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FUNCTION LIPSCHITZIAN MAPPINGS ON CONVEX METRIC
SPACES
Mihai TURINICI

Abstract: A lipschitzianness test for closed mappings
acting on a (metrically) convex metric space, together with
an application to contractive semidynamical systems is given.
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Classification: Primary 54F05, 54C10
Secondary 54H20

- P —— - s = s =

0. Introduction. An important problem concerning a wide
class of mappings acting on certain subsets of a metric spa-
ce is that of finding sufficient conditions in order that a
"local" Lipschitz property (in a sense precised by an appro-
priate context) should imply a "global"™ one on that subset.

A first lot of results in this directiom begins with the 1977
Kirk-Ray ‘s lipschitzianness test [22] proved - in a normed
framework - by a "local" method, involving the transfinite
induction principle; later, in his 1978 paper, F.H. Clarke
f13] initiated a second lot of results of this kind giving -
in a metric framework - a differential lipschitzianmess test
based on Caristi’s fixed point theorem. The main results of

the present note belong to the first category of lipschitzi-
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anness tests quoted above: more exactly, our main aim is to
state and prove a "local" function lipschitzianness test for
a class of closed mappings acting on a convex subset of a
metrically convex metric space and taking values in a metri-
zable uniform space (extending in this way Kirk-Ray ‘s result
from a "functional” as well as a "metri able" point of view)
the basic instrument in proving such an extension being a
"sequential® maximality principle comparable with the classi-
cal Exeland-Brg#ndsted’s ones [17],[9]. As an application, a
function lipschitzianness test for a class of contractive
semidynamical systems is presented extendihg in this way a
similar Crandall-Pazy’s result [14] obtained by a direct met-

hod.

1. A "sequential” maximality principle. Concerning ma-
ximal elements in an abstract ordered set, a fundamental re-

sult obtained in this direction in the last few years is, un-
doubtedly, the so-called BreziafBrowder's ordering principle
[é] (see also I. Ekeland [18]). However, in case of a "se-
quential” type additional structure, the above result seenms
to be - technically speaking - somehow difficult to be direct-
1y applicable; at least in its original form. It is the first
objective of this section.to formulate a "sequential" variant
of Brezis-Browder’s orderiné principle; as a second oﬁjecti-
ve, a "sequential” maximality principle will be stated and
proved, extending in this way to metrizable uniform spaces
the classical Ekeland-Bréndsted’s contributions quoted in the
Introduction, a8 well as those of J. Caristi [12] and W.A.

Kirk [21].
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Let X be a given (nonempty) set and let 4 be an order-
ing on X (that is, a reflexive antisymmetric and transitive
relation on X). A sequence (xn;nG,N) in X is said to be in-
creasing iff xi.-’-_x‘j whenever 1< j,i,je N, and bounded above
iff x,%Y, all neN, for some y € X; also, a function f:X — R
will be termed decreasing iff x4y implies f(x)= f(y), and
bounded below iff f(x)= b, all x€ X, for some be R, Our main

intention is now to establish the following "sequential" or-

dering principle on the abstract ordered set (X,%£).

Theorem 1. Under the above conventions, suppose the or-
dering £ on X and the denumerable family (fi;ié N) of func-
tions from X into R are such that

(i) any increasing sequence in X is bounded above, .

(ii) fi is monotone decreasing and bounded below for

any i€eN,

Then, for every xe X there is an element g€ X with x<£z2
and, moreover, for any y€ X with z<y we have fi(z) = £;(y),
all ieN,

Proof. Let xe X be given. By the classical Brezis-Brow-
der ‘s ordering principle, there is an element xnZx such that
ye X and x; y imply f;(x;) = f;(y); furthermore, given x;& X
there is, by the same ordering principle, an element X,z x
with the property y€X and x,<y imply f,(x;) = £,(y), and so
on. By induction, we get an increasing sequence (xn;n €eN) in X
satisfying
(1) neN, yeX and x £y imply £ (x,) = £, (y).

By (i), an element z ¢ X may be found with x < z, all neN,
We claim z is our desired element. Indeed, by the choice of

our sequence, we evidently have x<z. Now, suppose ycX is
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such that z<y then, clesrly, X,4y all neK, and this gi-
ves, by (1), f (x) = £ (z) = f,(y), all ne€ N, completing
the proof. Q.E.D.

Let X be an abstract (nonempty) set and let D = (di; ie
€N) be a denumerable and sufficient family of semimetrics
on X (that is, 4;(x,y) = O for all ie N imply x = y). In
this case, by a well-known construction, (X,D) appears as a
metrizable uniform space. A sequence (xn;neN) in X is said
D

—— x) iff it di -

to D - converge to x X (and we write X

converges to x for any ieN, and a D - Cauchy sequence iff
it is a d; - Cauchy sequence for any ie N. Also, a functiom
f:X— R is called d; - lower semicontinuous iff it is lower
semicontinuous as a function from (X,di) into R (here ie N
is an arbitrary fixed element). Finally, X’ being another ab-
stract (nonempty) set and D’ = (dj'_;ie N) a denumerable and
sufficient family of semimetrics on X', a mapping T:X —> X*
will be termed closed iff for any sequence (x ;ne N) in X and
any couple xeX, x e X* with xn——l—)—>x and Txn—-p—;x' as n —
—> 00 we have Tx = x’. Suppose in what follows (X,D) and
(X°,D°) defined as above are complete metrizable uniform spa-
ces (that is, every D (D) - Cauchy sequence in X (X°) is a
D (D’) - convergent one) and let T be a closed mapping from X
into X’. In such a situation, as an important application of
Theorem 1, the following "sequential" maximality principle

may be formulated.

Theorem 2. Suppose the denumerable families ( pjjie N)

and ( ¥;;ieN) of functions from X into R are such that
(iii) @, and yy are d; - lower semicontinuous and

bounded below, for any ie N,
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Then, for any x € X there is_ an element z € X such that the fol-
lowing conclusions hold

(a) a5(x,2) £ @5(x) - P4(z), a{(Tx,Tz) 293 (x) - y(z),
all ieN

(b) for every ye X, y+2z, either d,(z,y) > ¢;(z) -
- @;(y) or d{(Tz,Iy) > y;(z) = ¥;(y) for some element ic N,

Proof. Let us define an ordering &« on X by
(2) x££y iff d;(x,y) £ ¢;(x) - @;(y) and d{(Tx,'Iy)éqri(x) -
- '(y‘i(y), all ieNo

Firstly, ¢; and vy are decreasing and, by hypothesis,
bounded below, for any ic N, proving (ii) holds. Secondly, let
(x,sn €N) be an increasing sequence in X, that is,

(3 a;xp,xy) £y (x) - @5 (x), a (Tx, Txp) £ 75 (x,) -

- v;(xy), all ieN, all n,meN, n<m,

It immediately follows ( @;(x,);neN) and (v;(x, );neN)
are decreasing sequences in R hence (by the second part of
(iii)) Cauchy sequences in R, for every i< N so that, by (3),
(xpsneN) and (Tx ;nc N) are D (D°) - Cauchy sequences in X
(X°). By completeness hypothesis, x_ D, x ana 'l‘xn——D; x’ as
n—> oo for some xeX, x’€ X° and this gives (by closedness
hypothesis) Tx = x’ that is, Txn._D; Tx as n —> 0o .« In such
a case, tsking the limit as m —> co in (3) and remembering
that first part of (iii) we get the evaluations

d; (x,x) 2 5 (x)) = @, (x), d°(Tx,,Tx) £ ?fri(’ﬁlz - ¥ (x),

all ie N, all ne N
that is, x,4x, all neN, proving {i) holds, too. Consequent-
ly, Theorem 1 applies and this completes the proof. Q.E.D.

As an immediate application of Theorem 2, the following

D3
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fixed point result on this class of metrizable uniform struc-

tures may be given.

Theorem 3. Under the same conditions of Theorem 2, sup-
pose the mapping U:X — X is such that
(4) 4;(x,Ux) £ @;(x) - g, (Ux), 45 (Tx,TUx) £ ¥ (x) -

- ¥;(Ux), all ieN
then, for any xe¢ X there is an element z € X such that conclt
sions (a) + (b) of Theorem 2 hold and, in addition, z = Uz
(z is a fixed point of U).

Proof. Let x€ X be arbitrary fixed and let z € X be the
element indicated by Theorem 2. By (4), z<Uz so that (taking
into account (b)), we necessarily have z = Uz and this ends
the proof. Q.E.D.

As a particular case of our considerations, suppose the
denumerable and sufficient families D and D’ reduce to a sing-
le element (respectively, a single metric on X and X°) then,
Theorem 2 reduces t;o the author’s result [26] while Theorem 3
to the Downing-Kirk s result [16] (see also D. Downing [15]).
Moreover, in case X = X, T = I (the idemtity) and =y,
from the correSponding varjants of Theorem 2 and Theorem 3 we
get Ekeland-Brgndsted’s results quoted above (see also [18],
[10) as well as J.P. Aubin and J. Siegel [2], E. Bishop aml
R.R. Phelps [6], M. Turinici [24], J.D. Weston [27]) anl res-
pectively,. Caristi-Kirk-Browder ‘s onee [121,[21),[11] (see
also S.A. Husain and V.M. Sehgal [19], S. Kasahara [20], J.
Siegel [23]1, M. Turinici [25], C.S. Wong [28]). A number of
extensions to (non-metrizable) uniform ‘spacea of the above

t

theorems will be given in a forthcoming paper.

- 294 -



2, The main results. Let (X,d) be a given metric space.

For every x,yec X, let [x,y] denote the metric segment between
x and y (the subset of all z¢ X with d(x,z) + d(z,y) = a(x,y))
and put also Jx,y) = [x,yI\{x3}, Ix,y[ = [x,y]\i{x,y}. Evident-
ly, every segment is a nonempty bounded and closed subset of
X; moreover, for every arbitrary fixed k,yex and every z €

¢ [x,y] we have the inclusion [x,zlclx,y], [z,ylc[x,y] (see,
e.g., W.A. Kirk [21] for more details). A (nonempty) subset

Y of X is said to be (metrically) convex iff for every x,yc ¥,
the segment [ x,y] is contained in Y, Also, the ambient metrie
space (X,d) will be termed (metrically) convex in Menger ‘s
sense [7, ch, I] iff for any distinct x,y e X, Jx,y[ is not
empty.

In what follows, (X,d) is a complete (metrically) convex
metric space,' Y a (nonempty) convex subset of X, (x’,D°) a
(sequentially) complete metrizable uniform space defined as
in the preceding section apd F = (fi;ieN) a denumerable fami-
1y of functions from R, into itself. A mapping T:f~—> X’ is
said to be directionally clos=d iff for any couple x,yeY, the
restriction T/[x,y] is a closed mapping from ([x,y],d) into
(X°,D"). In the same context, T will be termed directionally
F - lipschitzian iff for any distinct x,y€ Y there is an ele-
ment uelx,y) satisfying d;(Tx,Tu)< f;(d(x,u)), all ieN, and
globally F - lipschitzian iff 4;(Tx,Ty) £ f;(d(x,y)), all icN,
all x,ye Y. Finally, a function f:R ,—> R,_ is said to be su-
per-additive iff f(t+s) = f(t)+f(s) for all t,scR,.

From the above definitions it trivially follows that eve-
ry globally F - lipschitzian mapping is also directionally
F - lipschitzian but the converse is not in gene_ral true so
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that, it is justified to look for an answer to the following
question: under what (supplementary) conditions does a di-
rectionally F - lipschitzian mapping become a globally F -
lipschitzian one? In this direction, the main result of the

present note is

Theorem 4. Let (X,d), (X’,D°) and Y be as before and
suppose the mapping T:Y —> X’ and the family F = (£i51€N)
of functions from R_ into itself are such that

(iv) T is directionally F - lipschitzian

(v) T is directionally closed

(vi) £, is super-additive and lower semicontinuous, for
every ieN,
Then, necessarily, T is globally F - lipschitzian (on Y).

Proof. Let x,ye Y, x4y be arbitrary. Define a denume-
rable family of functions ¢:X—> R, and y;:X—>R_ (ieN)
by the convention
(5) $(u) = d(u,y), v;(u) = f;(d(u,y)), (ieN), ueX -
Firstly, by the second part of (vi), ¢ is continuous and %3
lower semicontinuous for any i€ N and the same conclusion is
valid for the restrictions ¢ /[x,yl and v;/[x,y] (ie€N). Se-
condly, by (v), the restriction T/[x,y] (denoted also by T in
what follows) is a closed mapping from [x,y] into X'. This
shows that ’fheorem 2 mpplies (with (X,D) replaced by ([x,y],d))
so that, for xe[x,y] there is an element z c[x,y] satisfying
conclusions

(a)” d(x,z) £¢@(x) - @(z) and 4 (Tx,Tz2) £ y; (x) -
- v¥;(z), all ieN

(®)" for every uelx,yl, u+z, either d(z,u) > ¢(z) -
- @) or a{(T2z,Tv) > ¥;(z) - y;(u), for some ié N,
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Suppose z+y. For every uelz,ylc[x,yl, the first relation
of the conclusion (b)”

a(z,u) > @(z) - @(u) = dlz,y) - dlu,y) = d(z,u)
is impossible, so we must have (taking also into account the
first part of (vi))

4 (Tz,Tu) > yy(z) - y;(u) = £5(d(z,y)) - £5(dlu,y)) 2

£i(a(z,y) - alu,y)) = fi(d(z,u)) for some ie N ‘

which is also impossible, because of (iv). Consequently, z =
= y and then, by the conclusion (a)’,

A (Tx,Ty) £ ¥ (x) - y;(y) = £i(a(x,y)), all ie N
and since x,y ¢ Y were arbitrary, our proof is complete. Q.E.D.

Concerning condition (vi) of the main result, it should
be noted that an important example of functions from R, into
itself satisfying that condition is offered by the choice
(6) f(t) =k t¥, teR,
k20 and r>1 being arbitrary fixed elements. In the same ti-
me, concerning condition (v), it is almost evident that it is
automatically fulfilled by any mapping T from Y into X° clo~
sed in Altman’s sense [1] (that is, for any sequence (xn; ne
€N) in Y and any couple xe X, x ¢ X'with X, 9. and
Txn-——D; x" as n—> 00 we have xeY and Tx = x’). Finally, let
(X,d),(X",D") and Y be as before and let K = (k;3i€N) be a
denumerable family of positive numbers. By convention, a map-
ping T:Y¥ —> X* will be termed directionally (globally) K -
lipschitzian iff it is directionally (globally) F - lipschi-
tzian, F being the denumeratble family (fi;i.sN) of functions
from R, into itself defined by: for any ieN, fi is that ex-
pressed by (6) with r =1 and k = k;j. In such a case, as a

direct consequence of the main result, the following (ordi-
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nary) lipschitzianness test on (metrically) convex metric spa

ces may be formulated.

Theorem 5. Under the same general conventions, suppose
the mapping T:Y —> X° is directionally K - lipschitzian in th
above sense and closed in Altman’s sense. Then, necessarily,
T is globally K - lipschitzian (on Y).

It should be noted that in case D” reduces to a single
element (a single metric d° on X°) the above theorem reduces
in fact to Kirk-Ray ‘s result quoted in the Introduction ( ses
also the author ‘s paper [24] a3 well as S.A. Husain and V.M.

Sehgal [19]).

3. Applications to semidynamical systems. Let (X,D) be

& given complete metprizable uniform space and let Q.= (oi;
i€ N) be a denumerable family of real numbers. By an .O.-coﬁ-
tractive semidynamical system on X we mean a mapping (t,x)\—
F— S(t,x) = S(t)x from R <X into X satisfying

(vii) S(0)x = x for all xeX

(viii) S(t+s)x = S(t)S(s)x, all t,s €R,, all xeX

(ix) d; (S(t)x,S(t)y < (exp (e@5;t)) 4;(x,y), for all
teR,, x,yeY and i€N,
(Of course, the notion of contractive semidynamical system mg
be compared with that of semidynamical system in Bajaj’s sen-
se [3] (see also N.P. Bhatia and G.P. Szegd [5, ch. I1J) or,
equivalently; with that of contractive semigroup in Brezis-
Browder ‘s sense [ 8]). An important problem concerning this
class of semidynamical systems is that regarding (function)

Lipschitz properties with respect to the temporal variable.
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In order to give an efficient answer in this direction, suppo-~
se the considered fl-contractive semidynamical system S on X
satisfies the following closedness property at every point
xeX

(x) for any sequence (t ;ncN) in R, and any couple

teR, yeXwith t — t and S(tn)'x—-—n—>y as n —» @ we have

»

S(t)x = y
and let the denumerable family of functions from R, into it-

self F = (f;;ie N) be such that condition (vi) of the prece-
ding section holds. Denote by X(S,F) the subset of all xe X
satisfying

for any e > O there is a number O <o < & such

that di(x,S(of')x)—éfi(d"), all ie N

(xi)

and, for the sake of simplicity denote also
n (3(t) = max (exp {cw;t),1), teR,, ieN

In such a case, let xec X(S,F) and a>0 be ;;rbitrary fixed.
Given two positive numbers s,te R, with O£8<t<a, there is,
by (xi), a positive o< t-s such that 4, (x,S ()x) £ fi(of'),

all i¢ N so (denoting r = 8 +J°), we get by (viii) + (ix) and’

the notation (7), the evaluation
d; (s(8)x,S(r)x) £ (exp (@;8))d;(x,5(07)x) £ B, (s)£;(J )<
£ ﬁi(a)fi(cf) = ﬁi(a)fi(r—s), al}L ieN
proving the mapping t +— S(t)x is directionally G - lipschitz-
ian on the interval [0,al], the denumerable family of functions
from R, into itself G = (g;;ieN) being defined by the conven-
tion g; = [Ji(a)fi, all i€ N, Consequently, the main result
applies (with X = R, Y = [0,a] and X’ = the ambient metriz-
able uniform space of the considered semidynamical system) 8o

that we proved
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Theorem 6. Under the conventions stated above, for any
x € X(S,F) and any a>0, the mapping t — S(t)x is necessarily
globally G - lipschitzian on [0,a] that is,

d; (5(t)x,S(s)x) < 3;(a)f;(t-8), O<8<t £a, icN.

An important particularization of the above theorem cor-
responds to the case when D reduces to a single metric 4 on
X (and, correspondingly, L reduces to a single real number
@ ). In such a case, let us denote
(8) L(x) = ljt'&ojj,nf (1/t) a(x,s(t)x), xeX
and let the function h:R,—> R, be defined by
(9)  h(t)

(1/w )(exp (wt) - 1), teR, w+ 0

=t sy teR, ©=0
Kow, X(S) denoting the subset of all points xeX with
L(x)<+ o , it is a simple matter to verify condition (x)
will be satisfied by any mapping f = Mh, M>L(x) being arbit-
rary fixed, in which case, as an important consequence of

Theorem 6 we have

Theorem 7. Under the particular cases expressed above,
for any xe X(S) and any a>0, the mapping t — S(t)x is ne-
cessarily globally R(a)L(x)h - lipschitzian on [0,a] that
is,

d(S(t}x,S(s)x 4 3(a)L(x) h(t-8), 02844t <a,

It should be noted that the above result proved - in ca-
se of a Banach space - by M.G, Crandall and A. Pazy [14] (see
also V. Barbu [ 4, ch, III]) has a number of important appli-
cations to nonlinear contraction semigroups theory; we refer
especially to the above quoted Barbu’s work for more details

and concrete discussions.
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