h(t) \leq M_j < \infty \quad \text{for all } j \geq 0 \quad \text{and} \quad |(D^k x)(t)| \leq q_k h(t)$$

for all $t \in R_n$, $k \geq 0$, $x \in K$ (see [10], p. 235). Denote by $Q_p = \max q_k$ and take a sequence $(\varepsilon_p)_{p=1}^\infty$ of positive numbers. Since $p^{k w^p}$ is a polynomial in indeterminates $|t|$, $|t|^{-1}, t_1,\ldots,t_n$ ($t \not= 0$) it follows from (2) that we can find a sequence $(m(p))_{p=1}^\infty$ such that
(i) \[|t|^j |(D^k w^r)(t)| h(t) \leq \varepsilon_p \] for \[|t| \geq m(p)-2 \] and all \[|k| \leq p, \ 0 \leq r \leq p^2, \ j \leq p(p+1) \]

(ii) \[|t|^j \epsilon_0^r \sigma |(D^k w^r)(t)| h(t) \leq \varepsilon_p \] for all \[p = 1, 2, \ldots, \]
\[0 \leq r \leq s_0 p, \ 0 \leq k \leq k_0, \ |t| \geq m(p)-2 \]

(iii) \[m(p+1)-m(p) \geq 5, \ m(1) \geq 3 \]

It follows that

\[|t|^j |(D^k w^r)(t)| |(D^l x)(t)| \leq Q_p \varepsilon_p \]
for \[|t| \geq m(p)-2, \ |l| \leq p, \ 0 \leq r \leq p^2, \ j \leq p(p+1), \ x \in K \]
and

\[|t|^j \epsilon_0^r \sigma |(D^k w^r)(t)| |(D^l x)(t)| \leq Q_k \varepsilon_p \]
for \[|t| \geq m(p)-2, \ 0 \leq i, k \leq k_0, \ 0 \leq r \leq s_0 p, \ x \in K \]
and \[p = 1, 2, \ldots \]

Let us take an \[x \in K \] and consider the factorization of \[x \] in the form \[x = b^{-s}(b^{s}x) \] where \[b \] is the function corresponding to \[(m(p))_{p=1}^\infty \] according to Lemma 1.1. The function \[b^{-1} \] belongs to \[\mathcal{Y} \] so that \[b^{-s} \] belongs to \[\mathcal{Y} \] as well. We have to show that \[b^{s}x \] is in \[\mathcal{Y} \] (\[s = 1, 2, \ldots \]), i.e.

\[\sup_{p \geq 1} \left\{ \max_{m(p)-2 \leq |t| \leq m(p+1)-2} \right\} \]

\[\max_{m(p)-2 \leq |t| \leq m(p)+2} \] \[|t|^j |(D^k b^{s}x)(t)| < \infty \] for all \[j \geq 0, \]
\[s \geq 1, \ k \geq 0. \]

Having known that \[b^{s}x \in \mathcal{Y} \] it follows that \[b^{s}x \in (\mathcal{Y} x)^{-}. \] Indeed, there exists an approximate unit \[(e_{m})_{m=1}^\infty \] in \[\mathcal{Y} \] consisting of functions with compact supports, so that \[b^{s}x = \lim e_{n} b^{s}x \] for \[x \in \mathcal{Y}, \ s = 1, 2, \ldots. \] Since \[e_{n} b^{s}x \] are in \[\mathcal{Y} \] as functions with compact supports, we obtain \[b^{s}x \in (\mathcal{Y} x)^{-}. \]

Fix \(j, k \) and \(s. \) If \[p > \max(|k|, j, s) \] we obtain according to (6), for \[|t| \leq m(p)+2, m(p)+2 \geq 2 \), the estimate

\[|t|^j |(D^k (b^{s}x))(t)| = |t|^k |(D^k (b^{s}x))(t)| = \]

- 496 -
Now, assume $|t| \in (m(p)-2, m(p)+2)$. It is easy to see that, for $f \in C^\infty(R_n)$, $D^k f$ is a polynomial $P_{k,s}$ of order s in indeterminates $f, \ldots, D^k f$. Again, according to (6), $|t| p^2 + p$.

$|(D^k f)(t)| \leq Q_{p} p$. This, together with 2^o of 1.1 yields

$|t|^j |(D^k b^s f)(t)| \leq |t|^j \sum_{i=0}^{k} |(D^i b^s f)(t)| |(D^k f)(t)|$

$= \sum_{i=0}^{k} |P_{i,s}(b(t), \ldots, (D^i b)(t))| |t|^j |(D^k f)(t)|$

$\leq \sum_{i=0}^{k} K_{i,s} (m(p)+2)^s P_{p^2} |t|^p - p^2 |t|^p |(D^k f)(t)|$

$\leq (m(p)+2)^s P_{p^2} (m(p)-2)^-p^2 Q_p p$.

Given an $\varepsilon > 0$, let us choose now $Q_{p} p = \varepsilon/2$. Using these estimates we can deduce the following facts. First, $b^s f$ for $f \in F^s$ for all $b^s K = K$ are bounded in F and $|x-b^s f|_{\infty} = \max |t| ^{j_0}$

$|D^* f(t)-D^* b^s f(t)| = \max |t|^{j_0} |D^* f(t)-D^* b^s f(t)|$

$\leq \varepsilon$ for $s=1,2, \ldots, s_0$. Finally, if $x_n \in F$ then, for $K = (x_n)^{s_0}$, we obtain $y_n = b^s x_n$ tends to zero as well. Indeed, let us fix j, k and s. Given an $\varepsilon > 0$, let us find
so that $M_q^p \in p \leq \mathcal{E}$ for $p \geq p_0$. There exists n_0 such that, for $n \geq n_0$,
$$|x_n|_1 \leq \left(\sum_{|\alpha| \leq 1} \left(\sup_{t \in \mathbb{R}} |(D^{\alpha}b^s)(t)| \right)^{-1} \right) \sup_{|t| \leq m(p_0)} |(D^i b^s)(t)|$$
for $1 \leq k$. It follows that, for $n \geq n_0$, we have
$$|y_n|_k = \max_{|t| \leq m(p_0)} |t|^j |(D^k b^s x_n)(t)| + \max_{|t| \leq m(p_0)} |t|^j |(D^k b^s x_n)(t)| \leq \varepsilon$$

The proof is complete.

Remark. Since the Fourier transformation is a continuous linear mapping of \mathcal{F} onto itself and takes the pointwise multiplication to the convolution, Theorem 2.1 holds also if we replace the multiplication by the convolution.

Acknowledgment. The authors wish to express their gratitude to J. Fuks, V. Müller and M. Zajac for their kind help during the final preparation of the paper.

References

Matematický ústav ČSAV
Žitná 25
11567 Praha 1
Československo

(Oblatum 12.5. 1978)