Le Van Hot
Fixed point theorems for multivalued mappings

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 1, 137--143,144--145

Persistent URL: http://dml.cz/dmlcz/106138

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS
LE VAN HOT

Abstract: We prove new fixed point theorems for multivalued mappings. Moreover, we construct a simple example which shows that the conjecture of J. P. Penot, stated in [8], is false.

Key words: Metric space, Banach space, fixed point theorems, multivalued mappings.

Classification: Primary 47H10, 47H15
Secondary 54C60

1. A fixed point theorem for multivalued mappings in complete metric spaces.

Let M be a metric space with metric d, A, B being subsets of M, $x_0 \in M$. Put: $d(x_0, A) = \inf \{d(x_0, x) : x \in A\}$, $D(A, B) = \{\lambda > 0 : A \subseteq V_\lambda (B) \text{ and } B \subseteq V_\lambda (A)\}$, $\sup \{d(y, A) : y \in B\}$, where $V_\lambda (A) = \{y \in M, d(y, Y) \leq \lambda \}$ for $\lambda > 0$.

Definition 1. Let M be a metric space with metric d. We say that a map $f : M \to M$ satisfies Caristi's condition if there exists a lower semicontinuous function $h : M \to \mathbb{R}_+ = [0, \infty)$ such that $d(x, f(x)) \leq h(x) - h(f(x))$ for all $x \in M$.

Theorem 1. Let M be a complete metric space, $F : M \to M$ be a multivalued mapping of M into the family of all nonempty compact subsets of M such that $D(F(x), F(y)) < d(x, y)$ for all
Suppose that there exists a single-valued map \(f : M \rightarrow M \) satisfying the Caristi's condition such that:

1) \(d(x, f(x)) \leq \inf \{ d(f^n(x), f(f^n(x)) : n = 1, 2, \ldots \} \)

for all \(x \in M \), where \(f^n(x) = (f \circ f \circ \ldots \circ f)(x) \), \(n \)-times

2) \(K = \{ x \in M, f(x) = x \} \) is precompact.

Then \(F \) has a fixed point in \(M \).

Proof. We claim that for each \(z \in M \) there exists a \(z_0 \in K \) such that \(d(z_0, F(z_0)) \leq d(z, F(z)) \). Let \(h : M \rightarrow \mathbb{R}_+ \) be a lower semicontinuous function such that \(d(x, f(x)) \leq h(x) - h(f(x)) \) for all \(x \in M \). We write \(x \preceq y \) iff \(d(x, y) \leq h(x) - h(y) \). Then \(\preceq \) is a partial order on \(M \). Let \(z \) be an arbitrary fixed point in \(M \). Put \(M_z = \{ x \in M : d(x, f(x)) \leq d(z, F(z)) \} \). Then \(M_z \) is a non-empty \((z \in M_z)\) closed subset of \(M \), since \(d(x, f(x)) \) is a continuous function on \(M \). Therefore \(M_z \) is complete. Using the same argument as in [8] one can prove that there exists a maximal element \(z_0 \) in \(M_z \) (i.e. if \(x \in M_z \) and \(x \succeq z_0 \) then \(x = z_0 \)).

Suppose that there exists an \(n \in \mathbb{N} \) such that

\[d(f^n(z_0), F(f^n(z_0))) \leq d(z_0, F(z_0)) \leq d(z, F(z)) \]

Then \(f^n(z_0) \in M_z \). On the other hand, we have:

\[d(z_0, f(z_0)) \leq h(z_0) - h(f(z_0)), \quad d(f(z_0), f^2(z_0)) \leq h(f(z_0)) - h(f^2(z_0)), \ldots, \quad d(f^{n-1}(z_0), f^n(z_0)) \leq h(f^{n-1}(z_0)) - h(f^n(z_0)). \]

Hence

\[d(z_0, f^n(z_0)) \leq \sum_{i=1}^{n} d(f^{i-1}(z_0), f^i(z_0)) \leq h(z_0) - h(f^n(z_0)), \]

where \(f^0(z_0) = z_0 \). This implies \(f^n(z_0) \succeq z_0, f^n(z_0) \in M_z \). Hence \(f^n(z_0) = z_0 \) and it is clear that \(f(z_0) = z_0 \in K \cup M_z \).

Now suppose that \(d(f^n(z_0), F(f^n(z_0))) > d(z_0, F(z_0)) \) for all \(n \). Then there exists a subsequence \(\{ n_i \} \) such that

\[\lim d(f^{n_i}(z_0), F(f^{n_i}(z_0))) = d(z_0, F(z_0)). \]

It is easy to see
that \(f^n(z_0) \) is a Cauchy sequence in \(M \). Then there exists a point \(z_\infty \in M \) such that \(z_\infty = \lim f^n(z_0) \), since \(M \) is complete. Hence
\[
d(z_0, z_\infty) = \lim d(z_0, f^n(z_0)) = h(z_0) - \lim h(f^n(z_0)) = h(z_0) - h(z_\infty),
\]
\[
d(z_\infty, F(z_\infty)) = \lim d(f^n(z_0), F(f^n(z_0))) = d(z_0, F(z_0)) = d(z, F(z)).
\]
This means that \(z_\infty \in M \) and \(z_\infty \geq z_0 \). Therefore \(z_\infty = z_0 \) and \(h(z_\infty) = h(f(z_0)) = h(z_0) \). Hence \(d(f(z_0), F(f(z_0))) = d(z_0, F(z_0)) \).

This contradicts the assumption
\[
d(f^n(z_0), F(f^n(z_0))) > d(z_0, F(z_0)) \text{ for all } n=1,2,\ldots.
\]
This proves our claim.

It is easy to see that \(\inf \{ d(x, F(x)) : x \in M \} = \inf \{ d(x, F(x)) : x \in \overline{K} \} \). Since \(\overline{K} \) is compact, there exists a point \(x_0 \in \overline{K} \) such that \(d(x_0, F(x_0)) = \inf \{ d(x, F(x)) : x \in M \} \). If \(r = d(x_0, F(x_0)) > 0 \), take a \(y \in F(x_0) \) such that \(d(x_0, y) = d(x_0, F(x_0)) = r \). Then \(d(y, F(y)) \leq d(F(x_0), F(y)) < d(x_0, y) = r \).

This contradicts the assumption
\[
d(x_0, F(x_0)) = \inf \{ d(x, F(x)) : x \in M \}.
\]
Hence \(d(x_0, F(x_0)) = 0 \) and \(x_0 \in F(x_0) \). This completes the proof.

Remark: In [8] J.P. Penot has stated the following problem: Let \(M \) be a complete metric space, \(h: M \to R_+ \) be a lower semicontinuous function and \(F: M \to M \) be a multivalued mapping of \(M \) into the family of all nonempty closed subsets of \(M \) satisfying the following condition:
\[
d(x, F(x)) \leq h(x) - \inf \{ h(y) : y \in F(x) \} \geq 0.
\]
Does \(F \) have a fixed point in \(M \)?

The following simple example shows that this conjecture
Proposition 1. Let M be a complete metric space, $h: M \to \mathbb{R}_+$ be a lower semicontinuous function, $F: M \to M$ be a multivalued mapping which maps M into the family of all nonempty closed subsets of M. Suppose F satisfies the following condition

$$\inf \{ d(x,y) + h(y) : y \in F(x) \} = d(x, F(x)) = h(x)$$

for all $x \in M$. Then F has a fixed point in M.

Proof. We claim that for each $x \in M$ there exists an $f(x) \in F(x)$ such that $d(x, f(x)) \leq 2h(x) - 2h(f(x))$. If $d(x, F(x)) = 0$, put $f(x) = x$. If $d(x, F(x)) > 0$, then

$$d(x, F(x)) + \inf \{ d(x,y) + 2h(y) : y \in F(x) \} \leq 2 \inf \{ d(x,y) + h(y) : y \in F(x) \} = 2h(x).$$

It follows that $\inf \{ d(x,y) + 2h(y) : y \in F(x) \} < 2h(x)$. Then there exists a point $f(x) \in F(x)$ such that $d(x, f(x)) + 2h(f(x)) \leq \leq 2h(x)$. This proves our claim.

According to Ćirić's Theorem there exists a point $x_0 \in M$ such that $x_0 = f(x_0) \in F(x_0)$. This completes the proof.

Corollary 1 (S. B. Nadler [7]). Let M be a complete metric space. If $F: M \to M$ is a multivalued contraction mapping which maps M into the family of all nonempty closed subsets of M, then F has a fixed point.

Proof. Let $D(F(x), F(y)) = kd(x, y)$, where $0 \leq k < 1$. Put
\[h(x) = \frac{1}{1-k} d(x, \mathcal{F}(x)) \]. Then
\[
\inf \sum d(x, y) + h(y) : y \in \mathcal{F}(x) = \inf \sum d(x, y) + \frac{1}{1-k} d(y, \mathcal{F}(y)) : y \in \mathcal{F}(x)
\]
\[
\leq \inf \sum d(x, y) + \frac{1}{1-k} k d(x, y) : y \in \mathcal{F}(x)
\]
\[
= \inf \sum d(x, y) + \frac{1}{1-k} d(x, \mathcal{F}(x)) = h(x).
\]

By Proposition 1, \(\mathcal{F} \) has a fixed point in \(M \).

Corollary 2. Let \(M, h, \mathcal{F} \) be as in Proposition 1.

1. If \(d(x, \mathcal{F}(x)) \leq h(x) - \sup h(y) : y \in \mathcal{F}(x) \), then \(\mathcal{F} \) has a fixed point in \(M \).

2. If \(D(-x, \mathcal{F}(x)) \geq h(x) - \inf h(y) : y \in \mathcal{F}(x) \), then there exists an \(x_0 \in M \) such that \(f(x_0) = -x_0 \).

Proof. It is clear that \(\mathcal{F} \) has a fixed point in \(M \), because \(\inf \sum d(x, y) + h(y) : y \in \mathcal{F}(x) \geq d(x, \mathcal{F}(x)) + \sup h(\mathcal{F}(x)) \) and
\[
\inf \sum d(x, y) + h(y) : y \in \mathcal{F}(x) \geq D(-x, \mathcal{F}(x)) + \inf h(y) : y \in \mathcal{F}(x).
\]

To prove 2, it is sufficient to note that for each \(x \in M \) there exists a point \(f(x) \in \mathcal{F}(x) \) such that
\[
D(-x, \mathcal{F}(x)) \leq h(x) - \inf h(y) : y \in \mathcal{F}(x) \leq 2h(x) - 2h(f(x)).
\]

By Caristi's Theorem there exists a point \(x_0 \in M \) such that \(x_0 = f(x_0) \). Then \(D(-x_0, \mathcal{F}(x_0)) \leq 2h(x_0) - 2h(f(x_0)) = 0 \). It follows that \(\mathcal{F}(x_0) = -x_0 \). This completes the proof.

7. **A fixed point theorem for multivalued mappings in Banach spaces**

Definition 2. Let \(X, Y \) be topological spaces, \(\mathcal{F} : X \to 2^Y \) be a multivalued mapping. We say that \(\mathcal{F} \) is upper semicontinuous at \(x \in X \) if for each open set \(G \subset Y \), \(\mathcal{F}(x) \cap G \) there exists a neighborhood \(U \) of \(x \) such that for each \(x' \in U \) we have \(\mathcal{F}(x') \subseteq G \).
Theorem 2. Let X be a Banach space, $C \subseteq X$ be a convex closed nonempty bounded subset of X, $f: C \rightarrow C$ be a multivalued nonexpansive mapping which maps into the family of all nonempty convex closed subsets of C. Suppose that there exist a function $\omega: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ which is nondecreasing and $\omega(t) > 0$ for all $t > 0$, a function $\varphi: C \rightarrow \mathbb{R}$ weakly continuous at 0, $\varphi(0) > 0$ and a mapping $\psi: C \rightarrow \mathcal{C}(X^*)$, where $\mathcal{C}(X^*)$ denotes the family of all nonempty closed subsets of the dual space X^*, weakly-strongly upper-semicontinuous at 0, $\psi(0)$ is compact, such that

$$d(x, f(x)) + d(y, f(y)) \geq \omega(\|x - y\|) \varphi(x - y) - \psi_s(x - y)$$

for all $x, y \in C$, where $\psi_s(x) = \sup \{\langle x^*, x \rangle | x^* \in \psi(x)\}$. Then f has a fixed point in C.

Proof. By the boundness of C, there exists a number $M > 0$ such that $C \subseteq B_M = \{x \in X : \|x\| \leq M\}$. Hence $C \subseteq B_{2M}$. By the standard argument there exists a sequence $\{x_n\} \subseteq C$ such that $d(x_n, f(x_n)) < \frac{1}{n}$ for each $n \in \mathbb{N}$. Since $\{x_n\}$ is bounded in X, $\{x_n\}$ is weakly precompact. Then there exists a weakly Cauchy subnet $\{x_{\sigma(i)}\}_{i \in I}$ of $\{x_n\}$ where $\sigma: I \rightarrow \mathbb{N}$. Then it is clear that the net $\{u_{i,j}\}_{(i,j) \in I \times I}$ where $u_{i,j} = x_{\sigma(i)} - x_{\sigma(j)}$ converges weakly to 0.

We claim that $\lim \|u_{i,j}\| = 0$. Suppose that it is false. There exists a number $k > 0$ such that for any $(i,j) \in I \times I$ there exists an $(i', j') \in I \times I$, $(i', j') \neq (i,j)$ and $\|u_{i,j}\| \geq k$. Since φ is weakly continuous at 0 we have $\lim \varphi(u_{i,j}) = \varphi(0) = k > 0$. Let $\tau: X \rightarrow X^{**}$ be a canonical embedding map of X into its bidual space X^{**}. Since $\{\tau(u_{i,j})\}$ is bounded in X^{**}, $\{\tau(u_{i,j})\}$ is an equicontinuous family of mappings.
from \((X^*, \| \cdot \|)\) into \(\mathbb{R}\). Since \(\{\varphi(u_{1,j})\}\) converges pointwise to \(\varphi(0)\) on \(X^*\) and \(\varphi(0)\) is a compact subset of \(X^*\) by Theorem 4.5 [9, chapt. III] it follows that \(\{\varphi(u_{1,j})\}\) converges uniformly to \(\varphi(0)\) on \(\varphi(0)\). Then there exists an index \((i_0, j_0) \in I \times I\) such that for \((i, j) \in I \times I\), \((i, j) \geq (i_0, j_0)\) we get

\[\varphi(u_{i,j}) \geq \frac{3}{4} \cdot k\] and \(\|x^* u_{i,j}\| = \|x^* u_{1,j}\| \leq \frac{1}{8} k \alpha(\varphi(r))\) for all \(x^* \in \varphi(0)\). Since \(\varphi\) is weakly-strongly upper-semicontinuous at \(\varphi(0)\) and \(\{u_{i,j}\}\) converges weakly to \(\varphi(0)\), there exists an index \((i_1, j_1) \in I \times I\), \((i_1, j_1) \geq (i_0, j_0)\) such that:

\[
\varphi(u_{i_1,j_1}) \leq \varphi(\varphi(0)) + \frac{k \alpha(\varphi(r))}{16M} B_1(\varphi(0)), \quad \text{where} \quad B_1 = \{x^* \in X^* : \|x^*\| \leq 1\}
\]

for all \((i, j) \in I \times I, (i, j) \geq (i_1, j_1)\). Then

\[
\varphi_s(u_{i,j}) = \sup \{\|x^* u_{i,j}\| : x^* \in \varphi(0) + \frac{k \alpha(\varphi(r))}{16M} B_1(\varphi(0))\} \leq \sup \{\|x^* u_{i,j}\| : x^* \in \varphi(0) + \frac{k \alpha(\varphi(r))}{16M} B_1(\varphi(0))\} + \frac{k \alpha(\varphi(r))}{4}
\]

for all \((i, j) \in I \times I, (i, j) \geq (i_1, j_1)\).

Take \(n, m \in \mathbb{N}\) such that \(\frac{1}{n} + \frac{1}{m} \leq \frac{k \alpha(\varphi(r))}{2}\). Choose \(i_2 \in I, i_2 \geq i_1, i_2 \geq j_1\) such that \(\varphi(i) \geq \max \{n, m\}\) for all \(i \in I, i \geq i_2\). Take \((i_3, j_3) \in I \times I, (i_3, j_3) \geq (i_2, j_2)\) such that \(\|u_{i_3,j_3}\| \geq r\). Then

\[
d(\varphi(0)(i_3), \varphi(0)(j_3)) + d(\varphi(0)(j_3), \varphi(0)(j_3)) = \varphi_s(u_{i_3,j_3}) - \varphi(0)(i_3) - \varphi(0)(j_3).
\]

Hence

\[
\frac{1}{n} + \frac{1}{m} \leq \frac{1}{\delta(0)(j_3)} + \frac{1}{\delta(0)(j_3)} \leq d(\varphi(0)(i_3), \varphi(0)(j_3)) + d(\varphi(0)(j_3), \varphi(0)(j_3)) - \frac{2}{3} k \alpha(\varphi(r)) - \frac{k \alpha(\varphi(r))}{4} = \frac{1}{2} k \alpha(\varphi(r)).
\]

This contradicts \(\frac{1}{n} + \frac{1}{m} \leq \frac{1}{2} k \alpha(\varphi(r))\) and this proves our claim.
Since \(\lim \| u_{i,j} \| = 0 \), it follows that \(\{ x_{\varphi(1)}^j \} \) is a Cauchy net in the strong topology. Therefore \(\{ x_{\varphi(1)}^j \} \) converges strongly to an \(x \in C \). Then for \(i \leq I \), we have

\[
d(x, F(x)) \leq \| x - x_{\varphi(1)} \| \cdot d(x_{\varphi(1)}, F(x)) + \gamma \| F(x) - F(x_{\varphi(1)}) \| \cdot d(x, F(x)) \leq 2 \| x - x_{\varphi(1)} \| + \frac{1}{\varphi(1)}.
\]

Hence \(d(x, F(x)) = 0 \). It follows that \(x \in F(x) \) and this completes the proof.

References

Mathematický ústav, Universita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia

(Oblatum 1.4. 1981)