Hana Jirásková
Generalized flatness and coherence

Commentationes Mathematicae Universitatis Carolinae, Vol. 21 (1980), No. 2, 293--308

Persistent URL: http://dml.cz/dmlcz/105996

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
GENERALIZED FLATNESS AND COHERENCE
Hana JIRASKOVA

Abstract: In this paper flatness and coherence relative to a cohereditary idempotent radical s is studied. Results here obtained are applied to the \mathcal{M}-flatness with respect to a pseudoprojective module \mathcal{M}.

Key words: Relatively flat modules, relative coherence, preradicals.

Classification: Primary 16A50, 16A52
Secondary 18B40

In what follows, R stands for an associative ring with a unit element and R-mod (mod-R) denotes the category of all unitary left (right) R-modules.

First of all, we shall list several basic definitions from the theory of preradicals.

Recall that a preradical r for R-mod is a subfunctor of the identity functor, i.e. r assigns to each module M its submodule $r(M)$ in such a way that every homomorphism of M into N induces a homomorphism of $r(M)$ into $r(N)$ by restriction.

A module M is r-torsion if $r(M) = M$ and r-torsionfree if $r(M) = 0$. The class of all r-torsion (r-torsionfree) modules will be denoted by \mathcal{T}_r (\mathcal{F}_r).
A preradical \(r \) is said to be
- idempotent if \(r(M) \in \mathcal{T}_r \) for every module \(M \),
- a radical if \(M/r(M) \in \mathcal{F}_r \) for every module \(M \),
- hereditary if for every module \(M \) and every monomorphism \(A \to r(M) \) \(A \in \mathcal{T}_r \),
- cohereditary if for every module \(M \) and every epimorphism \(M/r(M) \to A \) \(A \in \mathcal{F}_r \),
- superhereditary if it is hereditary and \(\mathcal{T}_r \) is closed under direct products,
- centrally splitting if it is cohereditary and \(r(R) \) is a ring direct summand of \(R \).

If \(r \) and \(s \) are preradicals then we write \(r \preceq s \) if \(r(M) \subseteq s(M) \) for all \(M \in R\text{-mod} \).

The idempotent core \(\overline{r} \) of a preradical \(r \) is defined by \(\overline{r}(M) = \bigoplus K \), where \(K \) runs through all \(r \)-torsion submodules \(K \) of \(M \) and the radical closure \(\overline{r} \) is defined by \(\overline{r}(M) = \bigcap L \), where \(L \) runs through all submodules \(L \) of \(M \) with \(M/L \) \(r \)-torsion-free. Further, the hereditary closure \(h(r) \) is defined by \(h(r)(M) = M \cap r(E(M)) \), where \(E(M) \) is an injective hull of a module \(M \) and the cohereditary core \(ch(r) \) by \(ch(r)(M) = = r(R)\cdot M \).

A module \(P \) is called pseudoprojective if for any epimorphism \(f:B \to A \) and any homomorphism \(0 \neq g:P \to A \), there exist homomorphisms \(h:P \to B \) and \(k:P \to P \) such that \(0=g\circ k = f\circ h \).

For a module \(M \) let us define \(p_{i|M_1}(N) = \bigoplus \text{Im } f \), \(f \) ranging over all \(f \in \text{Hom}_R(M,N) \). It is easy to see that \(p_{i|M_1} \) is an idempotent preradical. Moreover \(p_{i|M_1} \) is cohereditary if and only if \(M \) is pseudoprojective.

Let \(r \) be a preradical. We say that a submodule \(A \) of a
module B is
- \((r,1)\)-dense in \(B\) if there is a module \(C\) such that \(A \subseteq B \subseteq C\) and \(B/A \subseteq r(C/A)\),
- \((r,2)\)-dense in \(B\) if \(B/A \in \mathcal{T}_r\).

Let \(r\) be a preradical and \(i \in \{1, 2\}\). A module \(Q\) is said to be \((r,i)\)-injective ((i,r)-injective) if for every monomorphism \(f : A \to B\) and every homomorphism \(g : A \to Q\) with \(\text{Im} f \) is \((r,i)\)-dense in \(B\) (\(f(\text{Ker} g)\) is \((r,i)\)-dense in \(B\)) there exists a homomorphism \(h : B \to Q\) such that \(h \circ f = g\).

Definition 1. Let \(s\) be a preradical for \(\text{mod}-R\). A module \(R^s Q\) is called \(s\)-flat if \(\text{Tor}_1^R(N, Q) = 0\) for every \(N \in \mathcal{T}_s\).

As it is easy to see, a module \(R^s Q\) is \(s\)-flat if and only if its character module \(|\bar{\mathcal{T}}^s|\) is \((s,2)\)-injective. Since a module is \((\bar{s},2)\)-injective if and only if it is \((s,2)\)-injective, we obtain immediately the following proposition.

Proposition 2. If \(s\) is a preradical for \(\text{mod}-R\), then a module \(R^s Q\) is \(s\)-flat if and only if it is \(\bar{s}\)-flat.

The first part of the following proposition is essentially due to R.W. Miller and M.L. Teply [16].

Proposition 3. Let \(s\) be a preradical for \(\text{mod}-R\) and \(Q \in R\text{-mod}\). Consider the following conditions.
(i) \(Q\) is \(s\)-flat.
(ii) Given any exact sequence
\[0 \to K \to P \to Q \to 0 \]
with \(P\) projective, there is for every \(x \in s(R) \cdot K\) a homomorphism \(f_x : P \to K\) such that \(f_x(x) = x\).
(iii) Given any exact sequence
\[0 \to K \to P \to Q \to 0 \]
\[-295-\]
with P projective, there is for each finite subset $\{x_1, x_2, \ldots, x_n\}$ of $s(R) \cdot K$ a homomorphism $f : P \rightarrow K$ such that $f(x_i) = x_i$ for every $i \in \{1, 2, \ldots, n\}$.

(iv) Given any $t_p \in s(R)$, $q_j \in Q$, $r_i, j \in R$, $i \in \{1, 2, \ldots, m\}$, $j \in \{1, 2, \ldots, n\}$, $p \in \{1, 2, \ldots, q\}$, with $\sum_{i=1}^{m} r_i j = 0$ for each $i \in \{1, 2, \ldots, m\}$, there is $u_k \in Q$ and $b_j, k \in R$, $j \in \{1, 2, \ldots, n\}$, $k \in \{1, 2, \ldots, t\}$, such that $q_j = \sum_{k=1}^{t} b_j k \cdot u_k$ for $j \in \{1, 2, \ldots, n\}$ and $t_p (\sum_{i=1}^{m} r_i j \cdot b_j k) = 0$ for $i \in \{1, 2, \ldots, m\}$, $k \in \{1, 2, \ldots, t\}$, $p \in \{1, 2, \ldots, q\}$.

(v) Every diagram

$$
\begin{array}{c}
0 \rightarrow K \rightarrow F \rightarrow N \rightarrow 0 \\
\downarrow g \\
B \rightarrow Q \rightarrow 0
\end{array}
$$

with exact rows, F free, K, F finitely generated and $K = s(R) \cdot K$ can be completed by a homomorphism $h : N \rightarrow B$ to a commutative one.

(vi) For every module N for which there is an exact sequence

$$
0 \rightarrow K \rightarrow F \rightarrow N \rightarrow 0
$$

with F free, K, F finitely generated and $K = s(R) \cdot K$, the natural homomorphism

$$
\varphi = \varphi_{N, Q} : \text{Hom}_R(N, R) \otimes_R Q \rightarrow \text{Hom}_R(N, Q)
$$

defined via

$$
\varphi(f \otimes q)(n) = f(n) \cdot q, \quad f \in \text{Hom}_R(N, R), \quad q \in Q, \quad n \in N
$$

is an epimorphism.

(vii) Every diagram

$$
\begin{array}{c}
N \\
\downarrow g \\
0 \rightarrow K \rightarrow B \rightarrow Q \rightarrow 0
\end{array}
$$
with exact row, \(K = s(R) \cdot K \) and \(N \) finitely presented can be completed by a homomorphism \(h: N \rightarrow B \) to a commutative one.

(viii) \(Q/(0:s(R)) \cdot R \) is flat in \(R/(0:s(R)) \cdot R \)-mod.

Then (ii) is equivalent to (iii), (iii) is equivalent to (iv) and (v) is equivalent to (vi). If \(s \) is idempotent then (i) implies (ii). Conversely, if \(s \) is cohereditary then (ii) implies (i). Further,

- if \(s(R) \) is finitely generated as a left ideal then (iv) implies (v),
- if \(s(R) \) is finitely generated as a left ideal and \(s(R) \) is idempotent then (v) implies (iv),
- if \(s \) is a cohereditary idempotent radical and \(s(R) \) is finitely generated as a left ideal then (i) is equivalent to (viii),
- if \(s(R) \) is finitely generated as a left ideal and \(R/s(R) \) is flat as a right \(R \)-module then (iv) implies (vii),
- if \(s(R) \) is a ring direct summand in \(R \) then (vii) implies (iv).

Proof: (ii) is equivalent to (iii), (iii) is equivalent to (iv), (i) implies (ii) for \(s \) idempotent and (ii) implies (i) for \(s \) cohereditary. The proof can be led along the same line as in Theorem 2.1 in [16].

(iv) implies (v). Consider the following diagram

\[
\begin{array}{cccccc}
0 & \rightarrow & K & \rightarrow & F & \rightarrow & N & \rightarrow & 0 \\
& & & \downarrow & \epsilon & & & & \\
& & B & \rightarrow & Q & \rightarrow & 0 \\
& & & & \phi & & & & \\
\end{array}
\]

with exact rows, where \(F \) is finitely generated free with a free basis \(\{x_1, x_2, \ldots, x_n\} \), \(K = \bigoplus_{i=1}^m Kx_i \), \(K = s(R) \cdot K \) and
s(R) = \sum_{p=1}^{q} R_p. Set q_j = (g \circ k)(x_j), j \in \{1, 2, \ldots, n\}. Then
\begin{align*}
 k_i &= \sum_{j=1}^{m_j} r_{ij} \cdot x_j, i \in \{1, 2, \ldots, m\}, \text{ and hence } 0 = (g \circ k)(k_i) = \\
 &= \sum_{j=1}^{m_j} r_{ij} \cdot q_j. \end{align*}
By (iv) there is u_k \in Q and b_j, k \in R, k \in \{1, 2, \ldots, t\}, j \in \{1, 2, \ldots, m\} such that q_j = k_{x_{\alpha_i}} b_j, k \cdot u_k \text{ for } j \in \{1, 2, \ldots, m\} \text{ and } t \in \{1, 2, \ldots, q\} \text{ for } k \in \{1, 2, \ldots, t\} \text{ and } p \in \{1, 2, \ldots, q\}. \quad \text{For } k \in \{1, 2, \ldots, t\} \text{ choose } e_k \in B \text{ such that } f(e_k) = u_k \text{ and define } h: F \to B \text{ by } h(x_j) = \\
 &= \sum_{j=1}^{m_j} b_j, k \cdot e_k. \end{align*}
Then
\begin{align*}
 (f \circ h)(x_j) &= f(\sum_{j=1}^{m_j} b_j, k \cdot e_k) = \\
 &= f(\sum_{j=1}^{m_j} b_j, k \cdot u_k) = q_j = (g \circ k)(x_j), j \in \{1, 2, \ldots, n\} \text{ and consequently } f \circ h = g \circ k. \end{align*}
Further, if i \in \{1, 2, \ldots, m\}, p \in \{1, 2, \ldots, q\} \text{ then } h(t_{p, k}) = h(\sum_{j=1}^{m_j} t_{p, k} \cdot x_j) = \sum_{j=1}^{m_j} t_{p, k} \cdot x_j = k_{x_{\alpha_i}} b_j, k \cdot e_k = \sum_{j=1}^{m_j} (t_{p, k} \cdot r_{ij}) \cdot b_j, k \cdot e_k = 0. \end{align*}
Thus h(K) = 0 and h induces a homomorphism \(h: N \to B \) such that \(f \circ h = g \).
(v) implies (ii). Let \(0 \to K \to F \to F_n \to Q \to 0 \) be an exact sequence, where \(F \) is free with a free basis \(\{x_{\alpha_i}, \alpha_i \in \Lambda\} \). If \(k \in K \) then \(k = \sum_{i=1}^{n} r_i x_{\alpha_i}, r_i \in R, \alpha_i \in \Lambda \). Set \(F_n = \sum_{i=1}^{n} R x_{\alpha_i} \) and define a homomorphism \(g: F_n \to Q \) by \(g(x_{\alpha_i}) = f(x_{\alpha_i}) \) for \(i \in \{1, 2, \ldots, n\} \). It is easy to see that \(g(s(R)k) = 0 \), hence \(g \) induces a homomorphism \(\bar{g}: F_n / s(R)k \to Q \). Now \(F_n / s(R)k \) is finitely presented since \(s(R) \) is finitely generated as a left ideal and \(s(R)^2 = s(R) \) yields \(s(R) / s(R)k = s(R)k \). By (v) there exists a homomorphism \(h: F_n / s(R)k \to F \) such that \(f \circ h = \bar{g} \). Setting \(h(x_{\alpha_i} + s(R)k) = e_i \) for \(i \in \{1, 2, \ldots, n\} \), we have \(f(e_i) = \\
 = (f \circ h)(x_{\alpha_i} + s(R)k) = \bar{g}(x_{\alpha_i} + s(R)k) = f(x_{\alpha_i}), \) hence \(x_{\alpha_i} = -e_i \in K \) for \(i \in \{1, 2, \ldots, n\} \). Let us define \(\varphi: F \to K \) by
\(\varphi(x_{\alpha_i}) = x_{\alpha_i} - e_i \) for \(i \in \{1, 2, \ldots, n\} \) and \(\varphi(x^*) = 0 \) if \(\alpha \notin \{\alpha_1, \alpha_2, \ldots, \alpha_n\} \). For \(t \in \mathfrak{s}(R) \) we have \(t \cdot \sum_{i=1}^{n} r_i e_i = t \cdot \sum_{i=1}^{n} r_i h(x_{\alpha_i}) + s(R)k = h(t \cdot \sum_{i=1}^{n} r_i x_{\alpha_i}) + s(R)k = h(tk) + s(R)k = 0. \) Thus \(\varphi(tk) = \varphi(t \cdot \sum_{i=1}^{n} r_i x_{\alpha_i}) = \sum_{i=1}^{n} r_i (x_{\alpha_i} - e_i) = t \cdot \sum_{i=1}^{n} r_i x_{\alpha_i} = tk. \)

(v) is equivalent to (vi) is routine. (i) is equivalent to (viii). It follows immediately from [16] Corollary 3.4. (iv) implies (vii). Consider the following diagram

\[
\begin{array}{c}
F/s(R)K \\
\downarrow \sigma \\
F/K \\
\downarrow g \\
0 \rightarrow L \rightarrow B \rightarrow Q \rightarrow 0
\end{array}
\]

with exact row, where \(L = s(R)L, \) \(F \) is finitely generated free with a free basis \(\{x_1, x_2, \ldots, x_n\} \), \(K = \sum_{i=1}^{n} R x_i, \) \(s(R) = \sum_{p \in \mathfrak{p}} R p \) and \(\sigma \) is a natural epimorphism. By the same fashion as in (iv) implies (v) we can show that there exists a homomorphism \(h: F/s(R)K \rightarrow B \) such that \(f \circ h = g \circ \sigma \). Let \(r \) be a cohereditary radical in \(R\text{-mod} \) corresponding to \(s(R) \) (i.e. \(r(A) = s(R)A \) for all \(A \in R\text{-mod} \)). By assumption \(L \in \mathcal{T}_r \). Further \(R/s(R) \) is flat as a right \(R \)-module, hence \(r \) is hereditary. Since \(h(K/s(R)K) \subseteq L \), we have \(h(K/s(R)K) \in \mathcal{T}_r \cap \mathcal{F}_r = 0. \) Thus \(h \) induces a homomorphism \(\overline{h}: F/K \rightarrow B \) such that \(f \circ \overline{h} = g. \) (vii) implies (ii). Let \(0 \rightarrow K \rightarrow F \rightarrow Q \rightarrow 0 \) be an exact sequence, where \(F \) is free with a free basis \(\{x_{\alpha}, \alpha \in \Lambda\} \). By assumption \(s(R) \) is a ring direct summand in \(R \). Thus \(R = s(R) \oplus I \) for some ideal \(I \). Consider the exact sequence

- 299 -
\[0 \rightarrow K/IK \rightarrow F/IK \rightarrow Q \rightarrow 0, \] where \(\overline{f} \) is induced by \(f \). As it is easy to see \(s(R)(K/IK) = K/IK \). Now, if \(k \in K \) then \(k = \sum_{i=1}^{m} r_i \alpha_i, \ r_i \in R, \ \alpha_i \in A \). Set \(F_n = \sum_{i=1}^{m} R \alpha_i \) and define a homomorphism \(g: F_n \rightarrow Q \) via \(g(x_{\alpha_i}) = f(x_{\alpha_i}) \) for \(i \in \{1, 2, \ldots, n\} \). Then \(g(Rk) = 0 \) and \(g \) induces a homomorphism \(\overline{g}: F_n/Rk \rightarrow Q \). Further, \(F_n/Rk \) is finitely presented hence \(\overline{f} \circ h = \overline{g} \) for some homomorphism \(h:F_n/Rk \rightarrow F/IK \) by (vii). Put \(h(x_{\alpha_i} + Rk) = e_i + IK = \overline{e}_i \). As it is easy to see \(x_{\alpha_i} - e_i \in K \) and we can define \(\varphi:F \rightarrow K \) by \(\varphi(x_{\alpha_i}) = x_{\alpha_i} - e_i \) for \(i \in \{1, 2, \ldots, n\} \) and \(\varphi(x_{\alpha_i}) = 0 \) if \(\alpha \notin \{\alpha_1, \alpha_2, \ldots, \alpha_n\} \). We have

\[h(\sum_{i=1}^{m} r_i \alpha_i + Rk) = h(\sum_{i=1}^{m} r_i \alpha_i) = 0. \] Now, if \(t \in s(R) \) then \(t \cdot \sum_{i=1}^{m} r_i \alpha_i \in s(R)IK = 0 \), hence \(\varphi(tk) = \varphi(\sum_{i=1}^{m} r_i x_{\alpha_i}) = \sum_{i=1}^{m} r_i (x_{\alpha_i} - e_i) = t \cdot \sum_{i=1}^{m} r_i x_{\alpha_i} = tk. \)

Definition 4. Let \(s \) be a preradical for \(\text{mod-}R \). A module \(RQ \) satisfying one of the equivalent conditions (ii), (iii) and (iv) of Proposition 3 is said to be weakly \(s \)-flat.

Let \(RQ \) be a flat module. A module \(N_R \) is called \(Q \)-finitely generated (see [6]) if the natural homomorphism \(\psi = \psi_{N_R}: N \otimes_R Q^I \rightarrow (N \otimes_R Q)^I \) defined via \(\psi(n \otimes q)(i) = n \otimes q(i) \) for \(n \in N, \ q \in Q^I, \ i \in I \) is an epimorphism for every set \(I \).

Theorem 5. Let \(s \) be a preradical for \(\text{mod-}R \) and \(RQ \) be a flat module. Consider the following conditions

(i) \(Q^I \) is weakly \(s \)-flat for every index set \(I \).
(ii) If \(\{ Q_\alpha, \alpha \in \mathcal{A} \} \) is a family of weakly \(s \)-flat modules, where \(Q_\alpha \in \mathcal{F}_p Q_\alpha \) for every \(\alpha \in \mathcal{A} \) then \(\prod_{\alpha \in \mathcal{A}} Q_\alpha \) is weakly \(s \)-flat.

(iii) \(\text{Hom}_R(P, R) \) is \(Q \)-finitely generated for every module \(P \) for which there exists an exact sequence:

\[
0 \rightarrow K \rightarrow F \rightarrow P \rightarrow 0
\]

with \(F \) free, \(K, F \) finitely generated and \(K = s(R)K \).

(iv) For every finitely generated right ideal \(I \) in \(R \) and an exact sequence \(0 \rightarrow K \rightarrow F \rightarrow I \rightarrow 0 \) with \(F \) finitely generated free there is a finitely generated submodule \(K' \) of \(F \) such that \(K \otimes R Q \subseteq K' \otimes R Q \) and \(s(R)F(K') = 0 \).

(v) \((Q/(0:s(R))_P Q)_I \) is flat in \(R/(0:s(R))_P \)-mod for every set \(I \).

Then

- (ii) implies (i), (iv) implies (i),
- if \(s(R) \) is finitely generated as a left ideal then (i) implies (iii) and (i) implies (iv),
- if \(s(R) \) is finitely generated as a left ideal and \(s(R) \) is idempotent then (iii) implies (ii),
- if \(s \) is a cohereditary idempotent radical, \(s(R) \) is finitely generated as a left ideal and \((0:s(R))_P \) is finitely generated as a right ideal then (i) is equivalent to (v).

Proof: (ii) implies (i) trivially.

(i) implies (iii). Consider the following commutative diagram:

\[
\begin{array}{ccc}
\text{Hom}_R(P, R) \otimes_R Q^I & \overset{\varphi_{P, Q}^I}{\longrightarrow} & \text{Hom}_R(P, Q^I) \\
\downarrow \varphi & & \downarrow \omega \\
(\text{Hom}_R(P, R) \otimes_R Q)_I & \overset{(\varphi_{P, Q})^I}{\longrightarrow} & (\text{Hom}_R(P, Q))_I
\end{array}
\]
where \(\omega \) is the natural isomorphism and \(\varphi \) is defined as in Proposition 3 (vi). Now \((\varphi P, Q)^I \) is an isomorphism (see \[14\]), since \(Q \) is flat and \(P \) is finitely presented. Further, \(\varphi P, Q)^I \) is an epimorphism by Proposition 3 (vi). Hence \(\psi \) is an epimorphism and consequently \(\text{Hom}_R(P, R) \) is \(Q \)-finitely generated.

(iii) implies (ii). For \(N \in \text{mod}-R \) the class of all \(M \in \text{R-mod} \)
for which \(N \) is \(M \)-finitely generated is closed under the formation of direct sums of copies of \(M \). Now if \(Q_\alpha \in \mathcal{T}_{P\pi Q}^\beta \), \(\alpha \in \Delta \) then there exist a set \(I \) and epimorphisms \(f_\alpha : Q(I) \to Q_\alpha \), \(\alpha \in \Delta \). Consider the following commutative diagram

\[
\begin{array}{ccc}
\text{Hom}_R(P, R) \otimes_R (Q(I))_A & \xrightarrow{\psi} & (\text{Hom}_R(P, R) \otimes_R Q(I))_A \\
1 \otimes \prod_{\alpha \in \Delta} Q_\alpha & \xrightarrow{\psi_1} & \prod_{\alpha \in \Delta} (\text{Hom}_R(P, R) \otimes_R Q) \\
\end{array}
\]

where \(\psi_1(f \otimes q)(\alpha) = f \otimes q(\alpha) \) for \(f \in \text{Hom}_R(P, R) \), \(q \in \beta \otimes A Q_\beta \), \(\alpha \in \Delta \). Then \(\psi \) is an epimorphism since \(\text{Hom}_R(P, R) \) is \(Q(I) \)-finitely generated, hence \(\psi_1 \) is an epimorphism. Now consider the following commutative diagram

\[
\begin{array}{ccc}
\text{Hom}_R(P, R) \otimes_R \prod_{\alpha \in \Delta} Q_\alpha & \xrightarrow{\varphi P, \prod_{\alpha \in \Delta} Q_\alpha} & \text{Hom}_R(P, \prod_{\alpha \in \Delta} Q_\alpha) \\
\prod_{\alpha \in \Delta} (\text{Hom}_R(P, R) \otimes_R Q_\alpha) & \xrightarrow{\omega} & \prod_{\alpha \in \Delta} \text{Hom}_R(P, Q_\alpha) \\
\end{array}
\]

where \(\omega \) is the natural isomorphism and \(\varphi \) is defined as in Proposition 3 (vi). Then \(\varphi P, Q_\alpha \) is an epimorphism for every \(\alpha \in \Delta \) by Proposition 3 (vi). Hence \(\varphi P, \prod_{\alpha \in \Delta} Q_\alpha \) is an epimorphism and consequently \(\prod_{\alpha \in \Delta} Q_\alpha \) is weakly \(s \)-flat by Proposition-
on 3.

(i) implies (iv). Suppose $I = \sum_{i=1}^{m} a_i R$ and $0 \rightarrow K \rightarrow F \rightarrow I \rightarrow 0$ is an exact sequence, where F is free with a free basis $\{x_1, x_2, \ldots, x_n\}$ and $f(x_i) = a_i$ for $i \in \{1, 2, \ldots, n\}$. Now, if $k \in K$ then $k = \sum_{i=1}^{m} x_i r_i(k)$ for some $r_i(k) \in R$, $i \in \{1, 2, \ldots, n\}$. Let us define $q_i \in Q^{K \otimes Q}$ by $q_i(k, q) = r_i(k)q$ for $q \in Q$, $k \in K$, $i \in \{1, 2, \ldots, n\}$. Since $0 = \sum_{i=1}^{m} a_i r_i(k)q$ for every $k \in K$ and $q \in Q$, we have $\sum_{i=1}^{m} a_i q_i = 0$ in $Q^{K \otimes Q}$. Let $s(R) = \sum_{p \in \mathcal{P}} R_p$. Then there exist $u_j \in Q^{K \otimes Q}$ and $b_i, j \in R$, $i \in \{1, 2, \ldots, n\}$, $j \in \{1, 2, \ldots, m\}$ such that $q_i = \sum_{p \in \mathcal{P}} b_i, j u_j$ for $i \in \{1, 2, \ldots, n\}$ and $j \in \{1, 2, \ldots, m\}$. Set $k'_j = \sum_{i=1}^{m} x_i b_i, j$, $j \in \{1, 2, \ldots, m\}$ and $K' = \sum_{j=1}^{m} k'_j R$. For $k \in K$, $q \in Q$ we have $k \otimes q = \sum_{i=1}^{m} x_i r_i(k) \otimes q = \sum_{i=1}^{m} x_i \otimes r_i(k)q = \sum_{i=1}^{m} x_i \otimes \sum_{j=1}^{m} b_i, j u_j(k, q) = \sum_{j=1}^{m} k'_j \otimes \sum_{j=1}^{m} b_i, j u_j(k, q) = \sum_{j=1}^{m} k'_j \otimes u_j(k, q) \in K' \otimes_{R} Q$. Further, $t_p f(k'_j) = t_p f(\sum_{i=1}^{m} x_i b_i, j) = t_p (\sum_{i=1}^{m} a_i b_i, j) = 0$ and consequently $s(R)f(K') = 0$.

(iv) implies (i). Suppose I is an arbitrary set, $t_w \in s(R)$, $a_i \in Q^I$, $r_i \in R$, $i \in \{1, 2, \ldots, n\}$, $w \in \{1, 2, \ldots, z\}$ and $\sum_{i=1}^{m} r_i a_i = 0$. Set $J = \sum_{i=1}^{m} r_i R$ and consider an exact sequence $0 \rightarrow K \rightarrow F \rightarrow J \rightarrow 0$, where F is free with a free basis $\{x_1, x_2, \ldots, x_n\}$ and $f(x_i) = r_i$ for $i \in \{1, 2, \ldots, n\}$. Then there exists a finitely generated submodule $K' = \sum_{p \in \mathcal{P}} k'_p R$ of F such that $K' \otimes_{R} Q \in K' \otimes_{R} Q$ and $s(R)f(K') = 0$. Now Q is flat and $\sum_{i=1}^{m} r_i a_i (\alpha) = 0$ for every $\alpha \in I$, hence there exist $v_j(\alpha) \in Q$ and $b_i, j(\alpha) \in R$, $i \in \{1, 2, \ldots, n\}$, $j \in \{1, 2, \ldots, m\}$,
\[\alpha \in A \text{ such that } a_i(\alpha) = \frac{\alpha_i}{\alpha_j}, \text{ for } i = 1, 2, \ldots, n, \]
\[a \in A \text{ and } \sum_{i=1}^{m} r_i b_{i,j}(\alpha) = 0, \text{ for } j = 1, 2, \ldots, m. \]
Let us denote
\[u_j(\alpha) = \sum_{i=1}^{n} x_i b_{i,j}(\alpha), \text{ for } j = 1, 2, \ldots, m. \]
Then \(f(u_j(\alpha)) = \sum_{i=1}^{n} r_i b_{i,j}(\alpha) = 0 \) for \(j = 1, 2, \ldots, m, \alpha \in A. \)
Thus \(u_j(\alpha) \in K. \)
Hence \(\sum_{i=1}^{n} u_j(\alpha) \otimes v_j(\alpha) = \sum_{i=1}^{m} k_p \otimes w_p(\alpha) \) for some \(w_p(\alpha) \in Q, \)
\(p \in \{1, 2, \ldots, q\}, \alpha \in A. \)
Further, \(k_p = \sum_{i=1}^{n} x_i d_i, p, d_i \in R, \)
\(i = 1, 2, \ldots, n, p \in \{1, 2, \ldots, q\}. \)
Thus \(\sum_{i=1}^{n} x_i \otimes a_i(\alpha) = \frac{\alpha_i}{\alpha_j}, x_i \otimes \)
\(\sum_{i=1}^{m} b_{i,j}(\alpha) v_j(\alpha) = \sum_{i=1}^{m} (\sum_{i=1}^{n} x_i b_{i,j}(\alpha)) \otimes v_j(\alpha) = \sum_{i=1}^{m} (\sum_{i=1}^{n} x_i d_i, p) \otimes w_p(\alpha) = \frac{\alpha_i}{\alpha_j} x_i \otimes \)
\(\sum_{i=1}^{m} d_i, p, w_p(\alpha). \)
Hence \(a_i(\alpha) = \frac{\alpha_i}{\alpha_j} d_i, p, w_p(\alpha) \) for \(i = 1, 2, \ldots, n, \alpha \in A \) and consequently \(a_i = \frac{\alpha_i}{\alpha_j} d_i, p, w_p, i \in \{1, 2, \ldots, n\}. \)
We have \(t_w(\sum_{i=1}^{n} r_i d_i, p) = t_w(k_p) \in s(R)f(K') = 0, \)
\(w \in \{1, 2, \ldots, z\}, p \in \{1, 2, \ldots, q\}. \)
Hence \(Q^+ \) is weakly \(s \)-flat by Proposition 3.

(i) is equivalent to (v). It immediately follows from Proposition 3 (viii).

Corollary 6. Let \(s \) be a preradical for \(\text{mod}-R. \) Consider the following conditions:

(i) \(R^R \) is weakly \(s \)-flat for every set \(I. \)

(ii) Weakly \(s \)-flat modules are closed under direct products.

(iii) \(\text{Hom}_R(P, R) \) is finitely generated for every module \(P \) for which there exists an exact sequence \(0 \rightarrow K \rightarrow F \rightarrow P \rightarrow 0 \)
with \(F \) free, \(K, F \) finitely generated and \(K = s(R)K. \)

(iv) For every finitely generated right ideal \(I \) in \(R \) and an exact sequence \(0 \rightarrow K \rightarrow F \overset{f}{\rightarrow} I \rightarrow 0 \) with \(F \) finitely generated free there is a finitely generated submodule \(K' \) of \(F \)
such that \(K \subseteq K' \) and \(s(R)f(K') = 0. \)
(v) $R/(0:s(R))_R$ is a right coherent ring.

Then

- (ii) implies (i), (iv) implies (i),
- if $s(R)$ is finitely generated as a left ideal then (i) implies (iii) and (iv),
- if $s(R)$ is finitely generated as a left ideal and $s(R)$ is idempotent then (iii) implies (ii),
- if s is an idempotent cohereditary radical, $s(R)$ is finitely generated as a left ideal and $(0:s(R))_R$ is finitely generated as a right ideal then (i) is equivalent to (v).

Let $M \in \text{mod-}R$. We recall that a module RQ is said to be M-flat if $\oplus_R Q$ is exact on all exact sequences of the form $0 \to A \to M \to C \to 0$.

Proposition 7. Let $M \in \text{mod-}R$ be a pseudoprojective module. Then a module RQ is M-flat if and only if it is $p_{\{M\}}M$-flat.

Proof: First of all, $p_{\{M\}}M$ is an idempotent cohereditary radical for M pseudoprojective. Further, Q is M-flat if and only if its character module Q^e_R is M-injective. Now Q^e_R is M-injective iff it is $(1,p_{\{M\}}2)$-injective. We have Q^e_R is $(1,p_{\{M\}}2)$-injective iff it is $(p_{\{M\}}2)$-injective since $p_{\{M\}}2$ is idempotent cohereditary. Finally Q^e_R is $(p_{\{M\}}2)$-injective iff RQ is $p_{\{M\}}2$-flat.

Now, if we apply Proposition 3, Theorem 5 and Corollary 6 to the $p_{\{M\}}M$-flatness with respect to a pseudoprojective module M, we obtain a characterization of M-flat modules and a characterization of rings for which a direct product of M-flat modules is M-flat.

Proposition 8. For a preradical r for R-mod let us de-
fine the following classes of modules

\(\mathcal{A}_r = \{ X \in \text{mod-} R; X \otimes_R T = 0 \text{ for each } T \in \mathcal{T}_r \} \),
\(\mathcal{B}_r = \{ X \in \text{mod-} R; X \otimes_R r(A) = 0 \text{ for each } A \in R\text{-mod} \} \),
\(\mathcal{C}_r = \{ X \in \text{mod-} R; X \otimes_R Y = 0 \text{ for each } A \in R\text{-mod and } Y \in r(A) \} \),
\(\mathcal{D}_r = \{ X \in \text{mod-} R; X \otimes_R r(P) = 0 \text{ for each projective } P \in R\text{-mod} \},
\(\mathcal{E}_r = \{ X \in \text{mod-} R; X \otimes_R Y = 0 \text{ for each projective } P \in R\text{-mod and } Y \in r(P) \} \).

It is easy to see that \(\mathcal{A}_r, \mathcal{B}_r, \mathcal{C}_r, \mathcal{D}_r \) and \(\mathcal{E}_r \) are torsion classes. Let us denote \(A_r, B_r, C_r, D_r \) and \(E_r \) idempotent radicals corresponding to them. Then

- \(\mathcal{A}_r = \mathcal{B}_r = \mathcal{D}_r = \mathcal{C}_r = \mathcal{E}_r = 0 \),
- \(\mathcal{A}_r = \mathcal{B}_r = \mathcal{E}_r = 0 \),
- \(\mathcal{A}_r = \mathcal{B}_r = \mathcal{D}_r = \mathcal{C}_r = 0 \),
- if \(h(r) \) is superhereditary then \(C_r \) is cohereditary,
- if \(h(ch(r)) \) is a superhereditary radical then \(E_r \) is cohereditary and \(E_r(R) = C_r(ch(r))(R) = (0; r(R))_L \).

Proof: Easy.

As consequences of Propositions 3, 5, 6 and 8 we obtain for \(h(r) \) superhereditary a characterization of \(C_r \)-flat modules and of rings for which a direct product of \(C_r \)-flat modules is \(C_r \)-flat.

References

[17] K. NISHIDA: Remarks on relatively flat modules, Hokkai-

Břehorská 137
16900 Praha 6
Czechoslovakia

(Oblatum 18.12. 1979)