Beloslav Riečan
The measure extension theorem for subadditive probability measures in orthomodular σ-continuous lattices

Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 2, 309--316

Persistent URL: http://dml.cz/dmlcz/105929

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
THE MEASURE EXTENSION THEOREM FOR SUBADDITIVE
PROBABILITY MEASURES IN ORTHOMODULAR \(\sigma \)– CONTINUOUS
LATTICES
Beloslav RIECAN

Abstract: The assertion stated in the title of the ar-
ticle is proved.

Key words: Probability measures, logics, orthomodular
lattices.

AMS: 20A60

Although the measure theory on logics (orthomodular lat-
tices or posets) is topical (see [5]), no measure extension
theorem is known. D.A. Kappas presented in [2] as an open
problem the possibility of such extension.

There are some results in [1],[3],[4], but for modular
lattices only. P. Volauf in [7] showed that the proof of the
extension theorem in [3] works in orthomodular lattices, and
he proved the extension theorem for orthocomplemented latti-
ces and probability measures using Carathéodory measurability.
But as P. Volauf as the author assume that the given mea-
sure is a valuation. As it is known, measures on logics need
not be valuations.

In the paper we prove an extension theorem for subaddi-
tive probability measures. Of course, every non-negative va-
luation is subadditive, hence our result is a little better than the previous known ones.

Notations and notions. If H is a lattice, we shall write $x_n \uparrow x$, if $x_n \leq x_{n+1}$ ($n = 1, 2, \ldots$) and $x = \bigvee_{n \geq 1} x_n$; similarly for $x_n \downarrow x$. A σ-complete lattice will be called σ-continuous, if $x_n \uparrow x$, $y_n \uparrow y$ implies $y_n \wedge x \uparrow y$ and dually.

A lattice H with the least element 0 and the greatest element 1 is called orthocomplemented, if there is a mapping $\perp : a \rightarrow a^\perp$, $H \rightarrow H$ such that the following properties are satisfied: (i) $(a^\perp)^\perp = a$ for every $a \in H$. (ii) If $a \not\leq b$ then $b^\perp \not\leq a^\perp$. (iii) $a \vee a^\perp = 1$ for every $a \in H$. An orthocomplemented lattice is called to be an orthomodular lattice if the following condition is satisfied: (iv) If $a \not\leq b$ then $b = a \vee (b \wedge a^\perp)$. Two elements a, $b \in H$ are called orthogonal if $a \not\leq b^\perp$ or equivalently $b \not\leq a^\perp$. A subset A of an orthocomplemented lattice H is called an orthocomplemented sublattice of H if $a, b \in A$ implies $a \vee b \in A, a^\perp \in A$.

Let A be an orthocomplemented sublattice of an orthomodular lattice H. A mapping $\mu : A \rightarrow (0, \infty)$ is called a measure if the following statements are satisfied:

$\alpha)$ $\mu(0) = 0$

$\beta)$ If $a_n \in A$ ($n = 1, 2, \ldots$) and a_n are pairwise orthogonal and $\bigvee_{n \geq 1} a_n \in A$, then

$$\mu \left(\bigvee_{n \geq 1} a_n \right) = \bigvee_{n \geq 1} \mu(a_n).$$

A measure $\mu : A \rightarrow (0, \infty)$ is called a probability measure if $\mu(1) = 1$. A measure $\mu : A \rightarrow (0, \infty)$ is called subadditive if $\mu(a \vee b) \leq \mu(a) + \mu(b)$ for every $a, b \in A$.

It is not very difficult to prove (by the help of (iv))
that every measure is non-decreasing and upper continuous (i.e. \(a_n \wedge a \Rightarrow \mu(a_n) \leq \mu(a) \)).

Construction. We start with an orthocomplemented sub-lattice \(A \) of an orthomodular, 6-continuous lattice \(\mathcal{H} \) and a subadditive probability measure \(\mu: A \rightarrow \langle 0,1 \rangle \). We want to extend it to the 6-complete orthocomplete lattice \(S(A) \) generated by \(A \).

Lemma. Let \(a_n, b_n \in A \) (\(n = 1,2,..., \)), \(a_n \wedge b \Rightarrow a, b \Rightarrow b, a \leq b \). Then \(\lim_{n \to \infty} \mu(a_n) \leq \lim_{n \to \infty} \mu(b_n) \).

Proof. Evidently \(a_n \wedge b_m \wedge a_n \wedge b = a_n \) (\(m \to \infty \)), hence \(\mu(a_n) = \lim_{m \to \infty} \mu(a_n \wedge b_m) \leq \lim_{m \to \infty} \mu(b_m) \) and therefore \(\lim_{n \to \infty} \mu(a_n) \leq \lim_{m \to \infty} \mu(b_m) \).

Now put \(A^+ = \{ b \in \mathcal{H}; \exists a_n \in A, a_n \wedge b \} \). The preceding lemma gives a possibility to define a mapping \(\mu^+: A^+ \rightarrow \langle 0,\infty \rangle \) by the formula

\[
\mu^+(b) = \lim_{n \to \infty} \mu(a_n), \quad a_n \wedge b.
\]

Then we can put

\[
\mu^*(x) = \inf \{ \mu^+(b); b \in A^+, b \preceq x \}, \quad x \in \mathcal{H}
\]

and by such a way we obtain a mapping \(\mu^*: \mathcal{H} \rightarrow \langle 0,1 \rangle \). Similarly they can be defined \(A^-, \mu^-, \mu^- \). The last step of our construction is the set

\[
L = \{ x \in \mathcal{H}; \mu^*(x) = \mu^*(x) \}
\]

Later we prove that \(L \supseteq S(A) \) and \(\mu^*/S(A) \) is the asked extension.

It is easy to prove that \(\mu^+, \mu^- \) are extensions of \(\mu \), \(\mu^+ \) is upper continuous, non-decreasing and subadditive.

Further \(\mu^* \) is an extension of \(\mu^+, \mu^* \) is non-decreasing,
subadditive and \(\mu^*(x) \geq \mu^-(x) \) for every \(x \in H \).

Main theorem. Let \(H \) be a \(\sigma \)-continuous, orthomodular lattice, \(A \) its orthocomplemented sublattice, \(\mu : A \rightarrow (0,1) \) a subadditive probability measure. Let \(S(A) \) be the \(\sigma \)-complete orthocomplemented sublattice of \(H \) generated by \(A \). Then there is exactly one measure \(\tilde{\mu} : S(A) \rightarrow (0,1) \) that is an extension of \(\mu^* \). The measure \(\tilde{\mu} \) is a subadditive probability measure.

Proof. Our main result will be proved by a sequence of propositions.

Proposition 1. Let \(x \in H \), \(y \in L \), \(y \neq x \). Then \(\mu^*(x) = \mu^*(y) + \mu^*(x \wedge y) \).

Proof. 1. Let first \(a \in A \), \(b \in A^+ \), \(a \notin b \). Then \(\mu^+(b) = \mu(a) + \mu(b \wedge a^\perp) \). Namely, \(a \nvdash n \vdash b \), \(a \notin A \) implies
 \(\mu(a_n) = \mu(a) + \mu(a_n \wedge a^\perp) \). Since \(a_n \vdash b \), \(a_n \wedge a^\perp b \wedge a^\perp \), we obtain
 \(\mu^+(b) = \mu(a) + \mu(b \wedge a^\perp) \).

2. If \(b, d \in A^+ \), \(d \notin b \), then \(\mu^+(b) \geq \mu^+(d) + \mu^*(b \wedge d^\perp) \).

Indeed, \(d_n \vdash d, d_n \in A \) and \(1 \) imply
\(\mu^+(b) = \mu(d_n^+) + \mu^+(b \wedge d_n^\perp) \geq \mu(d_n^+) + \mu^*(b \wedge d^\perp) \), which gives
\(\mu^+(b) = \mu^+(d) + \mu^*(b \wedge d^\perp) \).

3. If \(b \in A^+ \), \(c \in A^- \), \(c \notin b \), then \(\mu^+(b) \geq \mu^-(c) + \mu^*(b \wedge c^\perp) \). Take \(c_n \in A \), \(c_n \nvdash c \). Since \(b \wedge c_n \in A^+ \), \(b \wedge c_n \notin b \), we have by 2
\(\mu^+(b) \geq \mu^+(b \wedge c_n) + \mu^*(b \wedge (b \wedge c_n)^\perp) \geq \mu^+(b \wedge c_n) + \mu^*(b \wedge c_n^\perp) \).

Taking \(n \rightarrow \infty \) we obtain
\(\mu^+(b) \geq \lim_{n \rightarrow \infty} \mu^+(b \wedge c_n) + \lim_{n \rightarrow \infty} \mu^+(b \wedge c_n^\perp) \geq \mu^-(c) + \mu^+(b \wedge c^\perp) \).
4. Let $x \in H$, $c \in A^+$, $c \not\in x$. We prove that $\mu^*(x) \geq \mu^-(c) + \mu^*(x \land c \perp)$. Namely, if $b \in A^+$, $b \geq x$, then

$$
\mu^+(b) \geq \mu^-(c) + \mu^+(b \land c \perp) \geq \mu^-(c) + \mu^*(x \land c \perp),
$$

hence $\mu^*(x) \geq \mu^-(c) + \mu^*(x \land c \perp)$, too.

5. Finally we prove the assertion stated in Proposition.

Let $x \in H$, $y \in L$, $y \not\in x$. Take $c = y$, $c \in A^-$. By 4 we have

$$
\mu^*(x) \geq \mu^-(c) + \mu^*(x \land c \perp) \geq \mu^-(c) + \mu^*(x \land y \perp),
$$

hence $\mu^*(x) - \mu^*(x \land y \perp) \geq \mu^-(c)$. Therefore

$$
\mu^*(x) - (\mu^*(x \land y \perp) \geq (\mu^*(y) = \mu^*(y).
$$

The opposite inequality follows from the subadditivity of μ^*.

Proposition 2. If $y \in L$, then $y \perp \in L$.

Proof. Evidently $\mu^+(b) + \mu^-(b \perp) = 1$ for every $b \in A^+$. Let $b \geq y$. Then $b \perp \leq y \perp$, hence

$$
1 = \mu^+(b) + \mu^-(b \perp) \leq \mu^+(b) + \mu^*(y \perp)
$$

therefore

$$
1 - \mu^*(y \perp) \leq \mu^*(y).
$$

Proposition 1 gives $(x = 1) 1 = \mu^*(y) + \mu^*(y \perp)$, hence

$$
\mu^*(y) + \mu^*(y \perp) \geq 1 = \mu^*(y) + \mu^*(y \perp)
$$

which implies $\mu^*(y \perp) \geq \mu^*(y \perp)$.

Proposition 3. If $z_n \in L$ $(n = 1, 2, \ldots)$, $z_n \uparrow z$ (or $z_n \downarrow z$ resp.), $z \in H$, then $z \in L$ and $\mu^*(z) = \lim_{n \to \infty} \mu^*(z_n)$.

Proof. Let $z_n \uparrow z$. Put $z_0 = 0$. By Proposition 1

$$
\mu^*(z_n) - \mu^*(z_{n-1}) = \mu^*(z_n \land z_{n-1} \perp), n = 1, 2, \ldots.
$$

To every $\varepsilon > 0$ there is $y_n \in A^+$, $y_n \geq z_n \land z_{n-1} \perp$ such that
By adding these inequalities we obtain

\[\mu^*(z_n) \geq \frac{\varepsilon}{n} (\mu^+(y_i) - \frac{\varepsilon}{2^n}) \geq \mu^+(\frac{\varepsilon}{i+1} y_i) = \frac{\varepsilon}{2^n} \]

and therefore

\[\mu^*(z) = \lim_{n \to \infty} \mu^*(z_n) = \lim_{n \to \infty} \mu^+(\frac{\varepsilon}{n+1} y_n) - \varepsilon = \mu^+(\varepsilon y_n) - \varepsilon \geq \mu^*(z) - \varepsilon \]

and the equality \(\mu^*(z) = \lim \mu^*(z_n) \) is obtained. Further

\[\mu^*(z) = \mu^*(z) = \lim_{n \to \infty} \mu^*(z_n) = \lim_{n \to \infty} \mu^*(z_n) \neq \mu^*(z), \]

hence \(z \in L \). The second part of Proposition (for non-increasing sequences) follows from Proposition 2 and the first part.

Proposition 4. \(\mu = \mu^*/L \) is an additive mapping, i.e. \(x, y \in L, x \leq y \perp \) implies \(\mu^*(x \vee y) = \mu^*(x) + \mu^*(y) \).

Proof. First take \(c, d \in A^-, c \leq d \perp \). Then by Proposition 1

\[1 - \mu^-(d) = \mu^+(d \perp) = \mu^*(d \perp) = \mu^-(c) + \mu^*(d \perp \cap c \perp) = \mu^-(c) + \mu^+((d \lor c) \perp) = \mu^-(c) + 1 - \mu^-(c \lor d) \]

Now let \(x, y \in H, x \leq y \perp, c, d \in A^-, c \leq x, d \leq y \) such that

\[\mu^*(x) - \varepsilon \leq \mu^-(c), \quad \mu^*(y) - \varepsilon \leq \mu^-(d) \]

Of course, \(c \leq x \leq y \perp \leq d \perp \), hence

\[\mu^*(x \lor y) \leq \mu^*(x \lor y) \leq \mu^*(x) + \mu^*(y) = \mu^*(x) + \mu^*(y) < \mu^-(c) + \mu^-(d) + 2 \varepsilon = \mu^-(c \lor d) + 2 \varepsilon \leq \mu^*(x \lor y) + 2 \varepsilon \]

Proposition 5. Let \(S(A) \) be the \(\mathcal{G} \)-complete orthocomplemented lattice generated by \(A \), \(M(A) \) be the least set over \(A \)
closed under monotone sequences. Then $S(A) = M(A)$.

Proof. It can be proved by a standard way. (See e.g. [3], lemma 1.)

Proof of Main theorem. 1. Existence. Evidently $S(A) = M(A) \cup L$. Put $\tilde{\mu} = \mu \cdot S(A)$. By Propositions 3 and 4, $\tilde{\mu}$ is a measure. $\tilde{\mu}$ is a subadditive probability measure since μ has these properties.

2. Uniqueness. Let $\nu : S(A) \to R$ be a measure $\nu / A = \mu$. Put $K = \{x \in S(A) ; \tilde{\mu}(x) = \nu(x)\}$. Evidently $K \supset A$, K is closed under limits of monotone sequences. Therefore $K \supset M(A) = S(A)$.

References

Prírodovedecká fakulta
Univerzita Komenského
Mlynská dolina, 81631 Bratislava
Československo

(Oblatum 13.2. 1979)