Antonín Sochor; Petr Vopěnka
Ultrafilters of sets

Commentationes Mathematicae Universitatis Carolinae, Vol. 22 (1981), No. 4, 689--699

Persistent URL: http://dml.cz/dmlcz/106111

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz
ULTRAFILTERS OF SETS
A. SOCHOR, P. VOPÉNKA

Abstract: In the Alternative Set Theory we shall study ultrafilters of sets defining the following two characteristics of an ultrafilter \(\mathcal{U} \):
\[
\forall p \in \mathcal{U} \Rightarrow p \supseteq \mathcal{U} + \emptyset \quad \text{and} \quad \forall (\forall x \in \mathcal{U}) \rightarrow \neg x \triangleleft \alpha.
\]
For any two cuts we discuss the existence of an ultrafilter such that its characteristics equal to given cuts.

Key words: Alternative Set Theory, ultrafilter, set-theoretically definable class, \(\omega \)-complete ultrafilter.

Classification: 03E70, 03H99

In AST, we are going to deal with ultrafilters on the system of all set-theoretically definable classes (cf. ch. II [V]; this system is denoted by the symbol \(S_d \)). In the paper we restrict ourselves to ultrafilters containing a set. The theory of such ultrafilters essentially differs from the corresponding theory in \(ZF \); in particular in AST we are able to construct on arbitrary infinite set ultrafilters which are "measures" (and moreover we can deal with additional properties which on one hand distinguish ultrafilters in AST and which on the other hand are equivalent in \(ZF \)).

For every set \(x \) there is exactly one natural number \(\alpha \) such that there is a one-one mapping of \(x \) onto \(\alpha \) which...
is a set (in symbols \(x \sim \sim \omega \)). We shall investigate the following two cuts which naturally characterise an ultrafilter \(\mathcal{N} \):

\[
\mu(\mathcal{N}) = \{ \omega ; (\forall p)((p \subseteq \omega \land p \in \mathcal{N}) \rightarrow p \land \mathcal{N} \neq 0)\}; \\
\nu(\mathcal{N}) = \{ \omega ; (\forall x \in \mathcal{N}) - x \subseteq \omega \}
\]

and we are going to show necessary and sufficient conditions for cuts \(R \) and \(S \) such that there is an ultrafilter \(\mathcal{M} \) with \(\mu(\mathcal{M}) = R \land \nu(\mathcal{M}) = S \). (Let us remind that in ZF if \(\mathcal{M} \) is an ultrafilter which is a measure on a measurable cardinal \(\omega \) then both corresponding characteristics equal to \(\omega \).)

If \(\mathcal{N} \) is a nontrivial ultrafilter on \(3d \) containing a set then the routine calculation gives us the equalities

\[
\mu(\mathcal{N}) = \{ \omega ; (\forall p)((p \subseteq \omega \land p \in \mathcal{N} \& "p is pairwise disjoint") \rightarrow p \land \mathcal{N} \neq 0)\} = \{ \omega ; (\forall f)((\text{dom}(f) \subseteq \omega \& \text{rng}(f) \subseteq \mathcal{N}) \rightarrow \cap \text{rng}(f) \in \mathcal{N})\} = \{ \omega ; (\forall f)((\text{dom}(f) \subseteq \omega \& \text{rng}(f) \subseteq \mathcal{N}) \rightarrow \cap \text{rng}(f) \in 0\}.
\]

In fact, defining for every \(p \) with \(\cup p \in \mathcal{N} \) and every \(g \) which is a one-one mapping of \(p \) into \(\omega \) the function \(f(x) = \cup p - g^{-1}(\gamma) \) we get \(\text{dom}(f) \subseteq \omega \& (p \land \mathcal{N} = 0 \equiv \text{rng}(f) \subseteq \mathcal{N}) \land \cap \text{rng}(f) = 0 \) and defining furthermore for every \(f \) with \(\text{dom}(f) \subseteq \omega \& \text{rng}(f) \subseteq \mathcal{N} \) the partition \(p = \{ \cap \text{rng}(f)\} \cup \{ \cap \{ f(\beta) \mid \beta \in \gamma \} - f(\gamma) ; 0 \in \gamma \in \omega \} \) we get \(\cup p = f(0) \in \mathcal{N} \& p \subseteq \omega \& "p is pairwise disjoint" \land (p \land \mathcal{N} \neq 0 \equiv \cap \text{rng}(f) \in \mathcal{N}) \).

Let us recall that a nontrivial ultrafilter \(\mathcal{M} \) containing a set is called \(\omega \)-complete iff for every sequence \(\{ u_n \} \in \mathcal{M} \) there is \(u \in \mathcal{M} \) with \(u \subseteq \cap \{ u_n \mid n \in \mathbb{N} \} \). Furthermore \(X \) is a \(\pi \)-class (\(\sigma \)-class respectively) iff there is a
sequence \(\{ \mathbf{x}_n \mid n \in \mathbb{N} \} \subseteq S d \mathbf{v} \) with \(X = \bigcap \{ \mathbf{x}_n \mid n \in \mathbb{N} \} \) \((X = \bigcup \{ \mathbf{x}_n \mid n \in \mathbb{N} \} \text{ respectively}) \). We are going to write \(\mathbf{x} \not\prec X \) iff there is a set-function of \(\mathbf{x} \) into \(X \) and the symbol \(\mathbf{x} \not\prec X \) denotes \(\neg \mathbf{x} \not\prec X \). Evidently, if \(X \) is a cut then \(\mathbf{x} \not\prec X \) iff \((\exists \alpha \in X) \mathbf{x} \not\prec \alpha \).

Theorem. If \(\mathcal{M} \) is a nontrivial ultrafilter on \(S d \mathbf{v} \) containing a set then

(a) \(\alpha, \beta \in \mu(\mathcal{M}) \rightarrow \alpha \cap \beta \in \mu(\mathcal{M}) \)

(b) \((\alpha \in \mu(\mathcal{M}) \& \beta \in \nu(\mathcal{M})) \rightarrow \alpha \cap \beta \in \nu(\mathcal{M}) \)

(c) \(\mathbb{N} \subseteq \mu(\mathcal{M}) \subseteq \nu(\mathcal{M}) \subset \mathbb{N} \)

(d) if \(\nu(\mathcal{M}) \) is a \(\sigma \)-class then \(\mathcal{M} \) is not \(\omega \)-complete

(e) if \(\mathcal{M} \) is not \(\omega \)-complete then \(\mu(\mathcal{M}) = \mathbb{N} \)

Proof. (a) If \(\alpha, \beta \in \mu(\mathcal{M}) \) and if \(\bigcup \{ u_{\gamma} \mid \gamma \in \alpha \} \vdash \beta \) \& \(\beta \in \mu(\mathcal{M}) \) then there is \(\gamma_0 \in \beta \) such that \(\bigcup \{ u_{\gamma}; \gamma \in \alpha \} \not\vdash \gamma_0 \in \mathcal{M} \) and thus there is \(\beta_0 \in \alpha \) with \(u_{\beta_0} \vdash \gamma_0 \in \mathcal{M} \).

(b) If \(\mathbf{x} \not\prec \alpha \cap \beta \) \& \(\alpha \in \nu(\mathcal{M}) \& \beta \in \nu(\mathcal{M}) \) then there is a sequence \(\{ u_{\gamma}; \gamma \in \alpha \} \) such that \(u_{\gamma} \not\prec \beta \) for every \(\gamma \in \alpha \) and such that \(\bigcup \{ u_{\gamma}; \gamma \in \alpha \} = u. \) Supposing \(u \in \mathcal{M} \) we can choose \(\gamma_0 \in \alpha \) with \(u_{\gamma_0} \in \mathcal{M} \) which contradicts \(u_{\gamma_0} \not\prec \beta \in \mathcal{M} \).

(c) Since \(\mathcal{M} \) is an ultrafilter, we have \(2 \in \mu(\mathcal{M}) \) and thence using (a) we get \(\mathbb{N} \subseteq \mu(\mathcal{M}) \). If \(u \in \mathcal{M} \& u \not\prec \alpha \) \& \(\alpha \in \mu(\mathcal{M}) \) then \(\{ \{x\}; x \in u \} \not\prec \alpha \) \& \(\bigcup \{ x\}; x \in u \} \not\prec \mathcal{M} \) and therefore \(\mathcal{M} \) would be trivial. Since \(\mathcal{M} \) contains a set, we have \(\nu(\mathcal{M}) \subset \mathbb{N} \).

(d) Assuming that \(\nu(\mathcal{M}) \) is a \(\sigma \)-class we can construct a sequence \(\{ \alpha_n \}; n \in \mathbb{N} \} \in \mathcal{M} \) so that \(\bigcap \{ \alpha_n; n \in \mathbb{N} \} = \nu(\mathcal{M}) \). Thus there is a sequence \(\{ u_n ; n \in \mathbb{N} \} \subseteq \mathcal{M} \) such that \(u_n \not\prec \alpha_n \).
for every \(n \in \mathcal{N} \). Moreover if \(u \in \bigcap \{ u_n; n \in \mathcal{N} \} \) then
\[
\bigcup_n u_n \supseteq u \quad \text{and therefore} \quad u \notin \mathcal{M} \quad ; \text{we have proved that} \quad \mathcal{M} \text{ is not } \omega \text{-complete.}
\]

(e) Let us assume that \(\mu(\mathcal{M}) = \mathcal{N} \) and that a sequence \(\{ u_n; n \in \mathcal{N} \} \subseteq \mathcal{M} \) is given. Put \(P = \bigcap \{ u_n; n \in \mathcal{N} \} - u_{n+1} \) \(n \in \mathcal{N} \). By the prolongation axiom there is a pairwise disjoint set \(p \) so that \(P \subseteq p \cup \mathcal{M} = u_0 \in \mathcal{M} \) and \(p \supseteq \mu(\mathcal{M}) \). Thus there is \(u \in p \cap \mathcal{M} \) and evidently \(u \in \bigcap \{ u_n; n \in \mathcal{N} \} \), thus \(\mathcal{M} \) is \(\omega \)-complete.

Using the inequality \(\alpha + \beta \leq 2 \max(\alpha, \beta) \) we get the following result.

Consequence. If \(\mathcal{M} \) is a nontrivial ultrafilter on \(\mathcal{S}_d \) containing a set then the cuts \(\mu(\mathcal{M}) \) and \(\nu(\mathcal{M}) \) are closed w.r.t. +.

We are going to show that for every cuts \(R \subseteq S \subseteq \mathcal{N} \) there are ultrafilters \(\mathcal{M}, \mathcal{M}' \) such that \(\mu(\mathcal{M}) = \mu(\mathcal{M}') = R \) and \(\nu(\mathcal{M}) = \nu(\mathcal{M}') = S \) and \(\mathcal{M} \) is \(\omega \)-complete and \(\mathcal{M}' \) is not \(\omega \)-complete under the assumption that the existence of such ultrafilters is not excluded by the first theorem of the article. In particular let us note that if \(S \) is a \(\sigma \)-class then for every ultrafilter on \(\mathcal{S}_d \) containing a set we have \(\mu(\mathcal{M}) = \mathcal{N} \) and \(\mathcal{M} \) cannot be \(\omega \)-complete and therefore the following theorem solves this case fully.

Theorem. If a proper semiset \(S \) is a cut which is closed w.r.t. + then there is a nontrivial ultrafilter \(\mathcal{M} \) on \(\mathcal{S}_d \) which is not \(\omega \)-complete and such that \(\nu(\mathcal{M}) = S \).

Proof. Put \(\mathcal{M} = \{ \alpha - x; \alpha \in S \} \supseteq \mathcal{S}_d \). Supposing \(\beta \not\supseteq \alpha \neq x \supseteq \mathcal{S}_d \). Supposing \(\beta \supseteq \alpha \neq x \supseteq \mathcal{S}_d \), we get \((\alpha - x) \cap (\beta - y) = \alpha - (x \cup y) \).
and \(x \cup y \supset S \). Therefore we are able to choose an ultrafilter \(\mathcal{M} \) on \(S_d \) such that \(\mathcal{M} \subseteq \mathcal{M} \). If \(x \supset S \) then for every \(\alpha \notin S \) we have \(\alpha - x \in \mathcal{M} \) and hence \(x \notin \mathcal{M} \), from which the inclusion \(S \subseteq \nu(\mathcal{M}) \) follows. The converse inclusion is a trivial consequence of the formula \(\alpha \notin S \rightarrow \alpha \in \mathcal{M} \).

If \(S \) is a \(\mathfrak{c} \)-class then there is no \(\omega \)-complete ultrafilter \(\mathcal{M} \) on \(S_d \) with \(\nu(\mathcal{M}) = S \) and hence we can assume up to the end of the proof that \(S \) is no \(\mathfrak{c} \)-class. Let \(\mathcal{M}_0 \) be a nontrivial ultrafilter on \(S_d \) with \(\nu(\mathcal{M}_0) = S \) and let \(\mathcal{M}_1 \) be an ultrafilter on \(S_d \) such that \(\mathcal{M}_1 \supseteq \{ \alpha - x; \alpha \notin \mathfrak{F} \} \times \{ x \supset S \} \), moreover, we can assume \(\mathfrak{F} \rightarrow \mathfrak{F} \in \mathcal{M}_0 \). We put

\[
\mathcal{M} = \{ U \in S_d \mid (\exists \alpha \in \mathfrak{F} \cap \mathfrak{F})(\forall n \in (\mathfrak{F} \cap \mathfrak{F}))(U \cap \{ n \} \in \mathcal{M}_0) \}
\]

(cf. the definition of product of ultrafilters in \(\mathfrak{F} \)). For every \(U, W \in S_d \) we have \(\{ n; (U \cap W)^n \{ n \} \in \mathcal{M}_0 \} = \{ n; U^n \cap W^n \in \mathcal{M}_0 \} \) and hence \(U, W \in \mathcal{M} \equiv (U \cap W) \in \mathcal{M} \). According to the prolongation axiom for every \(U \in S_d \) the are \(u_1, u_2 \) such that \((u_1 \cup u_2) \in \mathcal{M}_1 \wedge u_1 \cap u_2 = \emptyset \wedge \{ n \} \in \mathcal{M}_0 \subseteq u_1 \sqcap \{ n \} \in \mathcal{M}_0 \subseteq u_2 \).

Since \(U \in \mathcal{M} \equiv u_1 \in \mathcal{M}_1 \) we get \(U \in \mathcal{M} \equiv (-U) \notin \mathcal{M} \). Thus we have proved that \(\mathcal{M} \) is an ultrafilter on \(S_d \).

Let \(\alpha \notin \mathfrak{F} \times \mathfrak{F} \notin S \). For every \(n \in \mathfrak{F} \) we put \(u_n = (\mathfrak{F} \times (\alpha - n)) \), thus \(u_n \) is an element of \(\mathcal{M} \) for every \(n \in \mathfrak{F} \), of course, and if \(u \in \mathfrak{F} \) then there is \(\beta \notin \mathfrak{F} \) so that \(u \wedge (\mathfrak{F} \times \beta) = \emptyset \), from which \(u \notin \mathcal{M} \) follows. We have shown that \(\mathcal{M} \) is not \(\omega \)-complete.

If \(u \not\supset S \) then for every \(n \in \mathfrak{F} \) we have \(\{ n \} \not\supset S \) and hence \(\{ n \} \notin \mathcal{M}_0 \) and as a consequence we obtain \(u \notin \mathcal{M} \). Thus we have got the inclusion \(S \subseteq \nu(\mathcal{M}) \). If \(\mathfrak{F} \notin S \) then
for every \(n \in \mathbb{N} \) there is \(\gamma_n \models S \) such that \(\gamma_n \cdot n < \sigma^\prime \) (because \(S \) is closed w.r.t. \(+ \)) and moreover since we assume that \(S \) is no \(\gamma \)-class we are able to choose \(\gamma \models S \) and \(\beta \models \mathbb{N} \) so that \(\gamma \cdot \beta < \sigma^\prime \). Evidently \(\gamma \cdot \beta \models \mathbb{N} \) and \(\gamma \cdot \beta \leq \sigma \) from which \(\sigma \models \forall (\mathbb{N}) \) follows. Thus we have shown \(\forall (\mathbb{N}) \leq S \) which completes the proof.

The class \(\Omega \) of ordinal numbers was defined in § 3 ch. II [V]. An ordinal number \(\alpha \in \Omega \) is called a limit ordinal number iff there is no \(\beta \in \mathbb{N} \) with \(\alpha = \beta + 1 \). To prove the main theorem of the paper we need the following two lemmas.

Lemma. Let \(\{ u_\alpha \mid \alpha \in \Omega \} \subseteq P(w) - \{ 0 \} \) be a descending sequence such that the formula \((\forall \alpha)((U \cup = w & q \models \mathbb{N}) \rightarrow \exists \alpha \in \Omega ((\exists v \in q)(u_\alpha \subseteq v))) \) holds. Then \(\mathcal{U} = \{ U \in S \mathcal{D}_\alpha \mid (\exists \alpha \in \Omega) (u_\alpha \subseteq U) \} \) is an \(\omega \)-complete ultrafilter on \(S \mathcal{D}_\alpha \) (such that \(w \in \mathcal{U} \)).

Proof. If \(\{ U_n \mid n \in \mathbb{N} \} \subseteq \mathcal{U} \) then for every \(n \in \mathbb{N} \) we can choose \(\alpha_n \in \Omega \) so that \(u_\alpha \subseteq U_n \). According to properties of \(\Omega \) there is \(\alpha \in \Omega \) with \((\forall n \in \mathbb{N}) (\alpha_n < \alpha) \) and for this \(\alpha \) it is \(u_\alpha \subseteq \cap \{ \cup_{n \in \mathbb{N}} U \} \) & \(u_\alpha \in \mathcal{U} \).

If \(U \in S \mathcal{D}_\alpha \) then \(\{ U \cap w, w - U \} \) is a partition of \(w \) and thence there is \(\alpha \in \Omega \) such that either \(u_\alpha \subseteq U \cap w \subseteq U \) or \(u_\alpha \subseteq w - U \subseteq V - U \) holds. Thus we have proved that \(U \in \mathcal{U} \equiv (V - U) \cup \mathcal{U} \).

Lemma. Let \(p \models \mathbb{N} \cdot \beta \) & \(q \models \mathbb{N} \cup p \models U q \) and let the formula \((\forall v \in p)(v \models \gamma \cdot \alpha) \) hold. Then there is \(u \in q \) with \(\{ v \in p \mid v \cup u \models \gamma \} \models \beta \).

Proof. If \((\forall u \in q)(\{ v \in p \mid v \cup u \models \gamma \} \models \beta) \) then \(a = \{ v \in p ; (\exists u \in q)(v \cup u \models \gamma) \} \models \beta \cdot \alpha \) and therefore we can
choose v ∈ P - a. For this v we have \((\forall u \in q)(v \cap u \subsetneq \gamma) \) and this contradicts the assumption \(U \supseteq q \) since we would have \(v \supsetneq \gamma \cdot \alpha \).

Theorem. If \(P \subseteq R \subseteq S \subseteq \mathbb{N} \) are two cuts such that \(S \) is no \(\gamma \)-class and such that the formula \((\forall \alpha \in R)(\forall \beta \in S)(\alpha \cdot \beta \in S) \land (\forall \alpha , \beta \in R)(\alpha \cdot \beta \in R)\) holds then there is an \(\omega \)-complete ultrafilter \(\mathcal{M} \) on \(\mathcal{S}_v \) with \(\zeta(\mathcal{M}) = R \land \zeta(\mathcal{M}) = S \).

Proof. Since \(S \) is no \(\gamma \)-class, there is a descending sequence \(\{ q_\alpha \}; \alpha \in \Omega \) so that \(\cap \{ q_\alpha \}; \alpha \in \Omega \} = S \). Let \(w \) be a set such that there is \(\beta \notin S \) with \(w \supseteq \beta \), let \(\{ q_\alpha \}; \alpha \in \Omega \) be the class of all partitions \(q \) of \(w \) with \(q \supseteq R \) and at the end let \(\chi_\alpha \supseteq q_\alpha \). We are going to construct by induction a descending sequence \(\{ u_\alpha \}; \alpha \in \Omega \) such that for every \(\alpha \in \Omega \) the formula \(u_\alpha \supseteq S \land (\exists v \in q_\alpha)(u_{\alpha+1} \subseteq v) \) holds. We put \(u_0 = w \).

If we shall have such a sequence we shall put \(\mathcal{M} = \{ U \in \mathcal{S}_v | (\exists \alpha \in \Omega)(u_\alpha \subseteq U) \} \) and such a class will be an \(\omega \)-complete ultrafilter according to a previous lemma.

Case 1. Let us suppose that \(R = \{ q_\alpha \}; (\forall \beta \in S)(\alpha \cdot \beta \in S) \} \).

(a) Let for \(\alpha \in \Omega \) the set \(u_\alpha \) have been constructed, we want to construct the set \(u_{\alpha+1} \). Evidently \(u_\alpha \subseteq U \) and thus it is sufficient to choose \(u_{\alpha+1} \) so that \((\exists v \in q_\alpha)(u_{\alpha+1} = u_\alpha \cap v \land (\forall v \prime \in q_\alpha)(u_{\alpha+1} \supseteq u_\alpha \cap v')) \). In fact, we have trivially \(u_{\alpha+1} \supseteq u_\alpha \) and moreover, assuming that \(u_{\alpha+1} \supseteq \beta \in S \) we get \(\beta , \gamma_\alpha \in S \) (because \(\gamma_\alpha \in R \)) and hence we would obtain \(u_\alpha \supseteq \beta \cdot \gamma_\alpha \in S \) which contradicts the induction hypothesis \(u_\alpha \supset S \); therefore we have proved the statement \(u_{\alpha+1} \supset S \).

(b) Let \(0 \neq \alpha \in \Omega \) be a limit ordinal and let us assume that the sequence \(\{ u_\beta \}; \beta \in (\alpha \cap \Omega) \} \) satisfying the pro-

- 695 -
properties in question has been constructed. Since S is no \mathcal{M}-class, there is $\sigma \notin S$ such that $(\forall \beta \in (\mathcal{M} \cap \Omega))(u_{\beta} \supseteq \sigma \land \sigma < \sigma_\infty)$ and according to the prolongation axiom we are able to choose u_∞ so that $u_\infty \supseteq \sigma$ and $u_\infty \subseteq \cap \{u_\beta ; \beta \in \mathcal{M} \cap \Omega\}$. (In detail: $\mathcal{M} \cap \Omega$ is countable and therefore there is an increasing sequence $\{\mathcal{M}_n ; n \in \mathbb{N}\}$ such that $U \mathcal{M}_n = U (\mathcal{M} \cap \Omega)$ and we can choose f with $(\forall n \in \mathbb{N})(f(n) = u_{\mathcal{M}_n}) \land (\forall \beta, \beta' \in \text{dom}(f))(\beta < \beta' \rightarrow (f(\beta') \leq f(\beta) \land f(\beta) \subseteq \cap \mathcal{M})$. Moreover, choosing $\beta \in \text{dom}(f) - \mathcal{M}$ we have $f(\beta) \subseteq \cap \{u_\beta ; \gamma \in (\mathcal{M} \cap \Omega) \supseteq \sigma$ and therefore there is a one-one mapping of σ into $f(\beta)$; the range of such a mapping can serve as a set we look for).

We have $\forall (\mathcal{M}) \subseteq S$ since for every limit ordinal $\alpha \in \Omega$ we have constructed u_∞ in such a way that $u_\infty \supseteq \sigma \cap \Omega$ and $u_\mathcal{M} \subseteq \mathcal{M}$ and, on the other hand, the inclusion $S \subseteq \vee (\mathcal{M})$ follows from the fact that $(\forall \alpha \in \Omega)(u_\infty \subseteq S)$. Further from the construction we get $R \subseteq \mathcal{M}$ and the converse inclusion is a consequence of the first theorem.

In the following two cases let $\varphi(p, u, f, \mathcal{F})$ denote the formula $\cup p \subseteq u$ \& $\forall \epsilon \in p \cup u \land \varphi \mathcal{F} = \mathcal{F} \subseteq \mathcal{F}$). We can suppose that $\{\alpha ; (\forall \beta \in S)(\alpha \cap \beta \in S)\}$ $\supseteq \mathcal{M}$ and therefore we are able to fix \mathcal{F} in this class. According to $(\forall \mathcal{F} \in S)(\mathcal{F} \cap \mathcal{F} < \mathcal{F})$, we can choose moreover $\mathcal{F} \notin S$ with $\mathcal{F} \cdot \mathcal{F} < \mathcal{F}$ and furthermore using the last property, we can fix pairwise disjoint p such that $\cup p = w \lor \varphi(p, w, f, \mathcal{F})$.

Case 2. We shall assume that R is no Π-class. In this case there is a descending sequence $\{\epsilon_\infty ; \alpha \in \Omega\}$ so that $R = \cap \{\epsilon_\infty ; \alpha \in \Omega\}$.

Case 3. We shall suppose that R is no \mathcal{M}-class.
These two cases exhaust all possibilities since every semiset which is simultaneously \mathcal{S} and \mathcal{G} is a set (cf. the last theorem of § 5 ch. II [V]), and R cannot be a set since it is closed w.r.t. $+$. We shall treat these two cases simultaneously and we are going to construct except a descending sequence of sets $\{u_\alpha; \alpha \in \Omega\}$ even two descending sequences $\{F_\alpha; \alpha \in \Omega\}$ and $\{S_\alpha; \alpha \in \Omega\}$ of natural numbers so that $(\forall \alpha \in \Omega)(\varphi(p, u_\alpha, F_\alpha, S_\alpha) \& F_\alpha \notin S \& S_\alpha \notin R)$ and if R is no \mathcal{S}-class we shall require moreover that for every $\alpha \in \Omega$ there is $\mathcal{G} \in R$ with $F_\alpha \cdot \mathcal{G} > S$. We put $u_0 = w$,

$$F_0 = F \quad \text{and} \quad S_0 = S.$$

(a) Let for $\alpha \in \Omega$ the sets u_α, F_α and S_α with the required properties have been constructed. Let us define $F_{\alpha+1}$ and $S_{\alpha+1}$ in such a way that the formula $\mathcal{G}\cdot F_{\alpha+1} \leq F_\alpha < \mathcal{G}\cdot (F_{\alpha+1} + 1) \& \mathcal{G}\cdot S_{\alpha+1} \leq S_\alpha < \mathcal{G}\cdot (S_{\alpha+1} + 1)$ holds. We have $S_\alpha \in R$ and hence according to the induction hypothesis $F_\alpha \notin S \& S_\alpha \notin R$ we get $F_{\alpha+1} \notin S \& S_{\alpha+1} \notin R$ and moreover if there is $\mathcal{G} \in R$ such that $\mathcal{G} \cdot S_\alpha > F_\alpha$ then $\mathcal{G} \cdot (S_{\alpha+1} + 1) \in R$ and $\mathcal{G} \cdot (F_{\alpha+1} + 1) \cdot S_{\alpha+1} > \mathcal{G} \cdot S_{\alpha+1} > F_\alpha$.

Putting $\overline{p} = \{u_\alpha \cap v; v \in p \& u_\alpha \cap v \neq \emptyset \} \cap \mathcal{G} \cdot F_{\alpha+1} \cdot \mathcal{G} \in \Omega$ we obtain $\overline{p} \in (u_\alpha \cap v; v \in p \& u_\alpha \cap v \neq \emptyset \} \cap \mathcal{G} \cdot F_{\alpha+1} \cdot \mathcal{G} \in \Omega$ from which

$$\varphi(p, u, \overline{p}; v \cap u \cdot F_{\alpha+1} \cdot \mathcal{G} \cdot S_{\alpha+1}) \text{ follows.}$$

Furthermore according to $q_\alpha \cong \mathcal{G}$ and to the last lemma there is $u \cap q_\alpha$ so that $\forall v \in \overline{p}; v \cap u \cdot F_{\alpha+1} \cdot \mathcal{G} \cdot S_{\alpha+1}$ and thence defining $u_{\alpha+1} = u \cap q_\alpha$ we get $\varphi(p, u_{\alpha+1}, F_{\alpha+1}, S_{\alpha+1})$.

(b) Let $0 \neq \alpha \in \Omega$ be a limit ordinal and let us suppose that we have constructed the sequences $\{u_\beta; \beta \in (\alpha \cap \Omega)\}$, $\{F_\beta; \beta \in (\alpha \cap \Omega)\}$ and $\{S_\beta; \beta \in (\alpha \cap \Omega)\}$ satisfy-
ing the conditions in question. If \(R \) is no \(\pi \)-class then we can fix \(f_\infty \in ((\cap \{ f_\beta : \beta \in (\alpha \cap \Omega) \} \cap \varepsilon_\infty) - R. \) If \(R \) is no \(\sigma \)-class then according to the induction hypothesis for every \(\beta \in (\alpha \cap \Omega) \) we can choose \(\sigma_\beta \in R \) with \(\sigma_\beta \cdot \sigma_\beta > \xi_c \). The class \(\alpha \cap \Omega \) is countable and therefore there is \(\sigma \in R \) such that \((\forall \beta \in (\alpha \cap \Omega))(\sigma_\beta \cdot \sigma < \xi) \) and hence \((\forall \beta \in (\alpha \cap \Omega))(\sigma_\beta \cdot \sigma > \xi) \). Let us fix \(f_\infty \) so that \(f_\infty \cdot \sigma > \xi \geq (f_\infty - 1) \cdot \sigma \), thus even in this case \(f_\infty \) is no element of \(R \). The definition of \(f_\infty \) is in both cases the same as follows. Since \(f_\infty < \xi \) and since \(\sigma_\infty \not\in S \) there is \(\xi' < S \) with \(f_\infty \cdot \xi' < \sigma_\infty \) and thus we can fix \(f_\infty \) as an element of \((\cap \{ f_\beta : \beta \in (\alpha \cap \Omega) \} \cap \xi' - S \) because \(S \) is no \(\pi \)-class and because \(\alpha \cap \Omega \) is countable.

By the prolongation axiom there is \(u \in \cap \{ u_\beta : \beta \in (\alpha \cap \Omega) \} \) so that \(g(p, u, \xi, f_\infty) \) and according to the definition of \(g \), we are able to choose \(u_\infty \sqsubseteq u \) in such a way that the formula \(g(p, u_\infty, f_\infty, \xi_\infty) \) \& \(u_\infty \not\in f_\infty \cdot \xi_\infty < \sigma_\infty \) \& \& \{ \forall v \in p; \forall v \in \xi_\infty \not\in 0 \} \Rightarrow \xi_\infty \) holds.

The statements \(\varphi(\omega) = S \) and \(R \subseteq (\omega(\Omega)) \) can be proved exactly in the same way as in the first case.

The proof of the formula \(\varphi(\omega(\Omega)) \subseteq R \) is different in the cases we deal with; according to the definition of \(\omega(\Omega) \), for every \(\varepsilon \not\in R \) we have to construct a partition \(q \sqsubseteq \varepsilon \) with \(q \cap \Omega = 0 \).

Case 2. If we put \(p_\alpha = \{ v \in p; u_\alpha \not\in v \not\in 0 \} \) then \(u_\alpha \not\in \cap p_\alpha \) \& \& \(\alpha \in \Omega \) (\(\alpha \) being an element of \(\Omega \)). Let us suppose that there are \(v \in p \) and \(\alpha \in \Omega \) such that \(u_\alpha \not\in v \) is an element of \(\Omega \); then there would be \(\beta \in \Omega \) with \(u_\beta \not\in u_\alpha \not\in v \) but according to the construction we have \(2 \subseteq \{ u \in p; u \not\in u_\beta \not\in 0 \} \), which is
a contradiction. Thus we have proved that for every $\alpha \in \Omega$ the classes p_ω and \mathcal{M} are disjoint. Moreover, for every limit ordinal α we have $p_\omega \cong \xi_\alpha < \varepsilon_\alpha$ and hence $\varepsilon_\alpha \notin \mu(\mathcal{M})$ from which $R = \mu(\mathcal{M})$ follows.

Case 3. To prove the inclusion $\mu(\mathcal{M}) \subseteq R$ let $\varepsilon \in R$ be given; without loss of generality we can suppose that $2 \varepsilon < \xi$. Let γ be the minimal β so that $\beta \cdot \varepsilon \geq \xi$.

At first we shall prove that for every $\alpha \in \Omega$ the formula $\xi_\alpha > \gamma$ holds. If it would not be true then there would be $\sigma \in R$ with $\sigma \cdot \gamma \geq \xi$. $\xi_\alpha \geq \xi$. Furthermore, $2\varepsilon \in R$ and hence $2\varepsilon \in R$ from which $\xi \leq \sigma \cdot \gamma = 2\varepsilon \cdot \frac{\sigma}{2} \leq \varepsilon \cdot \frac{\sigma}{2}$ would follow, but this contradicts the choice of γ since either γ or $\gamma + 1$ is even and both $\frac{\sigma}{2}$ and $\frac{\sigma}{2} + 1$ are smaller than γ (because $\gamma \geq 2$).

Since $\gamma \cdot \varepsilon \geq \xi$, there is a partition \mathcal{P} of ω which is coarser than p and such that $\mathcal{P} \cong \xi \setminus (\forall \nu \in \mathcal{P})\{v \in p; \nu \cap u = +0\} \cong \gamma$. To prove $\varepsilon \notin \mu(\mathcal{M})$ it is sufficient to show that $\mathcal{P} \cap \mathcal{M} = 0$. If the inclusion $u_\beta \subseteq u$ would hold for some limit $\beta \in \Omega$ and $u \in \mathcal{P}$ then $\gamma < \xi_\beta$ would contradict the formula $\forall v \in p; v \cap u = +0 \setminus \gamma \setminus \mathcal{P} \cong \gamma$ and $\forall v \in p; u_\beta \cap v = +0 \setminus \xi_\beta$ and this finishes the proof.

Reference