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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 
20, 1 (1979) 

LEAST AND LARGEST INITIAL COMPLETIONS - II 
J. ADAMEK, H. HERRLICH, G. E. STRECKER 

Abstract: Universal and largest initial completions of 
a concrete category are studied. This is a continuation of the 
first part of the paper, published in the same journal, the 
knowledge of which is assumed. 

Key words: Initial completion of a concrete category, 
universal initial completion, largest initial completion, car­
tesian closed category. 

AMS: Primary: 18B15, 18A35, 18D30 

Secondary: 18A15, 18B99 

§ 3. Universal Completion. Analogously to the situation 

of the Mac Neille completion, a universal initial completion 

of a small category can be described by means of special sour­

ces (see iHe-j}). We shall consider these sources for arbitra­

ry categories and shall observe that if they form a legitimate 

conglomerate, then the category of all such sources is the uni­

versal initial completion. The converse is true as well, but 

its proof is more involved. 

i • 
3.1 A source S = (X — •» IV. I) is called semi-closed 

if it has the following oroperties: 

(i) S is closed with respect to composition with morphisms 
frea the l e f t ; i„e.,giY«n X-~-£-MVl in S.then i M HI i s in 
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a. 
S for each morphism V --E-> w. 

(ii) S is closed with respect to initial lifts in the1 

ft-' 
sense that given an initial source (W— S L > W O , then every 

structured map X M Wi belongs to S whenever each X —-^—> W 
J 

The smallest semi-closed source containing a given source S is 

called the semi-closed hull of S. (In I-^l this is called the 

standard enrichment of S.) 

3*2 Theorem. For a concrete category, JC , the follow­

ing are equivalent: 

(i) 30 has a universal initial completion; 

(ii) the conglomerate of semi-closed sources in X is 

legitimate. 

If these conditions hold, then the universal initial completion 

of X* is the category of semi-closed sources. 

Proof; (ii) «•> (i). This is a straightforward analogue of 

the proof when % is small; see [ He-,] . 

(i)«m^ (ii). Let (<£ ,s£) be the universal completion 

(where $ is considered as the inclusion of JfC into £ )• For 

each semi-closed source S from.X we have its initial lift P« 

in £ .It suffices to show that for distinct semi-closed sour­

ces S and S', always -?e+^Q/ •'Then the conglomerate of all se­

mi-closed sources will be codable by the class of objects of£ 
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and, hence, will be legitimate. To prove this we will define, 
£. 

for each semi-closed source S = (X • 5- » I Vil ), a special pair 

($> 9 &a) where l£>g is an initially complete category and $ is 

an initiality-preserving concrete functor from % into •<! . 

Ob.iects of ̂  are triples (H,W,T) where W is an object of Xj 

Hchomg (X,|W|) and T is an ^-source T = (W —2--* 4>(U.))„, 

subject to the following three conditions: 

(a) for each he H and each j€ J, X -t > I U A is in S, 

(b) T is maximal with respect to (a) (i.e., given an •£-

morphism W -£+ ty (U) for which h€ H implies X ^ "» I HI I is in 

S, then W Jfc* <J> (U) must be in T). 

(c) H is maximal with respect to (a) (i.e., given 
• u. ft. 

X — L + I W| such that jfi J implies X ---£-.—C* j UA is in S, then 

hQ must be in H). 

Morphisms of &^ q:(H,W,T) » (H',W',T') are -tf-morphisms q: 

: W — • w' which are source maps q:T-—* T'. The forgetful functor 

sends (H,W,T) -%-+ (H',W',T') to I W1-^~* I W'j . Then &s has the 

following properties: 

(*) •£.& i£ §- (legitimate) concrete category. 

Proof: Legitimacy follows from the fact that each object 

(H,W,T) is determined by H and W, and W belongs to the class of 

objects of «6 while H belongs to the class of all subsets (!) 

of morphisms of *£, • Amnesticity "follows from the amnesticity 

of the forgetful functor for 06 and (c) above. 

(ii) Xs is initially complete. 

Proof: Each sink 

(l(Hi,Wi,Ti)l ^ Z)T 
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has a final lift given by (H,W,T) where W is the final lift of 

(|W.| £* 2) in X , T consists of all W -?-+ £ (U) 

in A such that each W- •fi-Ak. * $ (U) is in ^ (for some ic I), 

and 

H ^ h : X —> Z | W-£-*<J> (U) in T implies X ^' M U. is in S|. 

'̂ ie concrete functor ty : % > <SfL is defined by: 

y(V) = (HV,V,TV) 

y(f) = f 

where H v = S H hom^ (X,|V|); T v = U (hom^ (V, $W))Ve& 

(iii) y is a full embedding that preserves initiality. 

Proof: We must show that (HV,V,TV) is an object ©f <$£g . 

die arly T v is maximal for Hv. Also H v is maximal for T v since 

if X > 1 VI has the property that X ^ > I 01 is in S for 

each V >ty (U) in Tv, choose p = lv to obtain (h,V)eS. From 

this it is easily verified that y is a full embedding. 

To show initiality preservation suppose that (U - > Uk) 

is an initial source in X . To establish the initiality of 

(y(U)—-5--*f,(Uk)) consider a map IWJ-

(H,W,T) such that for each k, 

|U| and an object 
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rk»g:(H,W,T)—*• y(Uk) is a morphism in £§ . By the defini-

tion of morphisms in oUg each W "•" > U, is an tt-morphisnu 

Since $ is initiality preserving, W—---—> U must be an X-mor­

phism. To verify that g:(H,W,T) *y(U) is an ̂ -morphism it 

remains to show that for each element of T-j, i.e. for each 

<|, (U) --£---> 4> (U') in % , we have W fr-.f' > $ (U#) in T. Equiva-

lently, for each heH, X • Ir * > | u'J is in S. Since S is semi-

closed it suffices to show that for each heH, X -*' * IIII is 

in S (see 3.1 (i)). But this follows from the fact that for 

each k€K 

X •» w > \ uk) 

is in S (see 3.1 (ii)). 

Thus we have an initiality preserving concrete functor if 

from X into the initially comple te category §&* • Thus (by 

1.10 (ii)) "f* can be extended to an initiality preserving con-
f. 

crete functor y¥ : St • «£« . But ( P g — - — • V.̂ ) is an initial 

source in £ , s o that (y*(Pg) —*—• f(Vi)) must be initial in 

oCe . It is easily verified that the initial lift of 

X ••** > Y < V in #$ is (H0,PS,S) where 

HQ = 4 X - i % X | each X ^ ' > I Vil is in S J. 
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Therefore y* (Pg) = (H0,Pg,S). 

Now let S = X —*-!• I V^t be another semi-closed source 

with Pg, = Pg. Then again (y*(Pg) ^ > y(V^)) is an initial 

source in i£fi . Since 1X:X—> X is in HQ and e^-S—^T»' is a 

source map, there follows that (ek,v/)eS. Thus we have shown 

that Pg/ = Pg implies S'S S. By symmetry, Pg, = Pg implies S'= 

= S; which completes the proof. 

3.3 Next, we consider fibre-small universal initial com­

pletions. Two structured maps from X 
£ £ 

X ------- 1 U-jJ and X -*-> I U2I 

are said to be ̂  -equivalent, (f-j-U-,)^ ̂ 2,U2^» **^ a s s* n£ l e~ 

ton sources they have the same semi-closed hull. 

3«4 Definition. A concrete category is called very strong­

ly fibre-small iff for each object X in X the conglomerate of 

all semi-closed sources from X is small.; equivalently, iff the 

conglomerate of all « -equivalence classes of structured mor-

phisms X • 1 UI is small. Dual notion: very strongly co-fibre-

smail. 

3»5 Theorem. A concrete category has a fibre-small uni­

versal initial completion iff it is very strongly fibre-small. 

Proof: If the universal initial completion (= the catego­

ry of semi-closed sources) is fibre-small, then for each X in 

£ the conglomerate of semi-closed hulls of singleton sources 

from X is codable by a set. 

Conversely, if # is a very strongly fibre-small catego­

ry then for each object X in £ there is a representative set 

A« of structured maps from X, with respect to W . If a source 
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is semi-closed then, with each X • » ( U) , it contains all of 

its semi-closed hull . Hence the conglomerate of all semi-clo­

sed sources from X is codable by the set of all subsets of Ax, 

Thus the aategory of semi-closed sources is fibre-small. 

3*6 Example: f HS-J For k = 0,1,2,3,3 1/2, the (category of 

topological T^-spaces has a universal initial completion iden­

tical with its Mac Neille completion. E.g., far T-* ,y2 ( ~ com­

pletely regular T,) spaces^; the completion is the category of 

all completely regular spaces. Compare with examples 1.9 and 

1.11. 

3-7 Example. Let X be the category with objects -(X,Y>(/ 

U Ord (Ord =- the class of all ordinals) and morphisms given by: 

horn (Y,X) = {h}, hom (X,i) = itg for all ic Ord, horn (Y,i) = 

9 ^*£ f o r a 1 1 i € 0 r d ^wnere &±= f i * n^f nom (A,A> = \ f°r 

all objects Aj and all other hom-sets empty. 

•ç 
r- 2 -

Let X be the subcategory obtained by deleting h. Then, consi­

dered as a concrete category via the embedding into 56 , OC is 

fibre-small. However, % does not have a universal initial com­

pletion. Indeed, for each class QtSOrd, we have the semi-closed 

source 

sQ- i--^» w 

Since Q-|»Q' implies SQ4*SQ # , the conglomerate of all semi-clo­

sed sources is not legitimate* 
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As the above example shows, one can easily construct cate­

gories with no universal initial completion; nevertheless most 

"everyday" categories do have a universal initial completion, 

that is even reflective. Specifically: 

3.8 Theorem [HNST] If the faithful functor II \X—>£ 

has a lE'ft adjoint, then X has a reflective universal initial 

completion if one of the following conditions holds: 

(i) % is cocomplete and co-well-powered. 

(ii) 2ft is complete, well-powered, and co-well-powered. 

(iii) 3C has (epi, M)-factorizations and diagonalizations 

for some conglomerate of % -sources M. 

§ 4. Largest Comple tion. There is a very natural initial 

completion of any (small) concrete category (over Set) already 

found by Antoine tAN^l and Day ^+' [D] and treated general­

ly by Herrlich [He-jK This turns out to be the largest initial 

completion, defined again by means of special sources. 

4.1 A source is called weakly-closed iff it is closed 

with respect to composition with morphisms from the left (cf. 

3.1 (i)). The smallest weakly-closed source containing a given 

source S is called the weakly-closed hull of S. It consists 

of all X -fe-̂ * I Ul for which X~£-* j VI is in S and V-£-+ U 

is a morphism. The dual notion is weakly-closed sink; i.e., a 

sink closed with respect to composition with morphisms from the 

right. If X is a small category, we can define the category 

X of all weakly-closed sources and source maps. This is the 

largest initial completion of X • If % is a large category, 

(•) Antoine aril Day worked with the dual notion, obtaining 
the largest final completion. 
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the same is true provided that X is Legitimate. Similarly with 

the cases of the Mac Neille and universal initial completions, 

if i? is not legitimate, then X does not have a largest initi­

al completion. But now many usual categories over Set fail to 

yield A legitimate. 

4-2 Theorem. For a concrete categsry, X , the following 

are equivalent: 

(i) % has a largest initial completion; 

(ii) the conglomerate of weakly-closed sources in X is 

legitimate. 

If these conditions hold, then the largest initial completion 

is the category of weakly-closed sources. 

Proof: (ii)--=a-̂  (i). This is a straightforward analogue of" 

the proof when % is small; see [He-]. 

(i)-*-^ (ii). Let (<p ,&) be the largest initial completion 

(where ^ is considered as the inclusion of X into «6 ). For 

each weakly-closed source S we have its initial lift Pg in X . 

We need to show that S+S' implies Pgt -*e' • Given a weakly-clo-

sed source S = (X—*-> I V-l ) we define a new completion A^ of 

X • This is analogous to the category iC^ in 3.2 except that 

objects (H,W,T) have the additional property that the source 

T = (W **» > 4>(U.)) is initial in A . Again, £& is a (legi-

timate) initially complete category. Define a concrete functor 

y i X •—• rf& ty: 

y(W) =- (HwtWtTw) where Tf = U hom^ (ft •(U))0«#
 a n d 

Hw = *f:P s—*W*ie| W-£--» $(U)«T W implies 

X --*--£* |U|* S| 
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Using the fact that $ is initially dense and that y is 

a full embedding, one can verify that <qr (W) is indeed an ob­

ject of tfg . Furthermore each object (H,W,T) is clearly the 

initial lift of the source of all 

I W)~-t» !f.(U)| with W -£->- 4> (U) in T. 

Thus Y *s a n initially dense full embedding. Since ($ ,•£ 1 

is the largest completion, it follows that tfr is an isomorph­

ism, which implies that any »6^ -object (H,W,T) is identical 

with the object ip (W) = (H«,,W,T^). Since, in particular, 

(H0,PS,S) with 

H Q =- iX-^-t X | X -£-» I V±l in S implies X *' y \ Y±\ e S } 

is an •£- -object, we conclude S = T^ • 
» *S 

Thus S + S' implies Pg+ Pg, • 

4»3 Example. The largest initial completion of the cate­

gory §£l over itself (#=#= Set) is ( $ , £ ) described as fol­

lows: The objects of St are all pairs (X,.D) where X is a set 

and D is a subset of the partially-ordered set of all equivalen­

ce relations on X satisfying: deD, d-fed-, implies d-̂ e D. The 

morphisms f:(X,D)—*(X',D') of £ are maps f :X—> X' satisfy­

ing: d« D' implies (fxf) (d)e D. The embedding £ carries X 

to (X,0) and X -£~* X* to (X,0) -i--> (x',0). 

That this is the largest initial completion can be seen 

from the fact that each complete source (X »«&> y X^)j in Set is 

determined by the set D of all equivalence relations induced by 

these maps; D *«(Ker fj ) i#If • 

*•* Example. A category need not have a largest comple-
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tion over itself! Let X - % be the oategory # of Example 

3.7. For each subclass Qg Ord we have a weakly-closed source 

S s (x—2-—^ I), Q and Q+Q' implies SQ4* SQ, , Hence the con­

glomerate of all weakly-closed sources fails to be legitimate. 

On the other hand, each category is initially complete over it­

self, hence it is identical with its universal initial comple­

tion. 

4#5 Example. The largest final completion of Set over it­

self is ($ ,46) described as follows: Hie objects of it are all 

pairs (X,D) where X is a set and D is a subset of the power set 

of X satisfying: A£ D and A, & A implies A-,c D. The morphisms 

f:(X,D)—MX',D') of X are all maps f:X—>x' satisfying: Ac D 

implies ft A3 £ D'. The embedding £ carries X • X' to 

(X,0)-i->(x',0). 

4.6 unlike the situation for Mac Neille or universal com­

pletions, "everyday" concrete categories often fail to have lar­

gest initial completions or largest final completions, as the 

following theorem and examples show. To aid in what follows, we 

will call a proper class P of objects of a concrete category 

nearly rigid iff there is a cardinal number oo such that: 

(i) VeP implies card I V \ >» eo j and 

(ii) for each morphism U ¥ V between distinct objects of 

P, card f t l U l U a ^ . 

^•7 Theorem. If a concrete category % over Set has a 

nearly rigid class of objects, then it has neither a largest ini­

tial comple tion nor a largest final completion. 

Proof: Let P be a nearly rigid class in X with respect to 

a cardinal oc. -. For each subclass QCP we shall define a weak3y-
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closed source S Q and a weakly-closed sink T Q such that Q 4 Q ' 

implies both S Q + S < V and T Q + T Q , . Thus neither the conglomera­

te of weakly-closed sources nor the conglomerate of weakly-clo­

sed sinks is codable by a class. Choose a set X with cardinali­

ty the Ijeast cardinal larger than oc . For Q £ P , let S Q be the 

/fe»f to. 
weakly-closed source of a l l X —-—^ iW\ where U > V i s a mor-

M 

phism, U e Q , and X M U I is a one-to-one map. If Q # is a dis­

tinct subclass of P, say with U Q e Q N . Q ' , then there is a one-to-

one map X * ¥ I U Q | which is in SQ^S S Q / . Analogously let T Q be 
the weakly-closed sink of all I VI »*8> X where V • • U is a mor-

g, 
-phism, U€ Q, and I til >X is a surjective map. 

4*8 Examples. In the set theory satisfying the axiom: 

(M) There exists only a set af measurable *"*"' cardinals; 

many categories are known to have a nearly rigid class. Sach 

of the fallowing categories has a nearly rigid class with *C= 1: 

(i) lattices tSl; 

(ii) compact Hausdorff space tT-̂ 3 ; 

(iii) metrizable spaces tT«3 . 

Each of the following categories has a nearly rigid class 

with o& = 0: 

(iv) semigroups [HLl ; 

(v) rings and integral domains with unit tFSl ; 

(vi) symmetric graphs tHPg] ; 

(vii) 0-1 lattices tGSJ ; 

(viii) unary algebras with two operations t HP-,] -even idem-

potent ones tPSJ . 

( + ) A cardinal number (I is called measurable iff there exists 
a C-additive 40,11-valued measure on a set of cardinality/! 
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Without any set-theoretical assumptions a nearly rigid class • 

with tc = 0 exists in the category of .paracompact T 2 spaces CKol 

and in hypergraphs [Ku]. 

Thus, by Theorem 4.7, all of the above mentioned catego­

ries fail to have a largest initial or a largest final comple­

tion. 

4.9 Next, we consider fibre-small largest initial cornple-* 

tions. Two structured maos from X 

£ £ 
X —-*-• I U-jJ and X —*-> I U2l 

are said to b e ^ -equivalent. Cf^,Un)^ ^p,U2^» * ^ there ex­

ist morphisms g^U-.—> U2 and g 2:U 2— > U-, such that 

f l / \ f 2 

(u-,1 * I u2i l uxl «e I u2l 
«1 

commute; i.e., iff the weakly-closed hulls of the singleton sour­

ces are equal. 

4.10 Definition. A concrete category is dalled extremely 

strongly fibre-small iff for each object X in £ the conglomera­

te of all weakly-closed sources from X is small; equivalently 

iff the conglomerate of all % -equivalence classes of structu-
f 

red morphisms X •lUI is small. 
Dual notion: extremely strongly co-fibre small. 

4.11 Theorem. A concrete category has a fibre-small ini­

tial comple tion iff it is extremely strongly fibre-small. 

Proof: Analogous to the proof of.Theorem 3.5. 
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§ 5. Cartesian Closed Completion. A basic feature of the 

largest (final) completion «6 of Antoine (whoae base category 

& = Set) is that •£ ia a cartesian closed category. In this 

section we will consider cartesian closed completions assuming 

that the base category X 

1) is cartesian closed; 

2) is complete and co-well powered; and 

3) has a separator. 

Categories with a cartesian closed fibre-small initial completion 

were characterized in lAIC, 2J. -Che proof there is formulated for 

X ~ Set, but it is easily verified to hold in the generality 

below. 

5.1 Let DC be a concrete category with finite concrete pro­

ducts ( = products preserved by the forgetful functor). Two struc-
£ f 

tured maps X - 1 > I UA and X & -» I V^i are called productive-

structurally equivalent (denoted by (^iiUx)^*^- 1^^ iff for 

each object W the maps: 

Xx | w l - ^ X V l V x̂ Wl and Xx IWl -&il> 1 V2*WI 

are >v -equivalent. 

5*2 Definition (see tAK-, 2 3 ) . A concrete category with 

finite concrete products is called strictly fibre-small if for 

every X in X the conglbmerate of all ̂ v* -equivalence classes of 

structured morphisms X — — Y I U I is small. 

5#3 Theorem. CAK-, 23 If X is a concrete category with 

finite concrete products, then the following are equivalent: 

(i) X has a cartesian closed fibre-small initial comple­

tion that preserves finite products; 
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(ii) X nas a cartesian closed fibre-small initiality-

preserving initial completion. 

(iii) X is strictly fibre-small. 

5*4 Theorem. For each extremely strongly fibre-small con­

crete category the (fibre-small) largest initial completion is 

cartesian closed but, in general, is not initiality preserving. 

Proof: Let 2 be the largest initial completion «f OC . Then 

j£ is fibre-small (4.11) and also inherits all of the following 

properties from X (see CHepJ ) *. co-well-powered, cocomplete, has 

finite products and a separator. Thus, we can use Freyd's speci­

al adjoint functor theorem in its dual form. It suffices to show 

that the functors: 

Sx_: 2 > X (S in 5 ) 

all preserve colimits. Then they will all be left adjoints; i.e., 

2 will be cartesian closed. 

By Theorem 4.2 &, is (isomorphic to) the category of weak­

ly-closed sources. It is readily verified that for each weakly-

closed source S the functor Sx does preserve colimits. Both fi­

nite products and colimits in X are hence "natural". If T is 

another weakly-closed source, then S x T is the weakly-closed sour­

ce of all 

X*Y **** > t VI and XxY ***** > I W! 

with X > I VI in S, Y - • I Wl in T and sf^ , 0fy projections. 

Furthermore given a small functor D: 3) • 3fc with lD(d)l= Y d 

(d an object of 2 ) let (Y^,—=-—• *)d€'p be the colimit of the 

underlying functor DQ (= II * B) in 96 . Then colim D is the sour-
%" 

ce of all Y •tWl subject to the condition that: 
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<L>1>I 

for each d, Yd -'»- *» » f WJ ia in the 3ource D(d)« 

Since & is cartesian closed, we have 

Xx colim D Q * colim ( X K D Q ) 

£rom which it easily follows that: 

Sx colim D * colim ( S K D ) , 

5-5 Theorem. The largest final completion is cartesian 

closed (and small fibred and initiality preserving) for every 

extremely strongly co-fibre-small category. 

Proof: Analogous to the proof of Theorem 5.4 - but not du­

al, since the dual for 3C need not be cartesian closed. 

5»6 Corollary. Each extremely strongly co-fibre-small ca­

tegory ia 3trictly fibre-small. 

Clearly, by 5.3 (i) and 2.7, each s trictly fibre-small category 

is strongly fibre-small. 

§ 6. Implications Among Fibre-smallnes3 Conditions.* The fol­

lowing diagram summarises some of the above result3 concerning 

fibre-email completions: 

extremely strongly 
fibre-3mall 

•1 
very atrongly 
"ib: 

3trictly 
fibre-9mall 

extremely .strongly 
c o-fi bre-amall 

very strongly 
co-fibre-emall 

strongly 
fibre-small 

» atrongly 
co-fibre-amall 

»>s. A 
fibre-small 
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None of these implications can be reversed as the following coun­

ter-examples show: 

1: compact Hausdorff spaces (see 4.8 (i)) 

4: dual to 1 

2: Example 3 * 7 

5: dual to 2 

3: [He1, 3.1 c] 

6 : dual' to 3 

7: The cartesian closed category of compactly generated 

Hausdorff spaces has no largest initial completion (see 

4.8 (ii)) 

8: An examole of an initially complete fibre-small catego­

ry (hence very strongly fibre-small and very strongly 

co-fibre-small) which fails to be strictly fibre-small 

is exhibited in tAK, 2^. 

R e f e r e n c e s 

[AHS] ADAMEK J., H. HERRLICH, G.E. STRECKER: The structure of 

initial completions. Preprint. 

{AK-jl ADAMEK J. and V. KOUBEK: What to embed into a cartesian 

closed topological category, Comment. Math. Univ. 

Carolinae 18(1977), 817-821. 

tAK2l ADiCMEK J. and V. KOUEEK: Cartesian closed fibre-comple­

tions. Preprint. 

I An-,] ANTOINE P.: £tude £lementaire d'ensembles structures, 

Bull. Soc. Math. 3elgique 18(1966), 144-166 and 

337-414. 

[An2] ANTOINE P.: Categories ferases et quasi-topologies III. 

Preprint. 

CBT3 BORGER R. and W. THOIEN: Is any semi-topolo<?iral func­

tor topologically algebraic? Preprint. 

- 75 



C30J jfcy B.: A reflection theorem for closed categories, J. 
Pure Appl. Algebra 2(1972), 1-11. 

tfS] PRIED E. and J. SICHIER: Homomorphisms of integral do­
mains, Trans. Amer. Math. Soc. 225(1972), 163-182. 

CGSJ GRATZER 0. and J. SICHIER: On the endomorphism semigroup 
(and category) of bounded lattices, Proc. Amer. 
Math. Soc. 34(1972), 67-70. 

tHe-jl HERRLICH H.: Initial completions, Math. Z. 150(1976), 
101-110. * 
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