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ON MEASURES OF NONCOMPACTNESS IN BANACH SPACES
Josef BANAS

Abstract: The paper deals with a new axiomatics for
measures of noncompactness which seems to be useful in ap-
plications. A fixed point theorem of Darbo s type and exis-
tence theorem for ordinary differential equations in Banach
spaces are derived.
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Classification: 47HO9, 47H10, 34G20

1. Introduction. In the last years there have appear-
ed a lot of papers concerned with the notion of so-called
measure of noncompactness. The most expository papers on
this topic are e.g. [3],[11]1. The notion of the measure of
noncompactness was defined in many ways. At first, K. Kura-
towski [10) has introduced for the family of all bounded sub-
sets of metric space (M,@) the function o¢(X) defined below,

which is a kind of a measure of noncompactness

o (X) = inf[g > 0: X can be covered with a finite number

of sets of:diameter smaller than e ] .

Another measure of noncompactness is so-called ball measure
(or Hausdorff measure). It is defined by the formula
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2(X) = inf[€ > 0: X can be covered by a finite number

of balls of radii smaller than €] .

This measure was introduced by Gohberg, Golden&tein, Mar-
kus [ 8], Sadovakil [12] and Goebel [61.

There are some other definitions of measure of noncom-
pactness. Some of the authors were trying to introduce this
definition by an axiomatic way [9],[11]1. At first it appea-
red in the paper of Sadovekil [11], but his axiomatics
seems to be too general. In this paper we present another
axiomatic approach which is useful in applications.

Almost all known measures of noncompactness possess
the property that they are equal to zero on the family of
all relatively compact sets in a given space.

In our paper tfhis property is omitted. It is very fruitful
for applying such measures to the fixed point theory, be-
cause it gives a good characterization for the solutions
of some functional equations [1]. In addition, our defini-
tion is appropriate for obtaining the formulas for the mea-
sure of noncompactness in the spaces in which convenient

criteria of compactness do not exist [1].

2, Notatioms. Let (E,l i) be a Banach space with the
zero element 6. We denote
mE - the family of all bounded and nonempty subsets
of E, ‘
'”-E - the family of all relatively compact and nonem-

pty subsets of E,

M, 1o

E- subfamilies of W, ’)’LE respectively, con-
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sisting of closed sets.

Let D denote the Hausdorff pseudometric on the family ME’
It is well known that D is a complete metric on 921; and
the metric space (fn;,D) is a closed subspace of the space
(m;,D). The closure of a set X, its diameter amd its con-
vex closure will be denoted, respectively, by X, dimm X,

Conv X. If X,Y ¢ Mg, A, we R, then
AX +uY =[Ax +uy:xeX,yeY].

The closed ball with the center in x and of radius r will
‘be denoted by K(x,r). "The ball" centered at an arbitrary

set X of radius r will be denoted by K(X,r), i.e.

K(X,r) =$léJx K(x,r).

3. Measure of noncompactness. Axiomatic approach. Our

axiomatics of measure of noncompactness consists of two

parts.

Definition 1. We call the kernel of a measure of non-
compactness eny nonempty family P c ’J'LE satisfying the fol-
lowing conditions:

1° XeP=XeP,

2° Xe®, YcX, Y¥P =Y e P,

3° XY eP=>AX+ (1-A)Ye P for A€ €0,1),

4° XcP—>Conv Xe?P,

5% @° (i.e. collection of all compacts belonging to
%) is closed in M; with respect to the Hausdorff topology.

Definition 2. A function w: mE—> {0,+o0) is said
. to be a measure of noncompactness with kernel P (ker (u=?)
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provided it satisfiea the following conditions:
1° wx) = 0¢=>x € P,
2° w(X) =u(x),
3° XoY = wdX) £ (Y),
4° @(Conv X) =w(X), )
5 WAX + (1-A)Y) £ A w(X) + (1-14) w(¥) for
Ae0,1>,
6° ir X e m%, X 41 X, forn = 1,2,... and if

.4
2 11im @(X) =0 then X, = () K +0.

A measure such that for any X € @, and A € R

7° @wax) = (Al wlX)
is said to be homogeneous, and if it satisfies

8% WX + ¥) £ w(X) + Y)
it is called subadditive. It is sublinear if both condi-
tions 7°,8° hold.

Notice that the Kuratowski ‘s measure o and ball mea-
sure y are sublire ar measures of noncompactness with ker-
nel ’J’Lg (see e.g. [61,[11]). The simplest example of a mea-
sure with P+ g is the diameter, diam X. Its kernel is
the family of all one-point sets. Another example of such
measures may be found in [1]. ‘

Observe now that each kernel ? admits at least one me-

asure.,
Theorein 1. For any kernel J° the function
‘a,(x) = D(X,P) = inf[D(X,Y):Ye P]
is a measure of noncompactness with kernel 7°.
We omit the proof which is based on some properties of

the function D ([11,[61).
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Now we prove a few lemmas describing some properties
of measures of noncompactness. We assume that «w is an ar-

bitrary measure with kernel .
Lemma 1, (cf. [2].) If ¢ ¢ (0,1) then

“(K(X,e)) £ wdX) + ¢ WK(X,1)).
Proof. It is easy to verify that the function
p(t) =(¢AK(X,t)), tz0
is nondecreasing, convex and nonnegative, also continuous.

Then

@(K(La)e) - X) £ WK(X,1)) - wlX) £ w(K(X,1)),

arnl the proof of our lemma is complete.

Lemma 2. If IXH§=sup[ixll :xeX]<1l then
(X + Y) £ oY) + ixi “(K(Y,1)).
The proof of the above lemma is similar to the proof of

Lemma 1.

Lemma 3. If {0% ¢ & then @ tX) £t w(X) for te<0,1).
Indeed we have

(tX) = w((1-t)46} + tX) £ (l-t)(w({e}) + tu(X) = tw(X).
Lemma 4. Let t;,t5,...,t be given nonnegative reals
m
such thatLZ,’ t;41 and let {83 € 3 . Then

" m

m

Proof. If 4‘24 t; = O then the inequality is obvious.

' .
Let .= t; > 0. Denoting Ay = + , we have with respect
B 21
to Lemma 3 and the axiom 5° (Definition 2):

nw m
(“'(;f,‘:q tX) = wl 4321 1) ( AKXy + AKX,y +eeet A X)) £
- 135 -
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z o
£ .20t DA @) + 2, WXy +oot iy @xl= = by @),

4. Operators satisfying Darbo condition and a fixed
point theorem. Let El, EZ be Banach spaces and let

(“'1, (“2 be some measures of noncompactness in E,, Ez respec-
tively. We will consider the operators defined on a subset
F of El with values in 32. In the next we assume that those

operators are continuous.

Definition 3 (see e.g.[2]1). We say that the operator
T:F—> E, satisfies the Darbo condition with a constant k
with respect to the measures M G if for any set XcF
such that X s’mgl, its image TX € mEZ and

(“—Z(TX) <k (4,1(}() .
If k<1 then we call T a - @Z-comraction or short-
ly, M-contraction if E = E, and U SUpy =
Motice that T:FcE —E is a contraction with respect to the
diameter if and only if T is a contraction in the classical
sense.

We prove now a fixed point theorem of Darbo type (cf.
£51,011).

Theorem 2. Let C € W, Conv C = C and let T:C—> C be
a w-contraction, where ¢ is an arbitrary measure of non-
compactness. Then T has at least one fixed point which be-
longs to ker w .

Proof. Consider the sequence of sets C, = C, C ., =
= Conv TC, . Then

6‘(°n+1) = w(Conv TC,) =@(TC )<k (u(Cn).

- 136 -



Hence
n
UC £k wl(C))
and consequently
rn1—>ma}o (u.(Cn) = 0.

Because C,,,cC, and T:C —> C_ for all n = 0,1,2,..., then

n+l
w .
Coo =MQ,, C, is a convex closed set belonging to ker« and

invariant under T. The classical Schauder fixed point theo-

rem comple tes the proof.

5. Some properties of operators satisfying Darbo con-

dition. let, as earlier, E;, E, denote Banach spa-
ces with given measures of noncompactness ¢4 4o Tespec-
tively. We give some properties of the operators satisfying

the Darbo condition.

Theorem 3. If T,,T,:FcE,—> E, satisfy the Darbo con-
dition with a constant k, then the operator

T, =AT) + (1-A)T,, for Ae <0,1)

satisfies the Darbo condition with the same constant k.

The proof is obvious.

Theorem 4. Let {T,} be a sequence of operators defin-
ed on FcEl and taking values in Ez, which satisfy the Dar-
bo condition with the same constant k. If T, converges uni-
formly on any bounded subset of F to an operator T, then T
satisfies the Darbo condition with constant k.

Proof. Let €« (0,1). Then for any bounded set XcF

there exists an integer n,

sup [lInx - xll:xeXl< €.
- 137 -
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Hence
TXcK(TnX,e).

Thus in view of Lemma,l we obtain
o (TX) £ Uy (K(T X, €)) £ @y (T X) + & (K(T X,1)) £
for any nzn . Because the sequence -f(az(K(Tnx,l))i is boun-
ded and the above inequalities hold for arbitrary €e (0,1),
we finally have
“o (TX) £ k @4 (X).
. This ends the proof.

The above theorem was first proved by Daned [4] for the
case of the ball measure 7§ .

If we denote by ¥ the family of all bounded and conti-
nuous operators acting from FcE into B, and by Zk (k= 0)
its subfamily consisting of all operators satisfying the Dar-
bo condition with constant k (with respect to the measures
(”'1, &2), then in view of Theorems 3 and 4 we obtain that the
family zk forms a convex and closed subset of the family &

(with respect to the topology of uniform convergence on boun=-

ded sets).

6. An existence theorem for ordinary differential equa-
tion in Bamach space. In this section we shall give
some applications of measures of noncompactness to the exis-
tence probleil for ordinary diffez;ential equation. Our result
extends a result of the works [2],[7].
Denote by C = C(<0,T>,E) the space of all continuous
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functions defined on the interval {0,T) with values in the
Banach space E. For x = {x(t)} € C we define the usual max-
mum norm

x| = max [ x(t) I g:te<0,T>.

For arbitrary X e ’mc and € > O we put

w(X,e) = (EUB {sup [l x(t) - x(s) g:t,8€<0,T), It-8l £ €]t
and

@y (X) = el—i>m0 w(X,€).

According to the Arzela theorem and result of [6] we can ea-
8ily deduce that if E is a finite dimensional space then
wo(x) is the measure of noncompactness in the space C and
@y (X) = 2y (X). If E is an infinite dimensional space we
must add a component which measures the noncompactness of
cross-sections X(t), where X(t) =[ x(t):x eX]. Therefore, let

g be an arbitrary measure of noncompactness in E with ker-

nel CP.E. We put

M(X) = sup [(u.E(X(t)):t €<0,T>] .
Finally let us define

@(X) = @y (X) + u(X).

This function is a measure of noncompactness in the space C
with kernel ?C consisting of all equicontinuous sets X such
that X(t) ¢ Pg for any t €<0,T> [2).

It is worth to mention that the function M(X) is the
measure of noncompactness on the family mgq of equiconti-
nuous sets (i.,e. it satisfies the axioms of measure of non-
compactness on this family).

Now we prove some generalization of Goebel-Rzymowski
lemma [ 7]. First we denote ‘
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t t
J;X(a)ds = l'.é; x(8)ds:x & X].

Lemna 5. If X e Mgl and 403 ¢ P then for any t €
€{0,min{l,T}> the following inequality holds:

b f‘;t X(s)ds) é_/o't @ (X(s))ds.

Proof. Taking an arbitrary € e (0,1), in view of e~
quicontinuity, we can choose points O = t, £ §l£— Y, £ §zé

£..0£§ 4t =t so demsely in (O,t) that for all xeX

t m
I J x(s)ae -, =, x(§5)(t; -t ) Hee.
Thus we get

t t m
fo X(s)ds) c [_{'D x(s)ds -, =, x(£;)(t; - ¢ ;)ixeX]+

m

+0.=, x(g3)(t; - t;_1)ixeX1=4 + B,

Sa=1

Now in view of Lemma 2 v‘le obtain

@A + B) £ u(B) + AN «(K(B,1)) £

m
£ e w(K(S,1)) +(u([i§4 x(§;)(ty = t;_;):ixe XD,
Hence, by Lemma 4, we have
t

@l [ X(a)as) 5:&%1 (t3 = t5 1) @(X(g;)) +e @(K(B,1).

Densifying the partition of {0,t) completes the proof.

Let us consider the ordinary differential equation
(1) x’ = £(t,x)
with the Cauchy initial value condition
(2) x(0) = @.

We shall assume that f is defined on {0,T>x E, continuous

and bounded.
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Theorem 5. Let f be a uniformly continuous function
on L0,T>»=K(8,r). Let If(t,x)l £ A, AT4r, T£1 and

ME(2,X)) £p(t) wX)

for any X € W and for almost all t €<0,T), where p(t) is
a Lebesgue integrable function on {0,T). Then the equation
(1) has at least one solution x satisfying the condition (2)
and such that x(t) e & for te<0,T).

Proof. Let X c C(<0,T>,E) be the set of all functions
'x such that x(0) = @ and Ix(t) - x(s) l g £Alt - sl. X is
closed, bounded, convex and equicontinuous. The transforma-
tion

t .
(Fx)(t) = j; f(s,x(s))ds

maps continuously Xo into itself. Thus our problem is equi-
valent to the existence of a fixed point of F.

Now, for any X c’mgq and %Z0 put
t
“X) = sup [w(X(t)) exp(- acfo p(s)ds):te<0,T>].

We can easily check that (,(X) satisfies the axiom of mea-
sure of noncompactness on the family mgq. Hence and with

respect to Lemma 5, we obtain for any X smgq

= ¢ < t <
@UFR) (1) = @ [ £(s,X(8))ds) < [~ wlf(s,X(s)))as £

+ t t
P j; p(s) u(X(s))ds éc&u(X) J{; p(s)exp(nfo p()dr)ds £
t
£ explaef p(8)as) & ).

t
Dividing both sides by exp(ch; p(s)ds) and taking supremum

on the left hand we obtain

1
(u«u(Fx)é % (‘«“(X).
If 2 > 1 then F is a (uu—contraction and in view pf Theo~-
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rem 2, it has a fixed point x such that x(t) E{PE for t €

€ <0,T>. Thus the proof is complete.
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