Pavel Drábek
Existence and multiplicity results for nonlinear noncoercive equations

Commentationes Mathematicae Universitatis Carolinae, Vol. 22 (1981), No. 3, 635--636

Persistent URL: http://dml.cz/dmlcz/106105

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz
ANNOUNCEMENTS OF NEW RESULTS

VARIETIES OF SUBREGULAR ALGEBRAS ARE DEFINABLE BY A MAL'CEV CONDITION

Jaromír Duda (616 00 Brno 16, Kroftova 21, Československo), received 28.4. 1981

In [1], J. Timm introduced the concept of subregular algebra as follows: An algebra \mathcal{A} is called subregular if any congruence Θ on \mathcal{A} is uniquely determined by its classes $[b]_{\Theta}$, $b \in \mathcal{A}$, for every subalgebra \mathcal{B} of \mathcal{A}.

Theorem. For any variety V, the following conditions are equivalent:

1. Every algebra $\mathcal{A} \in V$ is subregular;
2. There exist unary polynomials u_1, \ldots, u_n, ternary polynomials p_1, \ldots, p_n and 4-ary polynomials s_1, \ldots, s_n such that

 \[x = s_1(x,y,z,u_1(z)) \]

 \[s_i(x,y,z,p_i(x,y,z)) = s_{i+1}(x,y,z,u_{i+1}(z)) \text{ for } 1 \leq i < n \]

 \[y = s_n(x,y,z,p_n(x,y,z)) \]

 \[u_i(z) = p_i(x,x,z) \text{ for } 1 \leq i \leq n; \]
3. There exist unary polynomials u_1, \ldots, u_n and ternary polynomials p_1, \ldots, p_n such that

 \[(u_i(z) = p_i(x,y,z), 1 \leq i \leq n) \iff x = y. \]

References

EXISTENCE AND MULTIPLICITY RESULTS FOR NONLINEAR NONCOERCIVE EQUATIONS

Pavel Drábek (Katedra matematiky VŠSE, Nejedlého sady 14, 306 14 Plzeň), received 13.5. 1981

We assume that $L:D(L) \subset L^2(\Omega) \to L^2(\Omega)$ is linear self-adjoint operator with dense domain $D(L)$ and closed range $R(L)$. Let 0 be an eigenvalue of L and let for the corresponding eigenspace $\dim N(L) < + \infty$; $L^2(\Omega) = N(L) \oplus R(L)$. We assume that the functions in $N(L)$ satisfy the "unique continuation property" (i.e. the only function $w \in N(L)$ which is vanishing on
Let \(K : \mathbb{R}(L) \to \mathbb{R}(L) \) (the right inverse of \(L \)) be compact.

Let \(G : \mathbb{L}^2(\Omega) \to \mathbb{L}^2(\Omega) \) be the Nemytskii operator associated with \(g \) (i.e. \(G(u)(x) = g(u(x)), \ x \in \Omega \)), where \(g : \mathbb{R} \to \mathbb{R} \) is a continuous odd bounded function with continuous derivative \(g' \) on \(\mathbb{R} \), \(c = \| K \| \sup_{z \in \mathbb{R}} g'(z) < 1 \) and \(\int_0^{+\infty} |g(z)|dz < +\infty \).

Theorem. For \(f_2 \in \mathbb{R}(L) \) either

(i) for each \(w \in \mathbb{N}(L) \) there exists precisely one \(v(w) \in \mathbb{R}(L) \) such that \(u = w + v(w) \) is solution of the equation \(Lu + G(u) = f_2 \) and there is no solution of \(Lu + G(u) = f \) with \(f = f_1 + f_2 \), \(f_1 \in \mathbb{N}(L), f_1 \neq 0 \); or

(ii) the equation \(Lu + G(u) = f_2 \) has at least one solution and there is a real number \(T(f_2) > 0 \) such that the equation \(Lu + G(u) = f_1 + f_2 \) has at least two distinct solutions if \(0 < \| f_1 \| < T(f_2) \).

In distinction from the previous papers dealing with such a type of nonlinearity we assume nothing about the limits

\[
\gamma(s) = \lim_{x \to +\infty} \inf_{\beta \in \{a, b\}} \lambda^\beta(s).
\]

The functions \(g(s) = ae^{s^2} \) and \(g(s) = \sin(s)e^{-s^2} \) can be given as an example.