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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 
20, 1 (1979) 

FACTORING UNCONDITIONALLY CONVERGING OPERATORS 
J. HOWARD 

Abstract: I t i s shown that an uncond i t ionally conver­
ging operator factors through a Banach space containing no 
isomorphs of cQ . 

Key words and phrases: Unconditionally converging ope­
ra torTjoiHa^E^ipiice. 

AMS: 47A05 

An operator T mapping a Banach space X into a Banach 

space X is unconditionally converging (uc) if it maps weakly 

unconditionally converging (wuc) aeries of X into uncondi­

tionally converging (uc) series in Y. On page 260 of [23 the 

usefulness of factoring a uc operator is pointed out. Our 

aim is to show that such a factorization does occur, that is, 

if T is a uc operator, then T factors through a Banach space 

containing no isomorphs of c . The proof is similar to that 

for weakly compact operators in [1]. We use NX to denote the 

set {FfeXw: there exists a wuc series 2 x in X such that 

F = 6'(Xw,X')-lim .£L Jx. J • Here J is the canonical embed-

dinf map of X into Xw. Well known facts are that wuc series 

are uc if and only if X does not contain an isomorph of c 

if and only if JX « NX (see [3D. Let KX be the weak* sequen­

tial closure of JX in X°. Note that KX and NX are norm closed 

in Xw. This is proven in L41 for KX and a similar proof holds 
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for NX* Let W be a convex, symmetric and bounded subset #f 

X. For n x l,2f... the gaufe \\ H n of the set Un « 2nW + 

• 2"*nBx (Bx is the unit ball of X) is a norm equivalent to 

I W . Define, for x£X, |||x\l, • ( 5v. l| x R *) * and let 
Ii sr 1 n 

Y *- {xCX: lllx W *=r coj and j denote the identity embeddinf 
of Y into X. 

Lemma 1 ([!}) (i) f c ^ 

(ii) (Yf III • (l| ) is a Banach space and j is continuous. 

(iii) j":Y"--> X" is one to one and (j")""1(X) * Y. 

Lemma 2 JY * HY if and only if every wuc series is uc 

in W (as a subset of X). 

Proof: We first show that the 6>(NX,X') closure of B y 

in NX is jw(Bj-y.). B̂ y, is norm closed and bounded in Y" ., hen­

ce 6,(Y",Y') - compact; and thus ^(NYfY') - compact. E, 

is 6*(Y"fY') dense in By* (Goldstine Theorem), s© 6""(Y",Y') 

dense in Bgy, and hence 6(NY,Y') dense in Bj-y. Since j" is 

weak* continuous, j"(Bjjy) is 6f(NXfx') closed (beinf 

0r(NXfx') compact) and j"(By) » By is 6 (HX,X') dense in it. 

Now, if every wuc series is a uc series in W (W£X), and 

W denotes W tof ether with all limit paints of wuc series in 

Wf then 2
nWf2"11 B ^ * Ii • 1,2,... contain By and are ©"(HX^') 

closed,hence they contain ^ " ( - W ) . Since 

A (2» i+2*n B ^ ) Q r \ (X**""^,) *- X 

it follows rj"(BNr)SXf hence t>y Lemma 1 (iii), NYSY. 

The converse follows by usinf Lemma 1 (i) and the weak 

topolofy for uc series (Orlics-Pettis Theorem). 

Theorem 3 Ivory uc operator factors throufh Banach spa­

ces containinf no isomorphs of c . 
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Proof: Let T:Z— > X be uc and let W ©f Lemma 1 be 

T d . ^ ) . Then the operators j"1* T:Z—> I and j:X—.• X provi­

de the required factorization. 

As in [31 we say T:X—^X is weakly completely conti­

nuous (wcc) if T sends weak Cauchy sequences into weakly con-

verfent sequences. As NX is to uc operators, so KX is to wcc 

operators and similar results can be obtained (see [33)-

Note that KX * JX if and only if X is weakly sequentially 

complete. Since it is a matter of using sequences instead of 

series, we state without proof the followinf. 

Lemma 4 JX = KI if and only if W is weakly sequential­

ly complete (as a subset of X). 

Theorem 5 Every wcc operator factors throufh weakly se­

quentially comple te spaces • 
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