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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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EXTENSIONS OF THE SHANNON ENTROPY TO SEMIMETRIZED
MEASURE SPACES
Miroslav KATETOV

Abstract: Extensions of the Shannon entropy to measu-
re spaces endowed with a semimetric are examined.

Key words: Entropy, measure space, semimetric, dyadic
expansion, lower limit with respect to a filter.

Classification: 94A17

We investigate the possibility of extending the Shan~
non entropy to the class of all semimetrized measure spaces,
i.e. sets endowed with a finite measure and a measurable se-
mimetric. It turns out that various extensions are possible.
We examine two of these, denoted by C and C¥, which satisfy
certain natural conditions.

The extension C* can be characterized, among all those
functions ¢ on the class of semimetrized measure spaces
which fulfil certain general requirements, as the maximal
one satisfying the following conditions: (1) ¢ (P) £ g:(Pl) +
+ ¢(Py) + H( @y, 4,)r(P,P,) where (P;,P,) is a partition of
P into two measurable sets, ;, i = 1,2, is the measure of
P;, and r(Pl,Pa) is the average distance between points of
P, and P,, (2) every 2 < @ (P) is majorized by every g (S)
where S is the quotient space of a sufficiently fine parti-
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tion of P. The extension C can be characterized as the lew-
er limit of C*(S), where S is the quotient space of a "par-
tition" of P corresponding te an arbitrary partition ef uni-
ty into finitely many measurable functions.

The functioms C and C* possess various comvenient pro-
perties. Some of these are stated below (3.10, 3.12 - 3.15);
however, the proofs of the corresponding propositions do not
appear in this note and are intended for publication else-
where.

We also sketch the definitions of some other extemsioms
of the Shannon entropy as well as certain analogies, difffe-
rent in kind from the well known ones, between dimensiom
and entropy.

It may be asked why ome should try to extend the Sham-
non entropy. One reason lies in the fact that the entropy
of finite probability spaces, the ¢-entropy of metric spa-
ces and the differential entropy ex!iibit many COmWNOR pre-
perties whereas no concept seems to have been introduced se
far from which all of these could be obtained, at least up
to minor points, in a natural way. Other reasons come from
applications. Thus, the intuitive concept of the "informa-
tion content” of a metrized set of possible stimuli appear-
ing with a certain probability seems not to have been as yet
expressed mathematically in a satisfactory way, in spite of
its importance in problems of human information processing
(for an elementary exposition of pertinent topics see e.g.
Chapter 10 of the textbook [17,’which also contains further
references).

The problem of extending the Shannon entropy has been
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investigated for the case when the underlying set is finmite
in the author ‘s note Quasi-entropy of finite weighted metric
spaces, Comment. Math., Univ. Carolinae 17(1976), 797-806.
This note, of which the present one is a free continuation,
will be referred to as QE. Most definitions appearing in QE
will be restated or extended in the present article.

It is to be noted that a special case of the problem of
introducing an entropy for probability spaces equipped with
a metric has been examined in [3]. However, the approach ap-
plied in (3] is quite different from that in QE ani the pre-
sent note, and only the case of a real random variable with
a finite range is considered.

We prove only some of the statements in full. Many
proofs are only sketched, and simple or straightforward ones
are often omitted. From information theory and theory of me-
asure we presuppose only the basic notions. From set theory

and topology we need, in fact, only the concept of a filter.

1.

l.1l. We recall some terminological and notational con-
ventions, most of which have been already used in QE. - A)
A function f is, by definition, a mapping of a class into R,
the extended set of reals. If all f(x) are real, then f is

called a real function. - B) We put a.w=00 if a>0, O.c0=

[}

0, 0/0 = 0. We write log instead of log, . We put 0.log 0=

[}

0. For x%0, we put L(x) = -x log x. - C) lLet « be a fi-
nite (the word "finite" is often omitted) measure on a set
Q. Then dom denotes the domain of &« (observe that we al-
ways assume that domw is a 6 -field) and @ denotes the
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Lebesgue extension of(w . Instead of G'Z(X), we often write
@(X). = D) If s is a measure on Q end Bedom & , then “B
denotes the measure defined by mp(X) = (f/:(Xn B) for Xe domwu.
- E) I (&)Y are measures on Q, then w Z» means that
dom @ = dom» , @(X)Z ¥ (X) for all Xedom @ . - F) Let w4,
i=1,2, be a measure on Qi‘ The product @, s is defined in
the usual way (dom( 4y = @,) is the least 6'-field containing
all Xlx XZ, where )&e dom G"i)’ - G) A semi‘metric on a set Q
is, by definition, a non-negative real function @ on QxQ
such that @(x,x) = 0, @(x,y) = @(y,x). A semimetric p on a
set Q will be denoted by 1 if gb(x,y) = 1 whenever x,ye¢ Q,

x4 y. - H) For any countable indexed set w= («,:keK) of
non-negative reals such that 3 wy< @ , we put H(uw) = H(,:
tkeK) = B (L(@,):k€K) =~ L(Z( @k eK)). Thus, if « is a
probability measure on a finite set Q and all {x}, xeQ, are
in dom « , then H( @,({ql):qu) is the Shannon entropy of « .
To cover the case when some {q} is not in dom w , we introdu-
ce the following trivial extension of the Shannon entropy:
the entropy of a finite probability space {Q,w> is equal teo
Z(L(w(A)):A e A) where A is the set of atoms of dom .

1.2. Convention. In formulas, we omit parentheses when-
ever possible without a danger of misunderstanding, and write

e.8. wX imstead of w(X), wq instead of w({q}), etc.

1.3. Definition. A triple P = (Q,?,(L) , Where Q is a
non-void set, & is a finite measure on Q, @ is a (w>w)-me-
asurable semimetric on Q, will be called a semimetrized mea-
sure space or a WM-space (WM stands for "weighted semimet-
rie", the expression used in QE). The class of all WM-spaces

will be denoted by {WwM3.
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1l.4. Remark . Clearly, FWM-spaces (finite weighted se-
mimetric spaces) considered in QE coincide with WM-spaces
(Q,?,(u) such that Q is finite and every {q3, q€Q, is in
dom w . (Observe that the condition {qj e dom w , not stated
explicitly in QB, is tacitly understood there - see e.g. QE
1.3 and QE 1.4.)

1.5. We shall call a WM-space <Q,Q,«> finite if the un-
derlying set Q is finite, an FWM-space if, in addition, all
{q%, q€Q, are in dom ¢ « The class of all FWM-spaces will be
denoted by {FWM}. For & non-void Q, {WM(Q)} will denote the
set of all WM-spaces <Q,g>,(w> . If, in additiomn, Q is finite,
then {FWM(Q)} will denote the set of -all FWM-spaces (Q,?, -

1.6. Examples. A) If « is a finite measure on Q+#,
then (Q,l,‘u-> is a WM-space provided the diagonal of Q>=Q is
(@ *&)-measurable, - B) If {(Q,t>.is a (symmetric) graph,
i.e. ¥ is a symmetric binary relation on Q, amd « is a fi~-
nite measure on Q, then (Q,@t y” , where e (x,y) = 0 iff
x =3y or{x,y>€x ,@,(x,y) = 1 otherwise, is a WM-space
provided z v{<{x,x> : x €Q% is ((Lx(.c)-measurable. On the ot-
her hand, every WM-space (Q,ga,(u.) with a {0,1}-valued [ is
obtained from the graph (Q,{{x,y>: p(x,y) = 0}}. = C) If x
is a real-valued random variable on a probability space <Q,w?,
then we associate with x the space (R,p,»> , where © is the

usual metric on R, »Y =ui q:x(q)e Y¢ for every Borel set YcR.

1.7. Convention (see QE 1.4). If Q is finite non-void,
then {FWM(Q)} (see 1.5) will also denote the set {FWM(Q)} en-
dowed with the topology defined by {Q,@pn,m,> —> (Q,ga,y.) iff
@n(x,7) — @(x,y) for all x,y€Q, @pX—> wux for all x€Q.
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1.8. Definition (cf. QE 1.5). Tet P *<{Q,@,w” bea
Wi-space. If » £ & , we shall ¢all S =(Q,§ ,»” @ subspa-
ce of P and we shall write S£P, If, in addition, » = ¢p
for some Bedom & , then S is called pure subspace.

1.9. Remark. If (Q,@,»> is a subspace of {Q,@ ,«,
then, by the Radon-Nikodym theorem, » = f.w (i.e, »X =
= fx £(x)d w(x) for every Xcdom w ), where f is w-measur-
able and 05f£%1,. Hence, if « is given, we shall sometimes
write <Q,®,f)> instead of {Q,p ,»> , and even f instead
of {Q, @ ,«> provided @ is given as well.

1.10. Definition (ef. QB 1.5). If Pk'= (CH ,(4?) ’
k €K, are Wd-spaces, the domains dem “x coincide, and K is
finite, then the WM-space {Q,@®, Z(wu:keK)> will be ge-
noted by X (P :keK). If (P :keK) is finite anda =P, = P,
then (Py:ke K) will be called a partition (or a decomposi-
tion, see QE) of P. If card K =-2, then (P :ke¢K) will be
called binary. A p:artition (P :x€K) of a space P = <Q,¢ o>
will be also denoted by (f, :kcK), where f, are functioms
such that <Q,@ ,fy . > = P.. - A partition (Py) of P will be
called pure if all P, are pure subspaces of P. A pure parti-
tion (P :keK) of <Q,@ ,@> will be also denoted by (Q(k):
:k €K) where Q(k) are such that P, =<Q,@ T

1.11. Notation. If P = <Q’S° y > is a WM-space, we
put wP = wQ, d(P) = ess !up(?(x,y):(x,y}iQ)‘Q)' Itp =
= <Q,9 y437y 1 = 1,2, are Wl-spaces, dom ¢4 * dom oy WO
put F(P),P,) = fq,asv d( @y = uy), r(P,Py) =
= £(P »Pp)/wP).wP,. Clearly, if P, are pure subspaces of a
space {Q, @, > , @3 = “p(3)s them ,;(pl,pz) js the "avera-
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ge distance" of points x eB(1l) and y € B(2), - Observe that the

notation just introduced differs from that in QE.

1.12, Definition (cf. QE 1.5). Let U =(Uy:keK), where
Uy =<Q,@¢, “*y? , be a partition of P =<Q,p,«> . If all
f(Ui,UJ.), i,jekK, i+j, are finite, then the WM-space <K,6,»?,
where ©(i,j) = r(Ui,Uj) for i% j, and 6{k} = «, Q will be
denoted by [U) or [U _:ke K] and called the quotient space of
the partitiom Q= (Uk:k ek), -

Convention. If @ is a function on a class X c {Wd§ and
U = (U :keK) is a partitiom of Pe OC , then we put, by de-
finition, (1) @) =¢lUl if r(Ui,nj)<ao whenever i,jeK,
i4j, and (2) () =0 irf r(Ui,UTj) =0 for some i,jec K, i#Jj.

1.13. Definition. Let P =<Q,p ,«> , S =(T,6 ,»)> be
. WM-spaces. Let £c Q =T, The triple (£,P,S)» will be called a

conservative morphism of P onto S and will be denoted by f:P—>
—> S if the following conditions are satisfied: (1) if XcQ
is @-measurable, then f£(X)c T is » -measurable, » £(X) = wX;
(17) if Yc T is V-measurable, then £71(Y) ie -measurable,
y.f-l(Y) =»Y; (2) if Xc Q=Q is (¢ w)-measurable, then
Jy 68 =) =f ©alwxw), where Y = (£x£)(X); (27) if
YcT»T is (¥ »p )-measurable, then _& Ealexwm) =

f, §a(»=<»), where X = (£71< £71)(Y). - Remark. If P =

<Q,1,(u,) y S={T,1,»> are WM-spaces, then conservative
morphisms f:P — S such that f is a one-to-one relation coin-

cide with the "isomorphisms mod O" for measure spaces.

1.14. Proposition. If f, Py —> Py, £,5:Py—> P3 are con-
servative morphisms, then so is fyo0 £y :P—> P3. If £:P—> S
is a conservative morphism, then so is f’l:S—-——rP.
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1.15. Definition. If P, S are WM-spaces and there ex-
ists a conservative morphism P —»> S, we shall say that P is

equivalent to S and write P~S.

1.16. It follows at once from 1.14 that the relatiom ~
is an equivalence relation on {WM%., - It is easy to prove that
the relation ~ coincides on {FWM} with the equivalence rela-

tion, also denoted nv , introduced in QE 1.4.

2.

2,1, Definition. A non-negative function @: X —> R
where X c { WM} will be called a semi-subentropy on L if (1)
aZ0, b20, {Q,@ ,4> e L , {Q,ap,bu> € X , then
@<Q,ap,bm? = abg<Q,Q, > , (2) if<KQ, Cl > X,

Q, @ @w>eX , @€ @,y then ¢<Q, @, &> =2 §<Q,p,,«>
(3) if P =<4a7,9%, ¢, € {FWM}, then P ¢ X,
@PEH(wqy, ;) @lay,q); (4) if P =<Q,p, 26 X,

Q is finite, then P < 0 . If, in addition, P = ¢P, when-
ever Pl eX ,Pe X, Py~P,, then ¢ is called a subentro-
py on X . - If "onX " is omitted, then it is understood that
X = {wul,

2.2. It is easy to see that a subentropy on {FWM}{ is pre-

cisely a subentropy in the sense of QE 1l.6.

2.3. Definition. A semi-subentropy @ on X will be cal-

led projective (semiprojective) if, for any binary partition
(any binary pure partition) (P :k€K) of a WM-space P e L such

that all P; are in X and ':"(Pi,Pj)< o for i, jek, ij, the

quotient space [P, :keK]is in I and gP £ ZE(gP:keKk) +

+ ffl?k:kel(.].
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2.4. Remark. If "binary" is omitted in 2.3, we get two
further properties (with respect to which we have stated the
definition in a somewhat involved form). I do not know under
what conditions these properties of $ are equivalent, res-

pectively, to those defined in 2.3,

2.5. Example. Put P = 2F(P,P)/wP. It is easy to show
that ¢ is a projective subentropy (and possesses also the

stronger property mentioned in 2.4).

2,6, It is to be noted that there is an error in QE,
1.6(IV): "decomposition"™ should be replaced by "binary decom-
position" and the definition should run as follows: "(IV)
projective, if, for any binary decomposition (Pk) of a space
P, 9P & = 9P, + @LP,I". In QE 3.4 "decomposition" should
be replaced by "binary decomposition", too. After these cor-
rections and a further correction mentioned below (2.8), all

propositions in QE remain valid.

2.7. Notation (see QE 3.1). We denote by A the collec-
tion of all finite non-void sets D c U({O,l}n:n <w) (i.e.
of all finite non-void sets of strings, including the void
string, of elements O and 1) such that (1) if xe D, then
every segment of x is in D, (2) if x€ D, then either
{x0,x1}c D or {x0,x13AnD =@, If Ded , we put D" = 4xeD:
:x0e D%, D" = D\D’,

2.8. In QE 3.1, the words "finite non-void" (sets of
strings) have been omitted by mistake. However, in the sub-
sequent text of QE it is tacitly assumed that D is finite

non-void.

2.9, Definition (cf. QE 3.2). Let P = <Q’S° yu? be a
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Wi-space. A family (indexed set) (Pg:ze D) will be called

a dyadic erpanéion (abbreviated "d.expansion") of P if (1)
DeA ; (2 P =P +P, if xeD’, (3) Py = P. Instead
of (P :z€D) we sometimes write (f :z¢ D) where f_ are such
that {Q, @ ,f,> = P,. If P = (Pg:z€D) is a d.expansion, then
(P,:2€D") will be denoted by P . - A d.expansion (P :z€D)
will be called pure if all Pz are pure subspaces.

2.10. Remarks. 1) Dyadic expansions are closely re-
lated to "questionmaires” introduced by C.F., Picard [4]. -
2) The name "expansion” has been chosen with a view to the
following more general concept which also embrasces e.g. ex-
pansions into series. Let A be a non-void set. We shall call
a "polydromic structure” on A every set of strings om A
(thus, in fact, a polydromic structure on A is a language
with the alphabet A; however, this terminology is not comve-
nient for the present purpose). A polydromic structure D en
A will be called (for .the purpose of the present remark) re-
gular if it is non-void and (1) 4if xe D, then every segment
of x is in D; (2) if xe D, them either xae D for every acA
or xa none D for every acA; (3) there exists no infinite
sequence (a;), a;€ A, such that all (a;:i<n) are in D, If
D is regular, we define D’ and D" in a way completely anale-
gous to that in 2.7 (observe that A consists exactiy of all
regular polydromic structures on {0,1%). If D is a regular
polydromic structure on N, then a family (f‘:zeD) of func-
tioms on a given set T will be ealled an N-polydromic expan-
sion of £:T —> R into the family (f,:2€D") if (1) for eve-
ry xeD’, fx = = (fﬁ:ie N), (2) fﬂ = £, Clearly, expansion
into series is a special case (with D consisting of & amd
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all (i), ie N). It is not difficult to prove that a func-
tion £ on a topological space is a Baire function iff it

possesses an N-polydromic expansion into continuous func-

tions.

2.11. Notatiom (see QE 1.5, 3.2). If P; =<(Q,p, &7
i = 1,2, are Wi-spaces, dom @, = dom W, we put [(P;,P,) =
= H(wP,wP,)r(P,P,). If $= (P,:z€D) is a dyadic expansi-
on of a WM-space, we put P'(FP) = X("(P, ,P,,):z€D).

2.12, Definition. ILet U= (Ug:k ¢K), V= (V :mecM) be
pertitions of a WM-space P, If there exists a partition, in
the usual sense, (M(k):k€K) of the set M such that, for
each k ek, Uy = =(V :m eM(k)), then we shall say that ¥
refines % . If 2% refines 7 and is refined by 7 , then %

and V' are said to be equivalent.

2.13. Notation. For any Pc {WM}, we shall consider four
filters described below (2.16). Let De®(P), DeP(P), Pt3(P),
and Ptf (P) denote, respectively, the set of all d.expansi-
ons, all pure d.expansions, all partitions, and all pure par-
titions of P. If % e Pt(P), we put @3 () = {Pe De?(P):

: P refines U} , <1>gt(-'u) = {Ve Pt3(P): V refines %},
ége(’u) = {®P e DeP(P): P refines U3 , @gt(?l.) =4{Ve
€ PtP(P): U refines Uj . - Observe that in @ge, @fle

etc., a stands for "all", p for "pure".

We shall need the following simple facts.

2.14, If U end V are partitions (pure partitioms) of
a WM-space P, then there is a partition (pure partition) %’
refining both Uk and V' .

Proof. Write %,V in the form U= ((Q,@,T,):k€K),
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V' = Q9,8 :meM) and put W' = «Q’?’hk,m‘ {k,m)e KxM),
where hk,m is the product of functions Ty &

2.17. If U is a partition of a WM-space P, then there
exists a dyadic expansion J° of P such that P¥ is equiva-

lent to AU .

2,16. It follows from 2.14 and 2.15 that each of the
following seta is a base of a filter: (1) { @ ge(’u): Ue
ePt3(P)}, (2) 1 J (W: Ue PPN, (3) 1R ):e
€ Pt¥ (P)}, (4) -{@;t('u):%c Pt? (P)}. The corresponding fil-
ters will be called, respectively, the projective filter on
d.expansions of P, the projective filter on partitions of P,
the semiprojective filter on pure d.expansions of P, the se-
miprojective filter on pure partitions of P, If there is no
danger of confusion, the symbol # or F(P) will be used for
any of these filters.

2.17. We recall that if G is a filter on a set A and
h is a function on A, then the lower limit of h with respect

to  is defined as follows: G-lim h = sup (inf h(G):GeG.).

2.18. If ¥ is the filter generated by the collectiom
(1) or (2) (respectively, (3) or (4)) described in 2.16, then
%'-1im h will be called the lower projective (respectively,

lower semiprojective) limit of h.

3.

3.1. Definition. If P is a WM-space, then, by defini-
tion, C¥(P) is equal to the lower semiprojective limit of
P (®), where 3 is a pure dyadic expansion, and C(P) is equ-
al to the lower projective limit of I (?), where P is a dy-
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adic expansion. The functions P +>C(P) and P > C*(P), defi-
ned on {WM3}, will be denoted by C and C* , respectively.

3.2, Theorem. The function C* is a semiprojective se-
mi-subentropy. For every WM-space P, C*(P) is equal to the
lower semiprojective limit of C*('ll,), where % is a pure par-
tition. If @ is a semiprojective semi-subentropy such that,
for every WM-space P, ¢ P does not exceed the lower semipro-
Jective limit of ¢ (%), where U is a pure partition of P,
then ¢ % C* . The function C* is continuous on every
{FWM(Q)} . If {Q,«> 1is a finite probability field, then
C*<Q,1,w > coincides with the Shannon entropy of {Q,«”-

3.3. We shall need the following simple facts. - (A)
For any d.expansion P = (Pz:zeD) of a WM-space P, I (?) 2
Z C*(®P"). - (B) For any partition (pure partition) 7 of a
WM-space P there exists a d.expansion (pure d,expansion) P
such that P” is equivalent to 7 and (P = C¥(1). - (C)
If a semi-subentropy ¢ is semiprojective, then for any pure
d.expansion P = (P, :2€ D) of P we have gP % = (@LP, ,P,,]:
:3€D’) + Z(q(P,):z€ D), - (D) If P is a finite WM-space,
then C*(P) is equal to the least (), where JP= (P,:z€D)
is a pure dyadic expansion of P such that no P,, z€D", has

a nontrivial pure partition.

3.4. We now give an outline of the proof of 3.2. - The
fact that C*(P) is equal to the lower limit of C*(%) follows
from 3.3 A, B. - The assertion concerning ¢ is proved as fol-
lows: 3.3 D implies that, for a finite WM-space P, there ex-
ists a dyadic expansion P= (P,:z€D) such that C*(P) = ["(F)
and gP, = O for z €D"; 3.3 C implies that
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¢P % = (@[P, ,P,,]:2€D") & = (NP, ,P,,):2€D") = (P,
Since, for any Pe{WM3}, @P does not exceed the lower limit
of Cy(‘U), the assertion is proved. - To prove that C* is
continuous on {FWM(Q)}, Q finite, let 7 be the set of all
"proper dyadic expansions™ of the set Q, i.e. of families

T = (T(z):z¢D) such that De A , T(#) = Q, and if zeD’,
then T(z0) U T(z1l) = T(z), T(26)n T(z1l) = B , T(zo0)+d,
T(z1)+@. For any T = (T(z):2eD)e I’ and P = <Q,p, > €

e {FWM3 put £(P,T) =" (®), where P= (Py:z€D), P, =

= (Q,g;, (“T(z)> o Clearly, for any fixed T, P> £(T,P) is
continuous on {FWM(Q)}. This proves the continuity of C* sin-
ce I is finite and C¥(P) = nin.(t(P,T):T eT ),

3.5. Theorem . The function C is a projective subent-
ropy. For any WM-space P, c(P) is equal to the lower projec-
tive limit of C*(%), where 7 is a partition of P. The funmc-
tion C is continuous on every {PM(Q)}, Q finite, If <Q, «?
is a finite probability space, then C <Q,1,« > is equal to
the Shannon entropy of {Q,« > .

Proof. The first assertion of the theorem follows at on-
ce from the definition. The second is & conmsequence of 3.3 A,
B. It is clear that if P ¢{FWM}, then C(P) coincides with cP
introduced in QE. Hence, the last two assertions of -the the-
orem follow from QE 4.4 and QE 2.7 (the case of a finite P
not in {PWM} is easily reduced to that of a space in {FWM}).
- We take tfxe opportunity to co;rect some distracting techni-
cal errors in the proof of QE 4.2, on which QE 4.4 is. based.
In part I of the proof, line 5, replace D(X) by D(x); in
part II, line 1, replace D(Y) by D(X); in part 11, line 8
(first line on p. 804) replace xe® by x €X; in part II,
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line 9 (line 2 on p. 804) replace g; by g{; in part III, 1i-
ne 5, replace PR by b/@; in part III, lines 8 and 9, reverse

the inequality involving [7(xk).

3.6. We shall call C(P) and C*(P) the projective
(Shannon) entropy (or C-emtropy) and the semiprojective
(Shannon) semientropy (or C¥* -semientropy) of P, respective-
ly. The functions C and C* will be called the projective

entropy and the semiprojective semientropy.

3.7. Remark. C¥* is not invariant with respect to con-
servative morphisms and is distinct from C. This can be
shown by simple examples (e.g. a P =\<Q,§>H«,> with card Q =
= 3 and suitable @, 4 ).

3.8. The following propositions (3.9, 3.10, 3.12, 3.13)
show that C and C* are non-trivial in the sense that C(P)>
>0, C*(P)> 0 unless P~O and C(P), C*(P) are finite for a

fairly wide class of spaces.

3.9. Proposition. For any WM-space P, C(P)Z 2t (P,P)/wP,
C*(P)Z 27(P,P)/wP.

Proof. Clearly, for any d.expansion P= (P :z<D) of P
we have (P)Z = (49(on,le)/sz:z ed) =z = (4?‘(on,le):
:z¢D)/wP = 28(P,P)/wP - 2 = (F(P,,P,):ze D). It is easy
to see that, for sufficiently fine (P :zeD"), Z(F(P,,P, ):

:z ¢ D") is arbitrarily small.

3.10. Proposition. For every non-trivial WM-space P =-
= 4Q,o,w > , C¥(P)>0, C(P)>0. More exactly, the following
properties of P are equivalent: (1) ©(P,P) = 0, (2)
Pw(Q,0, w> , (3) there are no disjoint sets XcQ, YcQ
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with @X>0, wY>0, #(X,Y)>0, (4) C*¥®) =0, (5) C(P)=
= 0, - This follows easily from 3.9.

3.11. Proposition. Let Pe{WM} and let Ql.n = (Unk:ke
€ K) be partitions of P such that max (&'(Unk):kel(n) —> 0
for n — 0 . Then (1) C(P)=1lim C¥@,), (2) if %, are
pure, then C*(P)<£ lim C¥(% )

Proof. We may assume lim C*(%, )< oo . Choose o¢c >
> lim C*(?Ln). Let U= (g,:meM) be a partition of P. Choo-
se n such that C*(%,) + TewP< o« , where @ = card M, € =
= max(3(U , )k e K ). By 3.3 A, B, there is a d.expansion
P= (f,:xeD)) of P such that '(P) = C*LUJ and P is e-
quivalent to U . Let ¥= (g,:z€ D)) be a d.expension of P
such that S is equivalent to ¥ . Let D, consist of all
x eDo anl all y = x.z, where xeD;, zeDl. Put hx = fx if
xeD,, hy = f,.h, if y = x.3, x€Dg, z<Dy. Then T'= (hy:
:y€D,) is a d.expansion of P, ¥ refines ¥ . It is easy
to see that N <& M(P) + Z(@ef £ dw:ixed]) = C*[U I+

+ WewP<o . - The proof of (2) is analogous.

3.12. Proposition. Let © be the metric on R® defined
by @((x3),(y;)) = =lx; - y;1. Iet A be the Lebesgue mea-
sure on R%, If QCE is bounded A -measurable, then €<Q,e,47
and C*<Q,p,2> ‘are finite.

3.13. Let f be & Lebesgue measurable non-negative func-
tion on R with the following property: there are numbers k >
>0, 7> O such that, if | x! is large, then f(x)4k 1x|"7
and f(x) is non-increasing for x>0, non-decreasing for x<O0.
Let @ denote the usual metric on R and let A denote the
Lebesgue measure. Then C {R,p,f.A> < @.
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3.14, Theorem. If a,be R, a<b, then C<([a,bl,p,4)=
= C*<[a,bl,p,A) = Ib - al?,

3.15. Theorem. Let P ={Q,1,u > be a WM-space. Let
A consist of q€Q such that wq>0. Then C(P) = C*(P) =0
it «(Q\A)>0, and C(P) = C¥P) = H(Mq:qe A) if «(Q\A)=
= 0.

Remark. In fact, the theorem asserts that, for any
probability space {Q, #> such that the diagonal is measur-
able, the values C<{(Q,l,« > , C*<Q,1,« > coincide with
the entropy of <Q,w? in the well known sense (see e.g. [5],
where a special class of probability spaces is considered).

As stated in the introduction, we omit the proofs of
3.12 - 3.15.

3.16. Remark. We are going to point out certain analo-
gies between the definition of C and C* by means of dyadic
expansions and a possible approach (which seems not to have
been applied explicitly as yet) to the dimension of topolo-
gical space and also of closure spaces, etc. The.facts sta-
ted below are not used in the present note, and therefore we
restrict ourselves to a few definitions and propositions.
For concepts not defined here we refer to [2]. - (1) If P is
a closure space, XcP, YcP, then we define V(X,Y) =
= V(X,Y;P) as follows: V(X,Y) = 1 if c€XncfY+ @, and
V(X,Y) = O otherwise. - (2) A dyadic expansion of a space
P is, by definition, a family M= (M,:2 €D), where DeA and
M=M UM, M nM, =0 for every z¢D’, If M= (M, :z €D)
is a dyadic expansion of a closure space P, we put V(M) =

= V(M;P) = (VM ,M,):2¢D"). = (3) IfP is a closu-
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re space, then U= %U(P) denotes the collection of all fi-
nite families { = (X :k€K) such that UInt X = P, where
we put Int X = P\ ct (P\ X), and U*= Y*(P) denotes the
collection of all finite § = (X, :kcK) such that UX, =P
and, for some 7 = (Y, :k€K)e U and some finite F,, we ha-
ve X, = Y\ F,. Clearly, U c U™ , and if every finite FC P
is closed, then U(P) = UX(P). - (4) For any § e U™P)
let ®(¢) denote the set of all dyadic expansions J* of P
such that P" refines § , let 3= F(P) be the filter geme-
rated by all $(¢), §e€ U , and let F*=3F*(P) the filter
generated by all $(¢), ¢ € U* . - (5) For a closure
space P, let V(P) ( V*(P)) denote the lower limit of ¥ (P
with respect to % (¥*). - (6) It is not difficult to pro-
ve that, for any normal topologicelﬂ space P, V(P) = V¥*P) =
= dim P (dim P is the dimension defined by means of finite
open coverings). - (7) Let every symmetric graph G = {G,z>
be considered as a closﬁre space (tolerance space): ye efX
iff ye X or {y,x?> € for some x€X. Then V(G) = 0, V(@)=
= 1(G) - 1, where %,(G) is the chromatic number of G. - (8)
If V(X,Y) is introd;xced in a different way, we can get dif-

ferent kinds of dimension.
4-

4,1, This section contains a remark concerning exten-
sions of the Shannon entropy distinct from C and C*; defi-
nitions of "e.ntropies" for probahility spaces and semimetric
spaces; definitions of concepts (closely connected with that.
of the ¢ -entropy of a metric space) of "proximal”™ and "gra-
ded" modifications of a given subentropy and a propouitiox}

- 188 -



concerning the relation of "graded" entropies to the diffe-
rential entropy. - Proofs of statements contained in the
present section as well as of some further related results

are intended for publication in another note.

4.2, Besides C and C*, there are various other exten-
sions of the Shannon entropy satisfying some natural condi-
tions. In particular, if I"(Pl,Pz) is replaced by another
suitable function defined for pairs of subspaces, then vari-
ous kinds of "projective" entropies can be obtained. Thus,
if we put E(P,,P,) = H(wP,,wP,)d(P; + P,), E(P,:2€D) =
== (E(on’Pz

adic expansions of P, we get a function E, which seems to

1):2€D’), E(D) = lim E(P), where P denotes dy-

possess various convenient properties, though in some res-

pects it is less natural than C.

4.3. If @ is a semi-subentropy, then the correspond-
ing functions, still denoted by ¢ , on the class of all me-
asure spaces <Q, u> , Q<o , and on the class of all
semimetric spaces (hence, in particular on the class of all
symmetric graphs) can be defined as follows: (1) for a mea-
sure space {Q, u> , ®<Q, &> is the least upper bound of
@ <Q,¢, @?> , where (Q,p,«> is a W-space, @ £ 1 (2)
for a semimetric space <Q,¢> , ¢<Q,@> is the least up-
per bound of ¢<Q,p, w> , where {Q,¢,« > is a WM-space, and
MQ£1. Due to 3.15 , the values C Q, > , C*<Q, w> are
not of much interest. On the other hand, C<Q,p> , C*<Q,o?,

and E <Q,0> mey deserve a closer examination.

4.4. Let ¢ be a semi-subentropy. Then the following
mapping q’pr ("pr" stands for "proximal") can be associated
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with ¢ : for a WM-space P = (Q,Sa,(u) and any ¢ > O put
PAe=4Q,e N €&, , where (QJAE) (x,y) = min (Sa(x,y),e).

Put ¢, (P;€) =@(Pa ¢) and let (P) be the function

Ypr
€ Hcgpr(P; ¢). The mapping Spr TAY be called the proxi-
mal modification of @ . It resembles the g -entropy of to-
tally bounded metric spaces; however, in general, it is mo-
re difficult to handle than the "graded" entropy described

below.

4.5. If ¢ is a semi-subentropy, P =<Q,p, «> is a
WM-space, and € > O, then we define gogr(P; €) as follows.
For any semimetric @ on a set Q, and any € > 0, let @, (x,y)=
=11f ex,y)2 g, @(x;y) = 0 if E(x,y) < ¢ . Clearly, @=
= J;"" gbtdt (thus, in a sense, we have a "spectral represen-
tation" of © by means of graphs). Now put g;gr(P; g) =
= @{Q, P4, «> , and let qagr(P) be the function
£ n——»qgr(P; ¢). The mapping Pgr LAY be called the "grad-
ed" modification of ¢ . It can be shown that, for totally
bounded metric spaces {Q, ¢ > , gpgr<Q,So,.a,>, where ¢ = B

(see 4.2), is closely connected with the ¢-entropy.

4.,6. There is a close connection between the graded
entropy Egr and the differential entropy in the usual sense
(defined e.g. for a probability measure on R as follows: if
¢=7f.2, f continuous, then the differemtial entropy of
& i.e. of {R,0yt> is equal to - __/':: f(x) log f(x)dx
provided the integral exists). In fact, define the differen-
tial g-entropy Pgire(P;iS) as follows: if P, S are WM-spa-
ces, wP = wS = 1, then @,;..(P;S) is equal to
%i;no( Per(Pie) - 9gr(Si €)). It turns out that, under cer-
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tain fairly weak conditions, Egse2(<la,b),0, 22>
(Ca,b],gb,.?tlib - &l>) is equal to the differential entro-
py of the probability measure £.A on R, and that this re-
sult can be extended in various ways. However, I do not know
whether results of this kind are valid if E is replaced by

C or if @4;pp is defined in terms of Ppr instead of Pere

4,7. Concepts of a semi-subentropy, a subentropy, etc.,
can be extended to more general spaces. E.g. instead of se-
mimetrics on Q, "diameters” o can be considered, i.e. non-
negative functions assigning a val{ze JF(X)e R to every XcQ.
In this setting, the definition of E may remain unchanged;
it is not clear, however, how to introduce functions corres-

ponding to C, C* , etc.

4.8, In conclusion, we mention two important amd pro-
bably difficult questions not touched upon in this note:
introduction of an appropriate concept (or rather concepts)
of the product of WM-spaces, and of entropies of mappings

(morphisms),’
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