Ivan Kolář
On the automorphisms of principal fibre bundles

Commentationes Mathematicae Universitatis Carolinae, Vol. 21 (1980), No. 2, 309--312

Persistent URL: http://dml.cz/dmlcz/105997

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz
ON THE AUTOMORPHISMS OF PRINCIPAL FIBRE BUNDLES
Ivan KOLÁŘ

Abstract: Using Palais-Terng theorem on natural bundles, we determine all smooth principal fibre bundles with the property that the group of all automorphisms can be expressed as a semi-direct product of a prescribed type.

Key words: Principal fibre bundle, natural bundle, jet, gauge transformation.

Classification: 58A20

This research was inspired by a discussion with Prof. A. Trautman and by his paper on gauge transformations [3].

Consider a principal fibre bundle \(\pi: P \to M \) with structure group \(G \). Let \(\text{Aut} P \) be the group of all automorphisms of \(P \). We have an exact sequence

\[
0 \to \text{Aut}_V P \to \text{Aut} P \to \text{Diff} M,
\]

where \(\text{Aut}_V P \) means the group of all vertical automorphisms of \(P \), [3]. An interesting problem is: under what conditions \(\text{Aut} P \) can be expressed as a semi-direct product of \(\text{Aut}_V P \) and \(\text{Diff} M \)? In general, given an exact sequence of groups

\[
0 \to A \to B \to C \to 0,
\]

\(B \) can be expressed as a semi-direct product of \(A \) and \(C \) iff there exists a splitting of (2). We shall determine all \(P \)
such that there is a splitting of (1) with the following "local" property. Denoting by LDiffM the pseudogroup of all local diffeomorphisms of M and by IAutP the pseudogroup of all local automorphisms of P, we shall assume that the splitting $\text{DiffM} \to \text{AutP}$ is the restriction of a splitting $S: \text{LDiffM} \to \text{IAutP}$ defined on the whole pseudogroup LDiffM.

Such a splitting S is a lifting functor on P in the sense of A. Nijenhuis [1], which endows P with the structure of a natural bundle. According to a recent theorem by R. S. Palais and C.L. Terng (and a related result by D.B.A. Epstein and W. Thurston) [2], any natural bundle has finite order. Given an r-th order natural bundle $E \to M$ with lifting functor F and an element $c \in M$, any element X of the group $L^r_c M$ of all invertible isotropic r-jets on M at c determines a diffeomorphism $FX: E_c \to E_c$. The assignment $X \mapsto FX$ is a smooth left action of $L^r_c M$ on E_c [2]. Conversely, given a smooth left action φ of the group $L^r_n = L^r_c \mathbb{R}^n$ on a manifold Q, $n = \dim M$, we can construct the associated fibre bundle $Q^r_M = (M, Q, L^r_n, H^r M)$, where $H^r M$ means the r-th order frame bundle of M. The bundle Q^r_M is natural with respect to the following lifting functor F. Any local diffeomorphism $f: U \to V$ on M is prolonged into a principal bundle isomorphism $H^r f: H^r U \to H^r V$ and we define $Ff: p^{-1}(U) \to p^{-1}(V)$ by $Ff(u, q) = (H^r f(u), q)$, where p denotes the bundle projection of Q^r_M.

In our case, S is a functor into the category of principal fibre bundles, so that $S_X: P_c \to P_c$ satisfies $S_X(ug) = (S_X(u))g$. If we fix an element $u \in P_c$, we obtain a map $S_u: L^r_c M \to G$ defined by
SX(u) = uS_uX.

As S(YX)(u) = SY(uS_uX) = u(S_uY)(S_uX), S_u is a group homomorphism. Conversely, let G be a Lie group and \(\varphi: \mathfrak{l}_n^G \to G \) an analytic homomorphism. Then \((X,g) \mapsto \mathcal{E}(X)g \) is a left action of \(\mathfrak{l}_n^G \) on G and we can construct the associated fibre bundle \(P = (M, G, \mathfrak{l}_n^G, H^M) \). Any element of P being an equivalence class of the equivalence relation \((u,g) \sim (uX, \mathcal{E}(X^{-1})g) \), \(u \in P \), \(g \in G \), \(X \in \mathfrak{l}_n^G \), we have a well-defined right action \(P \times G \to P \), \(((u,g), h) \mapsto (u, gh) \). One verifies directly that \(P(M, G) \) is a principal fibre bundle and the induced lifting functor \(S \) is a splitting \(S: \text{LDiff}^M \to \text{LAut}^P \). Thus, we have deduced

Theorem. If \(P \) is a principal fibre bundle such that there exists a splitting \(S: \text{LDiff}^M \to \text{LAut}^P \), then there is an integer \(r \) and an analytic homomorphism \(\varphi: \mathfrak{l}_n^r \to G \) such that \(P \) coincides with the corresponding bundle \((M, G, \mathfrak{l}_n^r, H^M) \) and \(S \) is constructed as above.

References

Matematický ústav ČSAV
Janáčkovo nám.2a, 66295 Brno
Československo

(Oblatum 27.11. 1979)