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LEAST AND LARGEST INITIAL COMPLETIONS - |I
J. ADAMEK, H. HERRLICH, G. E. STRECKER

Abstract: Universal and largest initial completions of
a concrete category are studied. This is a continuation of the
first part of the paper, published in the same journal, the
knowledge of which is assumed.
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§ 3. Universal Completion. Analogously to the situation

of the Mac Neille comple tion, a universal initial comple tion
of a small category can be described by means of special sour=
ces (see [Hell). We shall consider these sources for arbitra=-
ry categories and shall observe that if they form a legitimate
conglomerate, then the category of all such sources is the uni-
versal initial completion. The converse is true as well, but

its proof is more involved.

f .
3.1 A source S = (X ——=» lVil) is called semi-closed

if it has the following nroperties:

(i) s is closed with respect to composition with morphisms
frem the left; i.e.,given X~f» [V] in S,then X ¥, \W) is in
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S for each morphism V—%-> w.

(ii) S is closed with respect to initial 1lifts in the:
sense that given an initial source (W ——*—) w ), then every
structured map xi»l W] belongs to S whenever each X ~———‘> W

belongs to S.

h
X —— W
fl cee pj
v
e |
w Wj

The smallest semi-closed source containing a given source S is

called the semi-closed hull of S, (In [HSZJ this is called the

standard enrichment of S.)

3.2 Theorem. For a concrete category, & , the follow-
ing are equivalent:

(i) X has a universal initial completion;

(ii) the éonglomeraterof semi-closed sources in X is

legitimate.

If these conditions hold, then the universal initial completion
of 0 is the category of semi-closed sources.,

Proof: (ii) ==d (i), This is a straightforward analogue of
the proof when X is small; see [ He,].

(i) mmed (ii). Let (¢ ,3) be the universal completion
(where ¢ is considered as the inclusion of ¥ into & ). For
each semi-closed source S from. X we have its initial 1lift Pg
in & . It suffices to show that for distinct semi-closed sour-
ces S and S', always Ps"'PS' .Then the conglomerate of all se-
mi-closed sources will be codable by the class of objects of
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and, hence, will be legitimate. To prove this we will define,
for each semi-closed source S = (X -{'L-) | vl ), a special pair
(¢ ,.'ﬂs) where :{’S is an initially complete category and ¢ is
an initiality-preserving concrete functor from ¥ into -‘fs .
Objects of ;,fs are triples (H,W,T) where W is an object of &,
HE homg (X,|W]) and T is an &L -source T = (W —f!'—-, <P(UJ-))3,
subject to the following three conditions:

(a) for each he H and each je J, X M IUJ.I is in S,

(b) T is maximal with respect to (a) (i.e., given an &-
morphism W —-4?—) $ (U) for which he H implies X L"-ﬁ’» {U[ is in
S, then W £, ¢ (U) must be in T).

(¢) H is maximal with respect to (a) (i.e., given
X -f’-Ly | W| such that je&dJ implies X 1"-*—'3-’2» | Ujl is in S, then
hy must be in H).

Morphisms of tﬁs q:(H,W,T)— (H",W’,T") are & -morphisms q:
:W— W’ which are source maps q:T~—p T . The forgetful functor
sends (H,W,T)—L(H',w','r') to |W) %> %7 . Then g has the

following properties:

(i) ie is a (legitimate) concrete tategory.

Proof: Legitimacy follows from the fact that each oﬁject
(H,W,T) is determined by H and W, and W belongs to the class o
objects of & while H belongs to the class of all subsets (!)
of morphisms of & . Amnesticity follows from the amnesticity
of the forgetful functor for & and (c) above.

(ii) &£g is initially complete.

Proof: Each sink

ot
(1 Wy, ) | —> 2);
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has a final 1ift given by (H,W,T) where W is the final 1lift of

e
(Iw, | —X Z2); in & , T consists of all w2, b (V)

X ——

- W,
\‘_/1

’\->
(wl = zé

ffy .
in & such that each Wy ——=b ¢ (U) is in T, (for some ieI),
and

H=§{h:X—> Z]WLCP(U) in T impldes Xf:&-?lUl is in S§.

The concrete functor w : ¥ -—-—’g‘ﬁs is defined by:

'1r(V)
y(£)

"

(Hy,V, Ty)

£

where Hy = SM hom (XIVH; Ty =V (homx (v, ¢(U))Uex

(iii) v is a full embédding that preserves initiality.

Proof: We must show that (Hy,V,Ty) is an object of &g
Cle arly Tv is maximal for Hv. Also Hv is maximal for TV since
if X—@—Q )} VI has the property that X M’I U) is in S for
each V—-—”—>¢ (U) in Ty, choose p = 1y to obtain (h,V)eS. From
this it is easily verified that y is a full embedding.

To show initiality preservation suppose that (U—'-ri"—r Uk)
is an initial source in & . To establish the initiality of
(T(U)—-—r ¥ (U,)) consider a map |W|—— |Uf and an object
(H,W,T) such that for each k,
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X-—T——f
\:/ \

H

“ w /i/r,}'r

g
()

r‘x/

Uy

ry* g:(H,W,T)—> ¥(U,) is a morphism in &g . By the defini-
tion of morphisms in $$ each W -2"—’—2'-* Uk is an & -morphism.
Since ¢ is initiality preserving, W-—-%—rU must be" an & -mor-
phism. To verify that g:(H,W,T)—> ¥ (U) is an &g -morphism it
remains to show that for each element of TU' i.e. for each

¢ (W) —'fh——>¢(U') in ¥ , we have W il IS ¢ (U") in T. Equiva-
lently, for each he H, X M |U’lis in S. Since S is semi-
closed it suffices to show that for each heH, X -9:!2’\1” is
in S (see 3.1 (i)). But this follows from the fact that for
each k€K

n iy
X———+1Uk]

is in S (see 3.1 (ii)).

Thus we have an initiality preserving concrete functor ¢
from X into the initially comple te category .fs . Thus (by
1.10 (ii)) v can be extended to an initiality preserving con=-
crete functor ¥ : =4 ———r'.'&s . But (ps-i‘i—-wi) is an initial
source in & , so that (y"(PS) A, ¥ (V;)) must be initial in
:cs . It is easily verified that the initial 1ift ¢f
x ~Zy ¥ (V) in % is (Hy,Pg,S) where

.y
Hy ?ixi"—?)ﬂeach X-&——* lVil is in S}%.
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Therefore y* (Pg) = (Hy,Pg,S).
’ e .
Now let S’ = X —%— le1 be another semi-closed source
e ’ c e
with Pg, = Pg. Then again (}r"(PS) A, (V) is an initial
source in :Cs . Since 1y:X—» X is in H, and e, :S—»Ty' is a
k

source map, there follows that (ek,Vl;)eS. Thus we have shown
that Pg, = Pg implies S’€ S. By symmetry, Py, = Pg implies s’=
= S; which completes the proof.

3.3 Next, -we consider fibre-small universal initial com-

pletions. Two structured maps from X

X—i—'i—» IUll and x.f&_., l112|

are said to be® —equivalent, (f,,U;)= (f,,U,), iff as single-

ton sources they have the same semi-closed hull.

3.4 Definitiom. A concrete category is called yery str‘ong-
ly fibre-small iff for each object X in & the conglomerate of
all semi-closed sources from X is small; equivalently, iff the

conglomerate of all &% -equivalence classes of structured mor-

phisme X = | U| is small. Dual notion: very strongly co-fibre-
small,

3.5 Theorem. A concrete category has a fibre-small uni-
versal initial completion iff it is very strongly fibre-small.

Proof: If the universal initial completion (= the catego-
ry of semi-closed sources) is fibre-small, then for each X in
& the conglomerate of semi-closed hulls of singleton sources
from X is codable by a set.

Conversely, if ¥ is a very strongly fibre-small catego-
ry then for each object X in & there is a representative set

Ax of atructured maps from X, with respect to & . If a source
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£

is semi-closed then, with each X —=— [ U}, it contains all of
its semi-closed hull . Hence the conglomerate of all semi-clo-
sed sources from X is codable by the set of all subsets of Ay.

Thus the category of semi-closed sources is fibre-small,

3.6 Example: [HS,] For k = 0,I,2,3,3 1/2, the category of
topological T;-spaees has a universal initial completion iden-
ticalv with its Mac Neille completion. E.g., for T3 1/2 ( = com-
pletely regular ‘I‘l) spacesy the completion is the category of
all completely regular spaces. Compare with examples 1.9 and

1.11.

3.7 Example. Let & be the category with objects {X,Y}U
UO_rt_i_ (Ord = the class of all ordinals) and morphisms given by:
hom (Y,X) = {r}, hom (X,i) = {£;} for all ie¢ Ord, hom (Y,i) =
= {gi} for all i€ Ord (where g; = £y h), hom (A,A) =1, for
all objects A; and all other hom-sets empty.

1

Let X be the subcétegory obtaine(; by deieting h. Then, consi-
Aered as a concrete category via the embedding into £ , & is
fibre-small, However, X does not have a universal initial com~
plétion. Indeed, for each class Q& Ord, we have the semi-closed

source
= __'L’ i
SQ (x 1)isQ,

Since Q#Q° implies SQ"' Sq¢ » the conglomerate of all semi-clo-

sed sources is not legitimate.

- 65 =



As the above example shows, one can easily construct cate-
gories with no universal initial completion; nevertheless most
"everyday" categories do have a universal initial comple tion,

that is even reflective, Specifically:

3.8 Theorem [HNST] If the faithful functor [|: X —&

has a 1gft adjoint, then X has a reflective universal initial
comple tion if one of the following conditions holds:
(i) ¥ is cocomplete ard co-well-powered.
(ii) K is complete,' well~powered, and co-well-powered.
(iii) X has (epi, M)-factorizations and diagonalizations

for some conglomerate of ¥ -sources M.

§ 4. Largest Completion. There is a very natural initial

completion of any (small) concrete category (over Set) already
found by Antoine +) .[ANll and Day -+ [D] and treated general-
ly by Herrlich [Hell. This turns out to be the largest initial

completion, defined again by means of special sources.

4.1 A source is called weakly-closed iff it is closed
with respect to composition with morphisms from the left (cf.
3.1 (i)). The smallest weakly-closed source containing a given
source S is called the weakly-closed hull of S. It consists
of a11 x 2%, | Ul for which x££ | VI is in S ana V- U

is a morphism. The dual notion is weakly-closed sink; i.e., a
sink closed with respect to composition with morphisms from the
right, If X is a small category, we can define the category
z of all weakly-closed sources and source maps. This is the

largest initial completion of ¥ , If X is a large category,

(+) Antoine amd Day worked with the dual notion, obtaining
the largest final completion.
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the same is true provided that ¥ is legitimate. Similarly with
the cases of the Mac Neille and universal initial completions,
if £ is not legitimate, then X does not have a largest initi-
al completion., But now many usual categories over Set fail to

yield L e gitimate,

4.2 Theorem. For a concrete categry, & , the following
are equivalent:

(i) Y% nhas a largest initial completion;

(ii) the conglomerate of weakly-closed sources in X is
legitimate.

If these conditions hold, then the largest initial completion
is the category of weakly-closed sources.

Proof: (ii)==p (i). This is a straightforward amalogue of’
the proof when X is small; see [He;J.

(1) == (ii). Let (¢ ,&£) be the largest initial completion
(where ¢ is considered as the inclusion of ¥ into & ). For
each weakly-closed source S we have its initial 1ift Pg in £.
We need to show that S# S’ implies PS1- PS' . Given a weakly-clo-
sed source S = (X—fi-» lVil ) we define a new completion 3&5 of
X . This is analogous to the category is in 3.2 except that
objects (H,W,T) have the additional property that the source
T= (W ii—) @(U‘j)) is initial in & . Again, &g is a (legi-
timate) initially complete c ategory. Define a concrete functor

v::ﬂ——kis by :
(W)
Hy

(Hy,W,Ty) where Ty = U homg (W, §(U))ygar 274

(f:Pg—> Vel |W-2yp $(U)aT, implies

x 2% 1uie s3
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Using the fact that ¢ is initially dense and that v is
a full embedding, one can verify that v (W) is indeed an ob-
ject of &g . Furthermore each object (H,W,T) is clearly the

initial 1ift of the sourge of all

1w =& 1yl with w &5 ¢ (V) in 1.

Thus ¥ is an initially dense full embedding. Since (¢ ,&£ 1
is the largest completion, it follows that ¥ is an isomorph-~
ism, which implies that any %g -object (H,W,T) is identical
with the object (W) = (H,,¥,T,). Since, in particular,
(Hy,Pg,S) with

b h

£l f"
Hy = {X——+X|x—1+lvil in S implies X —%— | V| € S}

is an &, -object, we conclude S = T, =
S ’ PS

Thus S£S implies Ps:l- PS’ .

4.3 Example. The largest initial completion of the cate=-
gory Set over itself (X =%= Set) is (¢ ,&) described as fol-
lows: The objects of & are all pairs (X.D) where X is a set
and D is a subset of the partially-ordered set of all equivalen-
ce relations on X satisfying: de D, d4d, implies d;& D. The
morphisms f:(X,D)~> (X’,D’) of & are maps f:X—»> X' satisfy-
ing: de D° implies (fx f)-l(d)e D. The embeddihg ¢ carries X
to (X,8) and X —2—> X" to (X,8) —£— (X",0).

That this is the largest initial completion can be seen
from the fact that each complete source (x-ﬁ'—» X;)1 in Set is
determined by the set D of all equivalence relations induced by

these maps; D = {Ker fy | ieI}.

4.4 Example. A category need not have a largest comple-
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tion over itself! Let &£ =3 be the category £ of Example
3.7. For each subclass Q& Ord we have a weakly-closed source
SQ = (Xﬁ—y i‘)ieQ and Q$Q” implies SQJ'S + o Hence the con-
glomerate of all weakly-closed sources fails to be legitimate.
On the other hand, each category is initially complete over it-
self, hence it is identical with its universal initial compie—

tion.

4.5 Example. The largest final completion of Set over it-
self is (¢ ,& ) described as follows: The dbjects of &£ are all
pairs (X,D) where X is a set and D is a subset of the power aset
of X satisfying: A€ D and AISA implies ‘A‘l‘ D, The morphisms
£:(X,D) —> (X’,D°) of & are all maps £:X—>X’ satisfying: Ae D
implies [ Al € D’. The embedding ¢ carries X £ X" to

(x,8) L5 (x",0).

4.6 Unlike the situation for Mac Neille or universal com-
pletions, ;'everydeo'" concrete categories often fail to have lar-
gest initial completions or largest final completions, as the
following theorem and examples show. To aid :{n what follows, we
will call a proper class P of objects of a concrete category
nearly rigid iff there is a cardinal number o such that:

(i) VeP implies card |V > oc. ; and

(ii) for each morphism U -1-? V between distinct objects of

P, card £l1U1] & oc .

4,7 Theorem. If a concrete category X over Set has a

nearly rigid class of objects, then it has neither a largest ini-
tial comple tion nor a largest final completion.
Proof: Let P be a nearly rigid class in X with respect to

a cardinal &« -, For each subclass Q€ P we shall define a weakly-
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closed source SQ and a weakly-closed sink TQ such that Q4Q°
implies btoth SQ+ SQ, and TQ+ TQ, . Thus neither the conglomera-
te of weakly-closed sources nor the conglomerate of weakly-clo-
sed sinks is codable by a class. Choose a set X with cardinali-~
ty the least cardinal larger than o . For Q€P, let SQ be the
weakly-closed source of all X 1—’} (V] where U-i"—) V is a mor-
phism, Ue Q, and X—£51Ul is a one-to-one map. If Q° is a dis-
tinct subclass of P, say with Uye Q\Q’, then there is a one-to-
one map X -&-—r | Uyl which is in SQ> Sq¢ - Analogously let Tq be

the weakly-closed sink of all | V] 22, X where v,y is a mor-

-phism, U€ Q, and IUI—?—*X is a surjective map.

4,8 Examples. In the set theory satisfying the axiom:

(M) There exists enly a set of measurable +) cardinals;
many categeries are knoewn te have a nearly rigid class. Bach

of the fellowing categeries has a nearly rigid class with ol = 1:

(i) 1lattices [S];
(ii) compact Hausdorff space [T;1 ;

(iii) metrizable spaces [T,] .

Each of the following categories has a nearly rigid class
with o = O:

(iv) semigroups [HL] ;

(v) rings and integral domains with unit LFS13 ;

(vi) symmetric graphs [HP,] ;

(vii) O-1 lattices £GS] ;

(viii) wunary algebras with f.wo ope_rations [HPl] -even idem~

potent ones (PS] .

(+) A cardinal number f is called measurable iff there exists
a @ -additive {0,1}~valued measure om a set of cardinalityfl .
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Without any set-thecretical assumptions a nearly rigid class o
with o = O exists in the category of paracompact T, spaces (Ko}
and in hypergraphs [Ku].

Th\;s, by Theorem 4.7, all of the above mentioned catego-
ries fail to have a largest initial or a'largest final comple-

tion.

4.9 Next, we consider fibre-small largest initial comple=-

tions. Twc structured maps from X
x 1> LUy} and X 2> U,

are said to be® -equivalent, (£1,U)® (£,,U,), iff there ex-
ist morphisms glzul——-r U2 and 8> :Uz—-—> Ul euch that

X X
£y 5 £ £,
(Ul ——— | U, U | € ——— U\
1 2 1 2
& &2

commute; i,e., iff the weakly-closed hulls of the simgleton sour=-

ces are equal.

4.10 Definition. A concrete category is dalled extreu;elx
strongly fibre-small iff for each object X in & the conglomera-
te of all weakly-closed sources from X is small; equivalently
iff the conglomerate of all A ~equivalence classes of structu-
red morphisms X—’—H Ul is small.

Dual notion: extremely strongly co-fibre small.

4.11 Theorem. A concrete category has a fibre-small ini-
tial comple tion iff it is extremely strongly fibre-small.

Proof: Analogous to the proof of Theorem 3.5.
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§ 5. Cartesian Closed Completion. A basic feature of the
largest (final) completion £ of Antoine (whose base category
¥ = Set) is that Z is a cartesian closed category. In this
section we will consider cartesian closed comple tions assuming
that the base category X

1) 1is cartesian closed;

2) 1is complete and co-well powered; and

3) has a separator.

Categories with a cartesian closed fibre-small initial completionm

were characterized in [AK; ,]. The proof there is formulated for
’

& = Set, but it is easily verified to hold in the generality

below.

5.1 Let X be a concrete category with finite concrete pro-
ducts (= products preserved by the forgetful functor). Two struc-
£, £, .
tured maps X —1— | Ul\ amd X —2— 1 Uyl are called productive-

structurally eguivalent (denoted by (fy,U;)a*(£,,U,)) iff for
each object W the maps:

X \W}ﬁx—‘l-ylV&le and X = w:ﬁ_’f-‘-»wzan

are ~ -equivalent.

5.2 Definition (see [AK; 51). A concrete category with
9
finite concrete products is called strictly fibre-small if for
every X in & the conglomerate of all A* -equivalence classes of

structured morphisms X-—f—-r | Ul is small.

5.3 Theorem. [‘u(l,ZJ If X is a concrete category with
finite concrete products, then the following are equivalent:

(i) ¥ has a cartesian closed fibre-small initial comple-~
tion that preserves finite products;
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(ii) X has a cartesian closed fibre-small initiality-
preserving initial completion.

(iii) ¥ is strictly fibre-small.

5.4 Theorem. For each extremely strongly fibre-small con-
crete category the (fibre-small) largest initial completion is
cartesian closed but, in general, is not initiality preserving.

Proof: Let & be the largest initial completion ef O . Then
Z is fibre-small (4.11) and also inherits all of the following
properties from & (see [He,]): co-well-powered, cocomplete, has
finite products and a separator. Thus, we can/ use Freyd's speci-
al adjoint functor theorem in its dual form. It suffices to show

that the functors:

Ssx_: % —>Z (sin&)
all preserve colimits. Then they will all be left adjoints; i.e.,
& will be cartesian closed.

By Theorem 4.2 & is (isomorphic to) the category of weak-
ly-closed sources. It is readily verified that for each weakly-
closed source S the functor Sx__ does preserve colimits. Both fi-
nite products and colimits in & are hence "natural". If T is

another weakly-closed source, then Sx T is the weakly~-closed sour-

ce of all
. o3,
xxy 27X o | vi oana xxy ET,

with x-f—-» | Vi in s, Y—q—'-r fWl in T and y . ) My projections.
Furthermore given a small functor D: @ —» & with 1D(d)I= Y,
(d an object of D ) let (Yd,—’-"-L-—yI)d‘m be the colimit of the
underlying functor D, (= 11+D) in %€ . Then colim D is the sour-
ce of all Y—-?:-H W) subject to the condition that:

- T3 =



for each d, Y4 -!—34-' ] W} is in the source D(d).
Since & is cartesian closed, we have
Xxcolim Dy = colim (XxD;))
from whigh it easily follows that:

Sx colim D = colim (Sx D),

5.5 Theorem. The largest final completion is cartesian
closed (and small fibred and initiality preserving) for every
extremely strongly co-fibre-small category.

Proof: Analogous to the proof of Theorem 5.4 - but not du-~
al, since the dual for ¥ need not be cartesian closed.

5.6 Corollary. Each extremely strongly co-fibre-small ca-

tegory is strictly fibree-small.
Clearly, by 5.3 (i) and 2.7, each s trictly fibre-small category

{s strongly fibre-small.

§ 6. Implications Among Fibre-smallness Conditioms.. The fol-

lowing diagram summarizes some of the above results concerning

fibre-small completions:

extremely strongly extremely .styrongly
fibre-small / co-fibre-small
1 strictly
fibre-small 4
very str ong}.y 1y
fibre~-smal ve. strong
8 co-gbre-smll
2 5
strongly (=me—=———=> strongly
fibre-small co-fibre-small
fibre-small
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None of these implications can be reversed as the follewing coun-

ter-examples show:

{AHS]

{ak,)

[AK,)

[Anll

(An,]

LBT]

.
.
.
.
.

.
.

.

1
4
2
5
3
6
7

compact Hausdorff spaces (see 4.8 (i))

dual to 1

Example 3,7

dual to 2

fHe,, 3.1 c)

dual to 3

The cartesian closed categcry of compactly generated
Hausdorff spaces has no largest initial completion (see
4.8 (ii))

An example of én initially complete fibre-small catego-
ry (hence very strongly fibre-small and very strongly
co-fibre-small) which fails to be strictly fibre-small

is exhibited in [AKi 21.
]
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