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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21, 1 (1980) 

EXTENSIONS OF THE SHANNON ENTROPY TO SEMIMETRIZED 
MEASURE SPACES 
Miroslav KAT6TOV 

Abstract; Extensions of the Shannon entropy to measu­
re spaces endowed with a semimetric are examined. 

Key words; Entropyf measure space, semimetric, dyadic 
expansion, lower limit with respect to a filter. 

Classification; 94A17 

We investigate the possibility of extending the Shan­

non entropy to the class of all semimetrized measure spaces, 

i.e. sets endowed with a finite measure and a measurable se­

mimetric. It turns out that various extensions are possible. 

We examine two of these, denoted by C and C*, which satisfy 

certain natural conditions. 

The extension C* can be characterized, among all those 

functions f on the class of semimetrized measure spaces 

which fulfil certain general requirements, as the maximal 

one satisfying the following conditions: (1) g>(P) ̂ ^(P^) + 

+ 9>(P2) + H(<alf <a2)r(P1,P2) where (-?i»P2) is a partition of 

P into two measurable sets, <û , i = 1,2, is the measure of 

P., and r(P.. ,P2) is the average distance between points ©f 

P, and P2, (2) every f -<- cp (P) is majorized by every g> (S) 

where S is the quotient space of a sufficiently fine parti-
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tion of P. Die extension C can be characterised as the low­

er limit of C*(S), where S is the quotient space of a "par­

tition" of P corresponding to an arbitrary partition of uni­

ty into finitely many measurable functions. 

The functions C and C* possess various convenient pro­

perties. Some of these are stated below (3.10, 3.12 - 3.15); 

however, the proofs of the corresponding propositions do not 

appear in this note and are intended for publication else­

where. 

We also sketch the definitions of some other extensioms 

of the Shannon entropy as well as certain analogies, diffe­

rent in kind from the well known ones, between dimensiom 

and entropy. 

It may be asked why one should try to extend the Shan­

non entropy. One reason lies in the fact that the entropy 

of finite probability spaces, the €-entropy of metric spa­

ces and the differential entropy exhibit many common pro­

perties whereas no concept seems to have been introdueed so 

far from which all of these could be obtained, at least up 

to minor points, in a natural way. Other reasons come from 

applications. Thus, the intuitive concept of the "informa­

tion content" of a metrized set of possible stimuli appear­

ing with a certain probability seems not to have been as yet 

expressed mathematically in a satisfactory way, in spite of 

its importance in problems of human information processing 

(for an elementary exposition of pertinent topics sea e.g. 

Chapter 10 of the textbook C11,'which also contains further 

references). 

The problem of extending the Shannon entropy has been 
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investigated for the case when the underlying set is finite 

in the author's note Quasi-entropy of finite weighted metric 

spaces, Comment. Math. Univ. Carolinae 17(1976), 797-806. 

This note, of which the present one is a free continuation, 

will be referred to as QE. Most definitions appearing in OS 

will be restated or extended in the present article. 

It is to be noted that a special case of the problem of 

introducing an entropy for probability spaces equipped with 

a metric has been examined in 131 • However, the approach ap­

plied in 133 is quite different from that in QE and the pre­

sent note, and only the case of a real random variable with 

a finite range is considered. 

We prove only some of the statements in full. Many 

proof8 are only sketched, and simple or straightforward ones 

are often omitted. From information theory and theory of me­

asure we presuppose only the basic notions. From set theory 

and topology we need, in fact, only the concept of a filter. 

1.1. We recall some terminological and notational con­

ventions, most of which have been already used in QE. - A) 

A function f is, by definition, a mapping of a class into R, 

the extended set of reals. If all f(x) are real, then f is 

called a real function. - B) We put a.oo = oo if a>0, O.o? = 

= 0, 0/0 = 0. We write log instead of log^ . We put O.log 0= 

= 0. For x5 0, we put L(x) = -x log x. - C) Let ^ be a fi­

nite (the word "finite" is often omitted) measure on a set 

Q. Then dom<cc denotes the domain of (*> (observe that we al­

ways assume that dom̂ u, is a 6*-field) and ĉ denotes the 
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Lebesgue extension of suu • Instead of ^(X), we often write 

^(X). - B) If fj, is a measure on Q and B€dom<& , then M,^ 

denotes the measure defined by ^ ( X ) = (L(Xr\ B) for Xe dom/tx. 

- E) If (Ccfv are measures on Q, then (tt, S-p means that 

dom {A, = dom i> , <a(X)£ H> (X) for all Xedom ̂  . - F) Let ^ t 

i=l,2, be a measure on Q^. The product (-̂n-* (**? *8 defined in 

the usual way (dom( ( \ x ("̂  i s t n e -teast S'-field containing 

all XnxXg, where Xi€. d o m ^ ) . - G) A semimetric on a set Q 

is, by definition, a non-negative real function jo on QxQ 

such that ro(x,x) = 0, p(x,y) = p(y,x). A semimetric m on a 

set Q will be denoted by 1 if jt>(x,y) = 1 whenever x,y« Q, 

Xafcy. - H) For any countable indexed set ft- (^k:keK) of 

non-negative reals such that S ^ < °o , we put K(<u) » H((Cck: 

:k€K) = £(L-((ik):k£K) - L(2l( ̂ i k c K ) ) . Thus, if <tc is a 

probability measure on a finite set Q and all ix}f xeQ, are 

in dom /OL , then H( p,(iql) :q cQ) is the Shannon entropy of <<JL • 

To cover the case when some «£q$ is not in dom pc , we introdu­

ce the following trivial extension of the Shannon entropy: 

the entropy of a finite probability space ̂ Q,<t6> is equal to 

2(L( (U»(A)) :A e Jl) where Jt is the set of atoms of dom^. 

*-2. Convention. In formulas, we omit parentheses when­

ever possible without a danger of misunderstanding, and write 

e.g. (WX instead of <a,(X), pq instead of ûX-Cq}), etc. 

--•3- Definition. A triple P = <Q,Q,<tt> , where Q is a 

non-void set, ̂  is a finite meaaure on Q, ̂> ie a (pu^p,)-me­

asurable aemimetric on Q, will be called a semimetrized mea­

sure space or a WM-space (WM stands for "weighted semimet­

ric", the expression used in QE). The class of all WM-spaces 

will be denoted by iWMj. 
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*•*• -fefflarfc * Clearly, FWM-spaces ( f i n i t e weighted s e -

mimetric spaces) considered i n QE coincide with WM-spaces 

<Qf®f(Ut<> such that Q i s f i n i t e and every «{qJf q e Q , i s i n 

doa QL • (Observe that the condit ion (q3 e doa (i, , not s ta ted 

e x p l i c i t l y i n QE, i s t a c i t l y understood there - see e . g . QE 

1 . 3 and QE 1 . 4 . ) 

1 .5 . We s h a l l c a l l a WM-space <Q,§>t(W,> f i n i t e i f the un­

der ly ing s e t Q i s f i n i t e , an FWM-space i f , i n add i t ion , a l l 

{q? f Q€Q, are i n dom u • The c l a s s of a l l FWM-spaces w i l l be 

denoted by {FWMj. For a non-void Qf -{WM(Q)} w i l l denote the 

s e t of a l l WM-spaces <Q,^>, (t->> . I f , i n addi t ion , Q i s f i n i t e , 

then -{FWM(Q)} w i l l denote the s e t o f - a l l FWM-spaces <Qf<cf(tt>-

1 . 6 . Examples. A) I f (U i s a f i n i t e measure on Q4*0f 

then <Q fl f(tt> i s a WM-space provided the diagonal of QxQ i s 

((ULX^O)-measurable. - B) I f < Q , / c > . i s a (symmetric) graph, 

i . e . t i s a symmetric binary r e l a t i o n on Q, and ru. i s a f i ­

n i t e measure on Q, then <Q»§V »cu'> - where J> ( x f y ) = 0 i f f 

x = y or < x , y > 6 T , ^ ( x , y ) = 1 otherwise, i s a WM-space 

provided t u-C<x,x> : x 6Q$ i s (^x.x.x.c)-measurable. On the o t ­

her hand, every WM-space <Q,<t>f (JU> with a -{0,1^-valued p i s 

obtained from the graph <Q ff<x fy>: p ( x , y ) = 0}>. - O I f x 

i s a real -valued random variable on a probabi l i ty space <Q,<u.>? 

then we a s s o c i a t e with x the space <Rf§>fV> , where f> i s the 

usual metric on R, vY -=<0/C q:x (q)6 Yj for every Borel s e t Xc R. 

! • ? • Convention ( see QE 1 . 4 ) . I f Q i s f i n i t e non-void, 

then 4FWM(Q)i (see 1 .5) w i l l a l so denote the s e t -CFWM(Q)* en­

dowed with the topology defined t?y {Qtftxt-/"n>—• <Qf§>t(U-> i f f 

$ > n ( x , y ) — > f > ( x , y ) for a l l x f y e Q f <"n
x ~ ~ > ^ x f o r a l l x e Q . 
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1 . 8 . Def in i t ion (cf . QE 1 . 5 ) . Let P * <£,<? •(" /> b # * 

WM-space. If » £ ^ , we s h a l l c a l l S » <Q,?> f*>> ft »ubapa-

ce of P and we s h a l l wri te S ^ P . I f , i n addi t ion , *P s ( « B 

for some B€dom ft , then S i s c a l l e d pare subspace. 

1*9• s«-nark. I f <Q,§> , v > i s a subspace of <Q,?> ,fc>, 

then, by the Radon-Nikod^m theorem, -*>= f . ( t t ( i . e . >>X * 

* Jx f(x)d^u,(x) for every X e d o m ^ ) f where f i s ^..-measur­

able and O s f s i . Hence, i f (U i a g iven , we s h a l l sometimes 

wr i t e <Q,f> , f > instead of <Q,$> , ? > , and even f instead 

of <Q,tt> f<u,> provided g> i s g iven as w e l l . 

1 .10 . Def in i t ion (Cf. 01 1 . 5 ) . I f Pk * <Q,§> , (Uk> , 

k e K , are I l l - spaces , the domains dom ^ ^ co inc ide , and K i s 

f i n i t e , then the WM-space <Q,f> , 2 1 ( ^ ^ 6 K)> w i l l be de­

noted by £ ( P k : k e K ) . I f (P k :keK) i s f i n i t e and ^ Pk * P f 

then (P k :k€K) w i l l be c a l l ed a p a r t i t i o n (or a decomposi­

t i o n , see QE) of P. I f card K • 2 , then (P k ;kcK) w i l l be 

c a l l e d binary. A p a r t i t i o n (P k :keK) ©f a spaca P * <Q,^ ,<"> 

w i l l be a l s o denoted by ( f k : k c K ) , where fk are funct ions 

such that <Q,y ,fk*<"-> s P k . - A p a r t i t i o n (Pk) of P w i l l ba 

c a l l e d pure i f a l l Pk are pure subs paces of P. A pure p a r t i ­

t i o n (P k :k€K) of <Q,<j> ,(JU> w i l l be a l s o denoted by (Q(k): 

:k€K) where Q(k) are such that Pk * <Q, f , ^ ( k ) ^ # 

1 . 1 1 . Notat ion. I f P » <Q f ^ f(oc,> i s a IM-space, we 

put wP » (0.Q, d(P) • e s s sup (y (x,y) :<x,y> cQ;*Q>. *f p i * 

" ( Q i f i ^ t i = 1 , 2 , are I l l - spaces , dom ^ * dom p>2>
 w # 

put r (P l fP 2 ) * ^ f d f ^ ^ ^ ) , r(P19P2) * 

* ? ( P l t P 2 ) / w P 1 . w P 2 . Clearly , i f P̂ ^ are pure subapaeoo of • 

apace < Q , ? , ( c c > , ^ » < a B ( i ) , than r (P l f P 2 > ±B ****"**-
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ge distance" of points xeB(l) and yeB(2). - Observe that the 

notation just introduced differs from that in QS. 

1.12. Definition (cf. QE 1.5). Let % =(Uk:k cK), where 

Uk = <Q,^ , (
a
k> , be a partition of P = <Q,§> ,(*>> .If all 

rdJ.pU.), i,j€K, i+j, are finite, then the Wi-space <KtG9v>, 

where 6(i,j) = rdJ^U.) for i*j, and 61*1 « rt^Q will be 

denoted by C111 or CUk:keKJ and called the quotient space of 

the partition Qt= (Uk:keK). -

Convention. If y is a function on a class X c 4* WMS and 

li = (Uk:keK) is a partition of P 6 X , then we put, by de­

finition, (1) g>CiO s-cpC^] if r(^,11.)< oo whenever i,je K, 

i4-j, and (2) <j>(9X) = oo if r(UifU.) = oo for some i,jcK, i + j« 

--•13. Definition. Let P = <Q,£> ,(tc> , S » {T,^ ,v > be 

WM-spaces. Let fcQxT. The triple <f,P,S> will be called a 

conaervative morphism of P onto S and will be denoted by f :P~> 

—> S if the following conditions are satisfied: (1) if XcQ 

is (0,-measurable, then f(X)cT ie V -meaeurable, o> f (X) * /uX; 

A ' ) if YcT is V-measurable, then f (Y) is ^-measurable, 

^ ^ ( Y ) « V I ; (2) if XcQxQ is (^a*^)-measurable, then 

SY 6d(?;K >>) «f cod((a,K(a), where Y -- (fxfKX); (2') if 

YcT*T is (v x p )-measurable, then £ fDd(^H|a) s 

* JJ, fird(vx-P), where X * (f"Xx f-1)(Y). - Remark. If P * 

= <Q,l,^u,> , S «<T,l,p> are WM-spaces, then conservative 

morphiams f:P—>S such that f is a one-to-one relation coin­

cide with the "isomorphisms mod 0H for measure spaces. 

1.14. Proposition. If -^-P-i—> -?2t ̂ 2 : P2— * *3 a r e con~ 

servative moronisms, then so i9 f2° ̂ i:Px—^ P3- I* ̂ : P — * s 

i3 a conservative morphism, then so is f :S—*P. 
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1.15. Definition. If P, S are WM-spaces and there ex­

ists a conservative morphism P — > S, we shall say that P is 

equivalent to S and write P^S. 

1.16. It follows at once from 1.14 that the relation ^ 

is an equivalence relation on •CWM'j. - It is easy to prove that 

the relation rv coincides on •{FW&i'i with the equivalence rela­

tion, also denoted ru t introduced in QE 1.4. 

2-l- Definition. A non-negative function ty : X — > R 

where X c ^ W M i will be called a semi-subentropy on X if (1) 

ago, b § 0 , <Q,<p ,<^> e OC , <Q,ap,b(tt> 6 X , then 

(J<Qfa(|),b(U,> = abcp<Q,cy, (<̂ > , (2) if <Q, f-,, (U- > e X , 

<Q, f2> V* > e & » ?*1~ ?2> then SP<Q» f»lf<o.>^ g
><Q,f2»(

a>? 

(3) if P = <^qlfq2*t f f <">> e -CFWMJ, then P <s OC , 

9P^H((U,qlf(aq2) f(qlfq2)f (4) if P = <Q,f , (U-> * # , 

Q is finite, then <j>P <. oo . If, in addition, ^P.^ •-pPg when­

ever ¥^6 X , P2
 e # t ̂ ^ ^ t tnen # is cailecl a subentro-

py on X . - If "on X " is omitted, then it is understood that 

X= OM}. 

2.2. It is easy to see that a subentropy on -LFWE4J is pre­

cisely a subentropy in the sense of QE 1.6. 

2*3« Definition. A semi-subentropy 9 on X will be cal­

led projective (semiprojective) if, for any binary partition 

(any binary pure partition) (P^:k£K) of a WM-space P e X such 

that all P. are in X and r(PifPj)< 00 for i, j 6 K, i ^ j , the 

quotient space LP k:keK3 is in X and cpP it S(cpP^.'keK) • 

+ <?0Pk:k€K!. 

- 178 -



2#4» Hemark. If "binary" is omitted in 2.3, we get two 

further properties (with respect to which we have stated the 

definition in a somewhat involved form)• I do not know under 

what conditions these properties of <p are equivalent, res­

pectively, to those defined in 2.3. 

2»5. Example. Put gpP = 2r(P,P)/wP. It is easy to show 

that <p is a projective subentropy (and possesses also the 

stronger property mentioned in 2.4). 

2.6. It is to be noted that there is an error in QE, 

1.6(IV): "decomposition" should be replaced by "binary decom­

position" and the definition should run as follows: "(IV) 

projective, if, for any binary decomposition (P̂ .) of a space 

P, 9>P i. _S SfPfc + cpt-PjjJ*. In QE 3.4 "decomposition" should 

be replaced by "binary decomposition", too. After these cor­

rections and a further correction mentioned below (2.8), all 

propositions in QE remain valid. 

2.7. Notation (see QE 3.1). We denote by A the collec­

tion of all finite non-void sets D c U(40,l}n:n <: GO ) (i.e. 

of all finite non-void sets of strings, including the void 

string, of elements 0 and 1) such that (1) if x£D, then 

every segment of x is in D, (2) if xc D, then either 

4x0,xlj c D or ix0,xlj n D = 0. If D e A , we put D' = lx c D: 

:xOeD}, D" = DSD'. 

2.8. In QE 3.1, the words "finite non-void" (sets of 

strings) have been omitted by mistake. However, in the sub­

sequent text of QE it is tacitly assumed that D is finite 

non-void. 

2.9. Definition (cf. QE 3.2). Let P = <Q,y> , ft> be a 
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WMkapace. A family (indexed set) (P2:_e D) will be called 

a dyadic expansion (abbreviated "d.expansion") of P if (l) 

D e A ; (2) Px » Pxo • Pxl if x€D', (3) P0 * P. Instead 

of (P_:*€D) we sometimes write (tmi%cl>) where f_ are such 

that <Q,f ffg> * P-. If (P * (Ps:scD) is a d.expansion, then 

(P2:8€D") will be denoted by SP
W . - A d.expansion (V%i%eJ» 

will be called pure if all P_ are pure subspaces. 

2.10. Remarks. 1) Dyadic expansions are closely re­

lated to "questionnaires" introduced by C.F. Picard f 4J. -

2) The name "expansion" has been chosen with a view to the 

following more general concept which also embraces e.g. ex­

pansions into series. Let A be a non-void set. We shall call 

a "polydromic structure" on A every set of strings on A 

(thus, in fact, a polydromic structure on A is a language 

with the alphabet A; however, this terminology is not conve­

nient for the present purpose). A polydromic structure D en 

A will be called (for the purpose of the present remark) re­

gular if it is non-void and (1) if xeD, then every segment 

of x is in D; (2) if xcD, then either xaeD for every aeA 

or xa noneD for every a e A; (3) there exists no infinite 

sequence (ai), a^e A, such that all (ai:i<n) are in D. If 

D is regular, we define D' and D" in a way completely analo­

gous to that in 2.7 (observe that A consists exactly of all 

regular polydromic structures on £0,1^). If D is m regular 

polydromic structure on N, then a family (f%izel» of func­

tions on a given set T will be failed an N-polydromic expan­

sion of f:T —> R into the family (f^tscD") if (1) for eve­

ry xcD', f a 21 (*xi:-6 N>t (2) f0 e f* Clearly, expansion 

into series is a special case (with D consisting of 0 and 
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all (i), ie N). It is not difficult to prove that a func­

tion f on a topological space is a Baire function iff it 

possesses an N-polydromic expansion into continuous func­

tions. 

2.11. Notation (see QE 1.5, 3.2). If Pi « <Q,f, (ai>, 

i = 1,2, are WM-spaces, dom (i^ = dom^, we put T(PlfP2) = 

= H(wP1,wP2)r(P1,P2). If 3> = (Pz:z6D) is a dyadic expansi­

on of a WM-space, we put TCP) * -S(r(PZ0,Pzl) :z € D
#). 

2.12. Definition. Let QL= (Uk:ktK), 1/= (Vm:m£M) be 

partitions of a WM-space P. If there exists a partition, in 

the usual sense, (M(k):keK) of the set M such that, for 

each kcK, Uk = -S(Vm:m cM(k)), then we shall say that V 

refines Ql . If U refines V and is refined by V , then % 

and V are said to be equivalent. 

--•13« Notation. For any PeiWMl, we shall consider four 

filters described below (2.16). Let Dea(P), Dep(P), Pta(P), 

and Pt? (P) denote, respectively, the set of all d.expansi-
v ons, all pure d.expansions, all partitions, and all pure par­

titions of P. If %e Pta(P), we put $|e(^) = •I'Pe- De
a(P); 

: 9" refines U\ , $a
t«i) = We Pta(P): V refines Ui , 

$ d e ( W = K9c ^V{v)l *" refines U\ , <$£t(20 = KT e 

ePtp(P): V- refines U i . - Observe that in <fcae, $^ 

etc., a stands for "all", p for "pure". 

We shall need the following simple facts. 

2.14. If U and 1f are partitions (pure partitions) of 

a WM-space P, then there is a partition (pure partition) W 

refining both % and V . 

Proof. Write U, V in the form %* «Qfp,fk>;k eK) f 
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V = «Q,j>fgm>:m€ll) and put W = UQ-p,^ ffl: <k,m>e K~M) f 

where h, m is the product of functions f^, g> . 

2.1J* If U is a partition of a WM-space P, then there 

exists a dyadic expansion iP of P such that J5" is equiva­

lent to QL . 

2.16. It follows from 2.14 and 2.15 that each of the 

following sets is a base of a filter: (1) i($ ̂ e(11): % e 

ePta(P){, (2) *<l>at(10: <UePt
a(PH, (3) i$\Q(<U)i%e 

ePt?(P)Jf (4) i$'(U) :/2l€Ptp(P)J. The corresponding fil­

ters will be called, respectively, the projective filter on 

d.expansions of P, the projective filter on partitions of P, 

the semiprojective filter on pure d.expansions of P, the se-

miprojective filter on pure partitions of P. If there is no 

danger of confusion, the symbol $* or »F(P) will be used for 

any of these filters. 

2.17. We recall that if £ is a filter on a set .4 and 

h is a function on A, then the lower limit of h with respect 

to Q, is defined as follows: (f-lim h = sup (inf h(G):G&(^)* 

2.18. If T is the filter generated by the collection 

(1) or (2) (respectively, (3) or (4)) described in 2.16, then 

jT-lim h will be called the lower projective (respectively, 

lower semiprojective) limit of h. 

3. 

3«1« Definition. If P is a WM-space, then, by defini­

tion, C*(P) is equal to the lower semiprojective limit of 

POP), where P is a pure dyadic expansion, and C(P) is equ­

al to the lower projective limit of P (f), where ^ is a dy-
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adic expansion. The functions P t-»C(P) and P i—*C*(P), defi­

ned on *tWMjf will be denoted by C and C* f respectively. 

3.2. Theorem. Hie function C* is a semiprojective se­

mi-eub entropy. For every WM-space P, C*(P) ia equal to the 

lower semiprojective limit of C*(&)f where % is a pure par­

tition. If 9 is a semiprojective eemi-subentropy euch that, 

for every WM-space Pf 9P does not exceed the lower semipro­

jective limit of y(#)f where W is a pure partition of Pf 

then y £ C* . ftie function C* is continuous on every 

JFWM(QH . If <Qf<^> is a finite probability field, then 

C*<Q,lf(u,> coincides with the Shannon entropy of <Qf<^-
>-

3.3. We shall need the following simple facts. - (A) 

For any d.expansion CP= (P2:zeD) of a WM-space Pf P (3>) £ 

Z C^^P"). - (B) For any partition (pure partition) V of a 

WM-space P there exists a d.expansion (pure d» expansion) CP 

such that 9" is equivalent to V and P OP) = C*(1A). - (C) 

If a semi-subentropy y is semiprojective, then for any pure 

d.expansion ? = (P z:uD) of P we have yP £ S ^9
L P

2 0»
p
2i

J : 

:i£D') + .SK^P^):*^"). -(D) If P is a finite WM-space, 

then C*(P) is equal to the least POP), where CP» (P2:aeD) 

is a pure dyadic expansion of P such that no P2 f z e Dw, has 

a nontrivial pure partition. 

3.4. We now give an outline of the proof of 3.2. - The 

fact that C*(P) is equal to the lower limit of C*t%) follows 

from 3.3 A, B. - The assertion concerning <p is proved as fol­

lows: 3.3 D implies that, for a finite WM-space Pf there ex­

ists a dyadic expansion <P= (P8:z£D) such that C*(P) « P(3>) 

and g>Pz * 0 for z€.V"; 3.3 C implies that 
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5>P^ S ( 9 C P Z 0 , P 2 l 3 : * c D ' ) ^ S(r(Pzo,Pa5l):*eD
#) * P W . 

Since, for any Pe-tW}, 9 P does not exceed the lower limit 

of Cf(fU)9 the assertion is proved. - To prove that C* is 

continuous on -CFWM(Q)1, Q finite, let ft be the set ©f all 

"proper dyadic expansions'* of the set Qf i.e. of families 

T a (T(«);uD) such that D € A , T(0) = Qf and if zeD*, 

then T(zO)uTCzl) « T(s), T(s5©)n TUl) =- 0 f T(zo)*0t 

T ( * D * 0 . For any T • (T(z):zeJ»e fT and P * <Q,pf <u,> c 

C {FWliS put f(PfT) =-T(CP)f where (P-= (P 2:*£D), P^ * 

* <Qf<p, ^(z)> • Clearly, for any fixed T, P *—> f(TfP) is 

continuous on -fFWM(Q)}. This proves the continuity of C* sin­

ce (T is finite and C*(P) » mim (f(PfT):T s ff ). 

^•5. Theorem . The function C is a projective subent-

ropy. For any WM-space Pf C(P) is equal to the lower projec­

tive limit of C*'(M), where 2d is a partition of P. The func­

tion C is continuous on every -fFfM(Q)} - Q finite. If <Q,<-^> 

is a finite probability space, then C <Q,lf(C6> is equal to 

the Shannon entropy of <Qf(U,> • 

Proof. !Ihe first assertion of the theorem follows at on­

ce from the definition. She second is a consequence of 3.3 A, 

B. It is clear that if Pc«[F!li:! f then C(P) coincides with cP 

introduced in QE. Hence, the last two assertions of the the­

orem follow from Q£ 4.4 and OS 2.7 (the case of a finite P 

not in {FWIi} is easily reduced to that of a space in {PHI}). 

- We take the opportunity to correct some distracting techni­

cal errors in the proof of QM 4.2, on which QE 4.4 is based. 

In part I of the proof, line 5, replace D(X) by D(x); in 

part II, line 1, replace D(X) by D(X)j in part Il\, line 8 

(first line on p. 804) replace xcl^ by xeX; in part 11^ 
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line 9 (line 2 on p. 804) replace g± by g/; in part III, li­

ne 5, replace bS by b/m; in part III, lines 8 and 9, reverse 

the inequality involving p'(xk) • 

3.6. We shall call C(P) and C*(P) the projective 

(Shannon) entropy (or C-entropy) and the semiprojective 

(Shannon) semientropy (or C* -semientropy) of P, respective­

ly. The functions C and C* will be called the projective 

entropy and the semiprojective semientropy. 

3*7. Remark. C* is not invariant with respect to con­

servative morphisms and is distinct from C. This can be 

shown by simple examples (e.g. a P = <Q,f>, (^> with card Q = 

= 3 and suitable (pf (tt ). 

3.8. The following propositions (3.9, 3.10, 3.12, 3.13) 

show that C and C* are non-trivial in the sense that C(P)J> 

>0, C*(P)>0 unless P^O and C(P), C*(P) are finite for a 

fairly wide class of spaces. 

3*9. Proposition. For any wM-space P, C(P)£ 2r(P,P)/wP, 

C*(P)> 2?(P,P)/wP. 

Proof. ClearOy, for any d.expansion 3>= (Pz:zcD) of P 

we have p«P)£ -^ (4r(PZ0,Pzl)/wPz: z e D') > S (4r(PZ0,Pzl): 

:zcD')/wP = 2r(P,P)/wP - 2 21 (r(Pz,Pz) :ze D-). It is easy 

to see that, for sufficiently fine (Pz:z£D
M), -S(r(PzfPz): 

:zcDw) is arbitrarily small. 

3.10. Proposition. For every non-trivial WM-space P = 

= <Q,(p,(t̂ > , C*(P)>0, C(P)>0. More exactly, the following 

properties of P are equivalent: (1) r(P,P) = 0, (2) 

P/v<Q,0, <*<,> , (3) there are no disjoint sets XcQf Xc Q 

- 185 -



with (aX>0, <aY>0, r(X,Y)>0, (4) C*(P) = 0 , (5) C(P) = 

= o. - Thia follows eaaily from 3.9. 

3.11. Propo9ition. Let P£-t*1¥Mj and let Qln = (
u
nk:k€ 

e I O be partitions of P such that max (ddJ^) :ke K^) —-> 0 

for n -* oo . Then (1) C(P)£lim C * ^ ) , (2) if Un are 

pure, then C*(P)^lim C*(<2̂ ). 

Proof. We may assume lim C*(<2y_)< oo . Choose 06 > 

;> lim C^(^). Let V« (gm:meM) be a partition of P. Choo­

se n such that C * ^ ) + ItwP-i oG , where m = card M, e = 

= max(d(Unk):kfe K^). By 3.3 A, B, there is a d.expansion 

P= (fx:xeD0) of P such that r fcp) = C^L%^ and P» is e-

quivalent to Qln. Let tf= (gz:zeD1) be a d.expansion of P 

such that if is equivalent to V . Let D? consist of all 

x cDQ and all y = x.z, where xcD£, 2 ej^m Put hx = fx if 

xeD Q, hy = fx.hz if y = x.z, xeDJ, zfJ^. Then T= (ĥ : 

:y€D2) is a d.expansion of P, T" refines V0 . It is easy 

to see that P (00 & Pffl + & (I e/ fxd(tt :x 6D£) = C1*C(26n]+ 

+ "m€/WP<oo . - The proof of (2) is analogous. 

3.12. Proposition. Let jo be the metric on I?1 defined 

by j>((x^),(y^)) =^lx^ - y.̂ 1 . Let X be the Lebesgue mea­

sure on R*1. If QcE is bounded /A-measurable, then C<Q,<p,Jl> 

and C*<Q,^,3,> are finite. 

3.13. Let f be a Lebesgue measurable non-negative func-" 

tion on R with the following property: there are numbers k > 

>0, if > 0 such that, if I xl is large, then f(x)^k ix| * 

and f (x) is non-increasing for x>0, non-decrea3ing for x<0-

Let <p denote the U3ual metric on R and let X denote the 

Lebesgue measure. Then C <R,*p,f.% > < oo . 
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3.14. Theorem. If a,b6 R, a<b, then C<i: a,bJ,tj>,Jl> = 

= C*< Ca,bl,f,A> -= lb - al2. 

3*15. Theorem. Let P =<Q,1,(<^> be a WM-space. Let 

A consist of qeQ such that <aq>0. Then C(P) = C*(P) = oo 

if <u(Q\A)>0, and C(P) » C*(P) - H((M,q:qeA) if <*(Q\A)= 

= 0. 

Remark. In fact, the theorem asserts that, for any 

probability space ̂ Q, (tO such that the diagonal is measur­

able, the values C<Q,l,(Cc> f C*<Q,1,<<^> coincide with 

the entropy of <Q,ttf> in the well known sense (see e.g. C5.J, 

where a special class of probability spaces is considered). 

As stated in the introduction, we omit the proofs of 

3.12 - 3.15. 

3.16. Remark. We are going to point out certain analo­

gies between the definition of C and C* by means of dyadic 

expansions and a possible approach (which seems not to have 

been applied explicitly as yet) to the dimension of topolo­

gical space and also of closure spaces, etc. The.facts sta­

ted below are not used in the present note, and therefore we 

restrict ourselves to a few definitions and propositions. 

For concepts not defined here we refer to I 21. - (1) If P is 

a closure apace, XcP, YcP, then we define 7(X,Y) * 

« v*(X,Y;P) as follows: 7(X,Y) = 1 if e*Xr>c£Y*0, and 

7(X,Y) » 0 otherwise. - (2) A dyadic expansion of a space 

P is, by definition, a family JK= ( M 2 : Z £ D ) , where QeA and 

M * M8Qu M2l, -*Z0r.M2l = 0 for every z e D \ If M* (Mz:z eD) 

is a dyadic expansion of a closure space P, we put Sj UQ = 

* VUl;P) « 2* (V IM9Q9MA) :m eV'). - (3) If P is a cloau-
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re space, then # * &(P) denotes the collection of all fi­

nite families C * (X^kcK) such that If Int X^ =- P, where 

we put Int X • P\ c.1 (P\ X), and <2£* = *&*(P) denotes the 

collection of all finite £ » (X-^.kcK) such that UXJc » P 

and, for some ^ s (Xk:k€K) e 01 and some finite Pk, we ha­

ve X^ = Xk\ Pk. Clearly, % c U * , and if every finite Tc P 

is closed, then ^(P) = ^*(P). - (4) For any f e &*(P) 

let $(£) denote the set ©f all dyadic expansions P of P 

such that 3>" refines f , let t'* ̂ (P) be the filter geme-

rated by all $ (|), f e <& , and let £*= ̂ ( P ) the filter 

generated by all $(§), £ c '26* . - (5) For a closure 

space P, let ?(P) ( \7*(P)) denote the lower limit of tf CW 

with respect to J/(9/*)» - (6) It is not difficult to pro­

ve that, for any normal topological space P, 7(P) s V*(P) s 

= dim F (dim P is the dimension defined by means of finite 

open coverings). - (7) Let every symmetric graph G == <G,*r> 

be considered as a closure space (tolerance space): ye clX 

iff yeX or <y,x> e ? for some xcX. Then 7(G) • 0, V*(Q) = 

= .^(G) - 1, where ^(G) is the chromatic number of G. - (8) 

If 7(X,Y) is introduced in a different way, we can get dif­

ferent kinds of dimension. 

4. 

4.1. This section contains a remark concerning exten­

sions of the Shannon entropy distinct from C and C*j defi­

nitions of "entropies" for probability spaces and semimetric 

spaces; definitions of concepts (closely connected with that. 

of the £ -entropy of a metric space) of "proximal" and "gra­

ded" modifications of a given subentropy and a proposition 
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concerning the relation of "graded" entropiea to the diffe­

rential entropy. - Proofa of statements contained in the 

present section as well as of some further related results 

are intended for publication in another note. 

4.2. Besides C and C* , there are various other exten­

sions of the Shannon entropy satisfying some natural condi­

tions. In particular, if PiP-pPg) is replaced by another 

suitable function defined for pairs of sub9pacea, then vari-

ous kind3 of "projective" entropie3 can be obtained. Thua, 

if we put E(PltP2) = H(wP1,wP2)d(P1 + P 2), E(Pz:z € D) = 

= ̂ (E(PZ0,Pzl):z6D'), E(D) = l i m E W , where 3> denotes dy­

adic expansions of P, we get a function E, which seems to 

possess various convenient properties, though in some res­

pects it is less natural than C. 

4.3. If <J> is a semi-3ubentropy, then the correspond­

ing functions, still denoted by <j> , on the clas9 of all me-

aaure 3pacea <Q,<u,> , f^Q < oo , and on the clasa of all 

Bemimetric spaces (hence, in particular on the clas3 of all 

symmetric graphs) can be defined aa follows: (1) for a mea­

sure space <Q>(t>u> , <y<Q,<u,> is the least upper bound of 

9<Q,f, ("•> , where <Q,p,(tt> is a ISM-space, f £ 1; (2) 

for a semimetric space <Q,f>> , 9<Q,<p > is the least up­

per bound of 9><Q,̂ >, ^> , where <Q9ff(^> is a WM-space, and 

<*U}£1. Due to 3.15 , the values C <Q,r^> , C*<Q, <to> are 

not of much interest. On the other hand, C<Q,j>> , C*<Q,j>>, 

and E<Q,<t>> may deserve a closer examination. 

4.4. Let cp be a semi-eubentropy. Then the following 

mapping 9 p ("pr" atands for "proximal") can be associated 
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with (f : for a WM-space P = <Q,<p $("-> and any e > 0 put 

P/s£ = <Q,f/v€,f(U,> f where (<i> A e ) (x,y) = min (<p(x,y),£). 

Put cp (P.;e) =9>(P^ ^) and let 9 p r ^ ) *>e the function 

e ,—>9 D r(
pf €,)• ^ e mapping 9? may be called the proxi­

mal modification of cp .It resembles the £-entropy of to­

tally bounded metric spaces; however, in general, it is mo­

re difficult to handle than the "graded" entropy described 

below. 

4.5. If gp is a semi-subentropy, P -<Q,p,<t6> is a 

WM-space, and e > 0, then we define f^CP; €*) as follows. 

For any semimetric cp on a set Q, and any e > 0, let $j&gCx.,y)= 

--=1 If g>(x,y)£ £, £>(x,y) = 0 if £>(x,y) <: e . Clearly, p = 

=- f00 J-̂ dt (thus, in a sense, we have a "spectral represen­

tation" of <p by means of graphs). Now put gwCPf &) = 

= <p<Q, p t, c<̂ > , and let ^ g p W be the function 

& t—><$> (P; €,). The mapping 9 ^ may be called the "grad­

ed" modification of g> .It can be shown that, for totally 

bounded metric spaces <Q, j>> , cp < Qt^,<to>> where cp = £ 

(see 4.2), is closely connected with the e-entropy. 

4.6. There is a close connection between the graded 

entropy E and the differential entropy in the usual sense 

(defined e.g. for a probability measure on R as follows: if 

(U= f . % , f continuous, then the differential entropy of 

ft, , i.e. of <R,£,<"•> is equal to - J°° -?(x) log f(x)dx 

provided the integral exists). In fact, define the differen­

tial y-entropy SP^iff (p>s) a s follows: if P, S are Wftt-spa-

ces, wP = wS = 1, then y d i f f(P;S) is equal to 

- ^ 0 ( 9gr(P* e ) "" ^gr(s»€,))« It turns out that, under cer-
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tain fairly weak conditions, -Sd i f . f (< I a,bJ,p,f • A > , 

Ĉa,b-lj><pttA/lb - al>) is equal to the differential entro­

py of the probability measure f •& on R, and that this re­

sult can be extended in various ways* However, I do not know 

whether results of this kind are valid if £ is replaced by 

C or if S^iff i» defined in terms of 9> instead of <?£,»• 

4.7. Concepts of a semi-subentropy, a subentropy, etc., 

can be extended to more general spaces. E.g. instead of se-

mimetries on Q, "diameters" cT can be considered, i.e. non-

negative functions assigning a value <fWe R to every Xc Q. 

In this setting, the definition of £ may remain unchanged; 

it is not clear, however, how to introduce functions corres­

ponding to C, C* , etc. 

4.8. In conclusion, we mention two important and pro­

bably difficult questions not touched upon in this note: 

introduction of an appropriate concept (or rather concepts) 

of the product of HI-spaces, and of entropies of mappings 

(morphisms). 

R e f e r e n c e s 

CQEj II* KAT6T0V: Quasi-entropy of finite weighted metric 

spaces, Comment. Math. Univ. Carolinae 17 

(1976), 797-806. 

ill C.H. COOMBS, R.M. DAWES, A. TVERSKY: Mathematical Psy­

chology. An elementary introduction, Prenti­

ce-Hall, Englewood Cliffs, N.J., U.S.A., 

1970. 

Izl R. ENOELKING: Dimension Theory, PWN, Warssawa, North-

Holland Publ.f Amsterdam-Oxford-New York, 

1978. 

- 191 -



[3] B. FORTB: Subadditive entropies for a гandoж variable, 

Boll. Uh. Mat. Ital. B(5)U(1977), no. l
f 

118-133. 

[4] C.F. PICARD: Théorie đes questionnaires, Gauthier-Vil-
lars, Paris 1965. 

[5J V.A. ROHLIN: Lekcii po entropiïnoï teorii preobrazova-
nil, Uapehi mat. nauk 22(1967), 5(137), 3-56. 

Matematický ústav ČSAV 

Žitná 25 

Praha 1 

československo 

(Oblattm 5.10. 1979) 

- 192 -


		webmaster@dml.cz
	2012-04-28T05:39:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




