Corrigendum et addendum ad: “Minimal cell coverings of sphere bundles over spheres”

Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 1, 189--190

Persistent URL: http://dml.cz/dmlcz/105913

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
It has been pointed out by Prof. Nelson Max [3] that the key step in the purported proof of the main theorem in [5] is in error. I have been unable to recover the full strength of that result, but I wish to delineate the circumstances wherein it has been proved. The terminology and notation of [5] will be used.

1. An easy argument employing the exact homotopy sequence of a bundle shows that M is k-connected, where $k = \min(p,q) - 1$. According to theorems of Luft [2] and of Osborne and Stern [6], it can be inferred from this that M can be covered by three cells if $\frac{1}{2}(p + 1) \leq q \leq 2p - 1$.

2. By Bott's famous computations, if $p \equiv 3, 5$ or 6 (mod 8) and $q + 2 > p$, then $T^p_{-1}(S^q_{q+1}) = 0$. For such p and q, all q-sphere bundles over p-spheres are products, and can be covered by three cells.

3. If the fibration admits a global cross-section, M can be covered by three cells [4].

To my knowledge, the remaining cases are still open.
References

Michigan State University
East Lansing, MI 48824
U.S.A.

(Oblatum 30.11. 1978)