Eva Butkovičová
Ultrafilters without immediate predecessors in Rudin-Frolík order

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 4, 757--766

Persistent URL: http://dml.cz/dmlcz/106194

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
ULTRAFILTERS WITHOUT IMMEDIATE PREDECESSORS
IN RUDIN-FROLIK ORDER
M. BUTKOVICOVA

Abstract: We describe a construction of an ultrafilter on
the set of natural numbers not belonging into the closure of any
countable discrete set of minimal ultrafilters in Rudin-Frolík
order of \(\beta\mathbb{N} - \mathbb{N} \). We use the technique of independent linked family
developed by K. Kunen.

Key words: Ultrafilter, Rudin-Frolík order, independent
linked family, stratified set.

Classification: 04A20

§ 0. Introduction. Petr Simon has raised the following
question known as Simon's problem [1]: Does there exist a non-
minimal ultrafilter in Rudin-Frolík order of \(\beta\mathbb{N} - \mathbb{N} \) (shortly written
RF) without an immediate predecessor?

Let us call such an ultrafilter Simon point.

Two simple lemmas translate the property "being a Simon
point" into the topological terminology.

Lemma 0.1: An ultrafilter \(p \in \beta\mathbb{N} - \mathbb{N} \) is nonminimal in RF iff
there exists a countable discrete set \(X \subseteq \beta\mathbb{N} - \mathbb{N} \) of ultrafilters
such that \(p \in \overline{X - X} \).

Lemma 0.2: An ultrafilter \(p \in \beta\mathbb{N} - \mathbb{N} \) has an immediate prede­
cessor in RF iff there exists a countable discrete set \(X \) of
minimal ultrafilters in RF such that \(p \in \overline{X - X} \).

Therefore, Simon point \(p \) is an ultrafilter in \(\beta\mathbb{N} - \mathbb{N} \) for
which there exists a countable discrete set \(X \) such that \(p \in \overline{X - X} \).
and if \(Y \) is a countable discrete set of minimal ultrafilters in \(RF \) then \(p \notin \overline{Y} \).

The main result we want to present is the following

THEOREM. There exists a Simon point in \(\beta \mathbb{N} - \mathbb{N} \).

One can easily see that a Simon point \(p \) has to be in the closure of a countable discrete set of Simon points \(X_1 \). Since each point of \(X_1 \) is a Simon point, there exists a countable discrete set \(X_2 \) of Simon points such that \(X_1 \subseteq \overline{X_2} - X_2 \), and so on. Therefore, we shall construct countably many countable discrete sets \(X_n, n \in \mathbb{N} \) of Simon points such that \(X_n \subseteq \overline{X_{n+1}} - X_{n+1} \).

The original proof of Theorem needed the assumption that every set of functions from \(\omega^\omega \) of cardinality smaller than \(\mathbb{X} \) is bounded modulo fin. We are grateful to Petr Simon who has suggested us to use Kunen technique of independent linked family \([3]\) to avoid this assumption.

We would like also to thank Lev Bukovský for his manifold help and encouragement.

§ 1. **Preliminaries.** We shall use the standard notation and terminology to be found e.g. in \([4],[1]\). If \(\mathcal{G} \) is a filter then \(\mathcal{G} \) is the dual ideal. If \(G \) is a centered system of sets then \((G) \) denotes a filter generated by this system. \(F \) refers to the Fréchet filter.

Definition 1.1: due to K.Kunen \([1]\). Let \(\mathcal{F} \) be a filter on \(\mathbb{N} \) and \(\mathcal{F} \supseteq \mathcal{F} \). \(A_n \subseteq \mathbb{N} \).

a) Let \(1 \leq n < \omega \). An indexed family \(\{ A_\gamma ; \gamma \in [J]^n \} \) is precisely \(n \)-linked with respect to (w.r.t.) \(\mathcal{G} \) iff for all \(\sigma \in [J]^n \), \(\cap_{\gamma \in \sigma} A_\gamma \neq \emptyset \) and for all \(\sigma \in [J]^n \), \(\cap_{\gamma \in \sigma} A_\gamma \) is finite.

b) An indexed family \(\{ A_\gamma ; \gamma \in [J], n \in \omega \} \) is a linked
system w.r.t. \(\mathcal{F} \) iff for each \(\nu, \{ A_{\gamma} \colon \gamma \in \mathcal{J} \} \) is precisely \(\nu \)-linked w.r.t. \(\mathcal{F} \), and for each \(\nu \) and \(\gamma \), \(A_{\gamma} \subseteq \{ A_{\gamma} \colon \gamma \in \mathcal{J} \} \).

o) An indexed family \(\{ A_{\gamma}^{I} \colon \gamma \in \mathcal{J}, \xi \in I, \nu \in \omega \} \) is a \(\mathcal{J} \) by \(I \) independent linked family (ILF) w.r.t. \(\mathcal{F} \) iff for each \(\xi \in I \), \(\{ A_{\gamma}^{I} \colon \gamma \in \mathcal{J}, \nu \in \omega \} \) is a linked system w.r.t. \(\mathcal{F} \), and

\[\bigcap_{\nu \in \omega} \bigcap_{\xi \in I} A_{\gamma}^{I} \notin \mathcal{F}^{I} \text{ whenever } \tau \in [I]^{<\omega}, \text{ and for each } \xi \in \tau, \nu \in \omega \text{ and } \sigma_{\xi} \in [J]^{<\omega} \].

Remark 1.2: If \(\{ A_{\gamma}^{I} \colon \xi \in I, \gamma \in \mathcal{J}, \nu \in \omega \} \) is independent linked family w.r.t. Prôchet filter. \(\mathcal{F} \supseteq \mathcal{F}, C \in \mathcal{F}, \tau \in [I]^{<\omega}, \sigma_{\xi} \in [J]^{<\omega} \) and \(B \supseteq \bigcap_{\nu \in \omega} \bigcap_{\xi \in I} A_{\gamma}^{I} \cap C \), then \(\{ A_{\gamma}^{I} \colon \xi \in \tau, \gamma \in \mathcal{J}, \nu \in \omega \} \) is independent linked family w.r.t. \(\mathcal{F} \cup \{ B \} \).

K.Kunen [3] has also proved the following

Proposition 1.3: There exists a \(2^{\omega} \) by \(2^{\omega} \) independent linked family w.r.t. Prôchet filter.

Definition 1.4: A countable set \(\{ \mathcal{F}_{\nu} \colon \nu \in \omega \} \) of filters on \(\omega \) is discrete iff there exists a partition of \(\omega \) (into disjoint sets) \(\{ A_{\nu} \colon \nu \in \omega \} \) such that \(A_{\nu} \in \mathcal{F}_{\nu} \) for each \(\nu \in \omega \).

Definition 1.5: A filter \(\mathcal{F} \) is in a closure of a discrete set of filters \(\{ \mathcal{F}_{\nu} \colon \nu \in \omega \} \) iff for each \(A \in \mathcal{F} \) the set \(\{ \nu \in \omega : A \in \mathcal{F}_{\nu} \} \) is infinite.

Definition 1.6: A set of filters \(\{ \mathcal{F}_{\nu, \mu} \colon \nu, \mu, \omega \} \) is stratified iff

1. the set \(\{ \mathcal{F}_{\nu, \mu} \colon \nu, \mu \in \omega \} \) is discrete for each \(\nu \in \omega \),
2. the filter \(\mathcal{F}_{\nu, \mu} \) is in the closure of the set \(\{ \mathcal{F}_{\nu, \ell} \colon \ell \in \omega \} \) for each \(\nu, \mu \in \omega \).

Definition 1.7: Let \(\{ \mathcal{F}_{\nu, \mu} \colon \nu, \mu \in \omega \} \) be a stratified set of filters and \(C \) be its subset. We define
\[C(0) = \mathcal{C} \]
\[C(\xi) = \bigcup_{\xi \in \mathcal{C}} C(\xi), \text{ if } \xi \text{ is limit.} \]
\[C(\xi + 1) = C(\xi) \cup \{ F_{m, n} ; \exists B \in F_{m, n} \text{ such that} \]
\[\{ F_{m + 1, n, \xi} ; B \in F_{m + 1, n, \xi} \} \subseteq C(\xi) \}
\[\text{and } \mathcal{C} = \bigcup_{\xi < \omega_1} C(\xi). \]

We shall need the following result proved by M.E.Rudin [4].

Lemma 1.8: If \(X, Y \) are countable discrete sets of ultrafilters and \(\mu \in X \cap Y \) then \(\mu \in X \cap Y \cup X \cap (Y - Y) \cup Y \cap (X - X) \).

§ 2. Construction of a stratified set. The proof of
Theorem will be done via a construction of a stratified set
of ultrafilters with properties described in the following
proposition.

Proposition 2.1: There exists a stratified set of
ultrafilters \(\{ q_{m, n} ; m, n \in \omega \} \) on \(\omega \) satisfying for each
partition \(\{ D_\xi ; \xi \in \omega \} \) of \(\omega \) the following property (P):
Let \(C = \{ q_{m, n} ; (\exists \xi \in \omega)(D_\xi \in q_{m, n}) \} \). If \(q_{m, n} \notin \mathcal{C} \) then there
exists a family \(\{ U_\xi ; \xi \in \omega \} \subseteq q_{m, n} \) such that for each
\(\xi \in \omega \) and for each \(\xi_1 < \xi_2 < \ldots < \xi_i \), \(U_{\xi_1} \cap U_{\xi_2} \cap \ldots \cap U_{\xi_i} \cap D_\xi \)
is finite.

For to prove the proposition we need some auxiliary
results.

Lemma 2.2: If \(\{ F_{m, n} ; m, n \in \omega \} \) is a stratified set
of filters, \(\mathcal{A} = \{ A_I \ ; \ I \in \omega, I \supseteq \gamma \} \subseteq \omega \)
is II \(F \) w.r.t. \(F_{m, n} \) for every \(m, n \in \omega \) and \(B \subseteq \omega \) then there exists
a stratified set of filters \(\{ F_{m, n} ; m, n \in \omega \} \) and
\(\mathcal{C} = \{ A^i_j ; \{ i \in I, \gamma < 2^\omega, \delta < \omega \} \} \) an ILF w.r.t. \(\mathcal{F}_{\nu, \mu} \) for each \(\nu, \mu \in \omega \) such that \(\mathcal{F}_{\nu, \mu} \supseteq \mathcal{F}_{\nu_0, \mu} \), \(B \) or \(\omega - B \) belongs into \(\mathcal{F}_{\nu, \mu} \), \(\nu \leq \mu \) and \(\nu - \mu \) is countable.

Proof. Let us consider the set

\[
\mathcal{C} = \{ \mathbb{F}_{\alpha, j} ; \alpha \text{ is not ILF w.r.t. } (\mathbb{F}_{\alpha, j} \cup \{ B \}) \}.
\]

If \(\mathbb{F}_{\alpha, j} \) belongs to the set \(\mathcal{C} \) then there exist sets \(\mathbb{A}_{\alpha, j} \in [\Gamma]^\omega \) and \(E \in \mathbb{F}_{\alpha, j} \) such that \(B \cap E \cap \bigcap_{i \in \mathbb{A}_{\alpha, j}} A^i_{\gamma_i, j} = \emptyset \), i.e.

\[
\omega - B \supseteq E \cap \bigcap_{i \in \mathbb{A}_{\alpha, j}} A^i_{\gamma_i, j}.
\]

Evidently \(\{ A^i_{\gamma_i, j} ; \{ i \in I - \mathbb{A}_{\alpha, j}, \gamma < 2^\omega, \delta < \omega \} \} \) is ILF w.r.t. \((\mathbb{F}_{\alpha, j} \cup \{ \omega - B \}) \).

We denote \(\mathcal{C} = \mathcal{F} = \mathcal{F}_{\alpha, j} \cup \{ \omega - B \} \) for \(\mathbb{F}_{\alpha, j} \in \mathcal{C} \). If \(\mathbb{F}_{\alpha, j} \notin \mathcal{C} \) then \(\mathbb{F} \) is ILF w.r.t. \((\mathbb{F}_{\alpha, j} \cup \{ B \}) \).

It remains to show that \(\mathcal{C} \) is ILF w.r.t. \((\mathbb{F}_{\alpha, j} \cup \{ \omega - B \}) \) if \(\mathbb{F}_{\alpha, j} \in \mathcal{C} - \mathcal{C} \). Suppose the opposite in order to get a contradiction. Let \(\beta \) be the least ordinal such that \(\mathbb{F}_{\alpha, \beta} \in \mathcal{C}(\beta) \) and \(\mathcal{C} \) is not ILF w.r.t. \((\mathbb{F}_{\alpha, \beta} \cup \{ \omega - B \}) \).

Hence there exist sets \(E \in \mathbb{F}_{\alpha, \beta} \) and \(\tau \in [\Gamma]^\omega \) satisfying \(E \cap (\omega - B) \cap \bigcap_{i \in \tau} A^i_{\gamma_i, \beta} = \emptyset \). Take \(\mathbb{F}_{\alpha, \tau, \beta} \) containing \(E \) and \(\mathbb{F}_{\alpha, \tau, \beta} \in \mathcal{C}(\beta - 1) \). There exists such a filter. Then \(\mathcal{C} \) is not ILF w.r.t. \((\mathbb{F}_{\alpha, \tau, \beta} \cup \{ \omega - B \}) \). This is a contradiction with the minimality of \(\beta \).

According to the foregoing discussion we denote

\[
\mathcal{C}_{\mu, \lambda} = \begin{cases}
\mathcal{F}_{\mu, \lambda} \cup \{ \lambda \} & \text{for } \mathcal{F}_{\mu, \lambda} \notin \mathcal{C} \\
\mathcal{F}_{\mu, \lambda} \cup \{ \omega - \lambda \} & \text{otherwise.}
\end{cases}
\]
Lemma 2.2: If \(\{ \mathcal{F}_{n,m} ; n, m \in \omega \} \) is a stratified set of filters, \(\mathcal{A} = \{ A_{\gamma}^I \cap D_{\omega} ; \gamma < \omega^\omega, \langle \omega, \beta \in \omega \} \) is \(I \)-\(L \)-\(F \) w.r.t. \(\mathcal{F}_{n,m} \) for each \(n, m \in \omega \) and \(\mathcal{D} = \{ D_\gamma ; \gamma \in \omega \} \) is a partition of \(\omega \) such that \(D_\gamma \) or \(\omega - D_\gamma \) belongs into \(\mathcal{F}_{n,m} \) then there exists a stratified set of filters \(\{ \mathcal{F}_{n,m} ; n, m \in \omega \} \) and \(\mathcal{A} = \{ A_{\gamma}^I \cap D_{\omega} ; \gamma < \omega^\omega, \langle \omega, \beta \in \omega \} \) an \(I \)-\(L \)-\(F \) w.r.t. \(\mathcal{F}_{n,m} \) for each \(n, m \in \omega \) such that \(\mathcal{F}_{n,m} \supseteq \mathcal{F}_{n,m} \) and \(\mathcal{F}_{n,m} \) possesses the property \((P) \) for the partition \(\mathcal{D} \), \(\hat{I} \subseteq I \) and \(I - \hat{I} \) is finite.

Proof: Let us consider the set
\(\mathcal{C} = \{ \mathcal{F}_{j,\xi} ; (\exists \gamma \in \omega)(D_\gamma \in \mathcal{F}_{j,\xi}) \} \).
If \(\mathcal{F}_{j,\zeta} \in \mathcal{C} \) we put \(\mathcal{F}_{j,\zeta} = \mathcal{F}_{j,\zeta} \).

Let \(\mathcal{F}_{j,\zeta} \notin \mathcal{C} \). Take \(\xi \in I \) and define (similarly as K.Kunen does)
\[U_\gamma = \bigcup_{\xi \in \omega} (A_{\xi}^I \cap D_{\omega} \cup \gamma < \omega^\omega) \]
and \(\mathcal{F}_{j,\zeta} = \{ U_\xi ; \gamma < \omega^\omega \} \).
\[U_\gamma \supseteq A_{\xi}^I \cap D_{\omega} \cup \gamma < \omega^\omega, \]
\(\mathcal{C} \) is \(I \)-\(L \)-\(F \) w.r.t. \(\mathcal{F}_{j,\zeta} \).

To verify the property \((P) \), let \(\beta_1 < \beta_2 < \ldots < \beta_\delta < 2^\omega \).

The set \(U_{\beta_1} \cap U_{\beta_2} \cap \ldots \cap U_{\beta_\delta} \cap D_\zeta \) is a subset of
\[A_{\beta_1}^I \cap A_{\beta_2}^I \cap \ldots \cap A_{\beta_\delta}^I \cap D_\zeta \]
which is in fact finite.

The set \(\{ \mathcal{F}_{n,m} ; n, m \in \omega \} \) is stratified by the definition of \(\mathcal{C} \).

q.e.d.

Proof of Proposition 2.1. We construct ultrafilters
\(\mathcal{Q}_{n,m} \) by the transfinite induction in \(2^\omega \) stages.
At each stage \(\zeta < 2^\omega \) we will construct filters \(\mathcal{F}_{n,m} \).
and \(\mathcal{F}_{m,m} = \bigcup_{n \leq \omega} \mathcal{F}_{m,m}^{\leq} \). At the even stages we ensure that \(\mathcal{F}_{m,m} \) becomes ultrafilters and at the odd stages we ensure that \(\mathcal{F}_{m,m} \) will not belong into the closure of any countable discrete set of minimal ultrafilters. Simultaneously, at each stage we ensure that \(\mathcal{F}_{m,m} \) will belong into the closure of the set \(\{ \mathcal{F}_{m+1,\ell} ; \ell \in \omega \} \).

Let \(\{ B_{\ell} ; \ell \leq \omega, \ell \text{ even} \} \) enumerate all subsets of \(\omega \) and \(\{ D_{\ell} ; \ell \leq \omega, \ell \text{ odd} \} \) enumerate all partitions of \(\omega \). Let \(\mathcal{D}_\omega = \{ D_{\ell} ; \ell \in \omega \} \), in such a way that each partition occurs \(\ell^\omega \) many times in this enumeration.

Let \(\{ A_{\ell}^{\mathcal{D}_\omega} ; \ell < \omega, \mathcal{D} < \mathcal{D}_\omega, \mathcal{D} < \omega \} \) be independent linked family w.r.t. Fréchet filter \(\mathcal{F} \).

For each \(\mathcal{D} \), the system \(\{ A_{\ell}^{\mathcal{D} \mathcal{F}} ; \ell < \omega \} \) is almost disjoint. Put \(B_{m,m} = A_{m,m}^f \cup \bigcup_{\ell < \omega} A_{m,m}^{\mathcal{D} \ell} \). Let \(\{ C_{m} ; m \in \omega \} \) be a fixed partition of \(\omega \) on infinite sets. Suppose \(B_{m,m} \) is defined for each \(m \in \omega \). Put \(B_{m,m} = B_{m,m} \cap (A_{m,m}^f \cup \bigcup_{\ell < \omega} A_{m,m}^{\mathcal{D} \ell}) \) iff \(m \in C_\ell \). For each \(m \in \omega \), the system \(\{ B_{m,m} ; m \in \omega \} \) is pairwise disjoint.

Let \(\mathcal{G}_{m,m}^0 \) be a filter generated by \(\mathcal{F} \cup \{ B_{m,m} \} \cup \{ \omega - B_{m+1,\ell} ; \ell \in \omega \} \) for each \(m, m \in \omega \) and \(I_0 = 2^{\omega} - \omega \).

The set \(\{ A_{\ell}^{\mathcal{D} \mathcal{F}} ; \ell \in I_0, \ell < \omega, \mathcal{D} < \omega \} \) is ILF w.r.t. \(\mathcal{G}_{m,m}^0 \) for all \(m, m \in \omega \) according to Remark 1.2. (For each \(\mathcal{D} \in \mathcal{G}_{m,m}^0 \) there exist \(\mathcal{G} \in \mathcal{F} \) and \(A_{\ell}^{\mathcal{D} \mathcal{F}} ; \ell < m+1 \) satisfying \(\mathcal{D} \supseteq \mathcal{G} \cap \bigcup_{\ell=m+1} A_{\ell}^{\mathcal{D} \mathcal{F}} \)). The system \(\{ \mathcal{G}_{m,m}^0 ; m, m \in \omega \} \) is evidently stratified.

By the induction on \(\ell \leq 2^{\omega} \) we construct filters \(\mathcal{G}_{m,m}^\infty \) and an indexed set \(I_\infty \) with following properties:

- 763 -
1) If λ is even, we put $G_{\alpha, m, n}^{\omega+1} = \overline{G_{\alpha, m, n}^{\omega}}$ and $I_{\alpha+1} = \overline{I}_{\alpha}$ (using Lemma 2.2 where $B = B_{\alpha}$).

2) If λ is odd, $S_{\alpha} = \{D_{\alpha, \beta}; \beta \in \omega\}$ is a partition of ω and assume that:

(A) for each $\mu \in \omega$ there exists $\beta \subset \lambda$, β even such that $D_{\alpha, \beta} = D_{\beta}$, λ being the first odd ordinal with this property. Hence for each $\mu \in \omega$ we have $D_{\alpha, \mu} \in G_{\alpha, m, n}$ or $\omega - D_{\alpha, \mu} \in G_{\alpha, m, n}$.

Then we define $G_{\alpha, m, n}^{\omega+1} = \overline{G_{\alpha, m, n}}$, $I_{\alpha+1} = \overline{I}_{\alpha}$ (using Lemma 2.3 where $D_{\alpha} = D$).

If the condition (A) does not hold true, we simply set $G_{\alpha, m, n}^{\omega+1} = G_{\alpha, m, n}$ and $I_{\alpha+1} = I_{\alpha}$.

3) If λ is a limit ordinal we set $G_{\alpha, m, n}^{\omega+1} = \bigcup_{\beta \in \omega} G_{\alpha, m, n}^{\beta}$ and $I_{\alpha} = \bigcap_{\beta \in \omega} I_{\beta}$.

Finally we put $A_{m, n} = \bigcup_{\lambda \in \omega} G_{\alpha, m, n}$.

It remains to show that the set $\{A_{m, n}; m, n \in \omega\}$ satisfies the property required in Proposition 2.1.

Clearly, this set is stratified.

Assume that B is a partition of ω. Since each partition of ω occurs ω^{ω} many times in the enumeration $\{D_{\alpha, \mu}; \mu \in \omega; \lambda \text{ odd}\}$ there exists a sufficiently large odd λ such that $B = B_{\lambda}$ and the condition (A) is fulfilled. Now, we denote $C = \{q_{m, n} \mid (\exists \mu \in \omega)(D_{\alpha, \mu} \in q_{m, n})\}$ if $q_{m, n} \notin C'$ and $q_{m, n} \notin \overline{C_{\omega}}$ where $C_{\omega} = \{G_{\lambda, m, n}^{\omega}; (\exists \mu \in \omega)(D_{\alpha, \mu} \in G_{\lambda, m, n}^{\omega})\}$ then the family $\{u_{\alpha}; \gamma \subset \omega\}$ used in the construction of $G_{\alpha, m, n}^{\omega+1}$ according to the proof of Lemma 2.3 is the family desired by the proposition. Thus it is easy to show that

- 764 -
for \(q_{m,n} \notin \mathcal{C} \) also \(s_{m,n} \notin \mathcal{C} \).

In order to get a contradiction we suppose that there exists \(q_{m,n} \notin \mathcal{C} \) and \(s_{m,n} \in \mathcal{C}(\beta) \) where \(\beta \) is the first ordinal with this property. Clearly, \(\beta \neq 0 \). By the definition of \(\mathcal{C}(\beta) \), there exists \(B \in s_{m,n} \subseteq q_{m,n} \) such that \(B = \{ q_{\alpha+1}, \alpha \in \omega \} \subseteq \mathcal{C}(\beta-1) \). By the minimality of \(\beta \), each \(q_{\alpha+1}, \alpha \in \omega \) is an element of \(\mathcal{C} \).

This is a contradiction with the assumption of \(q_{m,n} \notin \mathcal{C} \).

q.e.d.

§ 3. Proof of the THEOREM. Now, we are ready to prove the main result. Theorem follows immediately from Proposition 2.1 and Lemma 3.1.

Lemma 3.1: If \(\{ q_{m,n} ; m,n \in \omega \} \) is a stratified set of ultrafilters with the property \((P) \) (of Proposition 2.1) then each \(q_{m,n} ; m,n \in \omega \) is a Simon point.

Proof: Since the set \(\{ q_{m,n} ; m,n \in \omega \} \) is stratified, each \(q_{m,n} \) is a nonminimal ultrafilter.

It remains to show that \(q_{m,n} \notin \overline{D} \) whenever \(D = \{ j \in \omega \} \) is a countable discrete set of minimal ultrafilters in \(\mathcal{F} \), \(m,n \in \omega \). Let \(\{ D_j ; j \in \omega \} \) be a partition of \(\omega \) such that \(D_j \in f_j \) for each \(j \in \omega \). Let \(C \) be as in Proposition 2.1. We show that \(C \cap \overline{D} = \emptyset \). Clearly, \(C(0) \cap \overline{D} = \emptyset \).

We proceed by induction. Suppose that \(C(\zeta) \cap \overline{D} = \emptyset \) and there exist \(\zeta, \eta \in \omega \) such that \(q_{\zeta,\eta} \in C(\zeta+1) \cap \overline{D} \). By Definition 1.7 there exists a set \(B \in q_{\zeta,\eta} \) with property \(q_{\zeta,\eta+1} \). This means that \(q_{\zeta,\eta} \in C(\zeta) \cap X_{\zeta+1} \).

Hence \(C(\zeta) \cap X_{\zeta+1} \cap \overline{D} \neq \emptyset \). But, this is impossible by Lemma 0.1 and Lemma 1.8.
Thus, if \(q_k, \ell \in i \) then \(q_k, \ell \notin D \).

Assume now \(q_k, \ell \notin \widehat{F} \) and \(\{ U_\zeta ; \zeta \in 2^\omega \} \leq q_k, \ell \) be such that for each \(\zeta \in \omega \) and for each \(\zeta_1 \prec \zeta_2 \prec \ldots \prec \zeta_\delta \), \(U_{\zeta_1} \cap U_{\zeta_2} \cap \ldots \cap U_{\zeta_\delta} \cap D \) is finite (the existence of \(U_\zeta \) follows from the property \((P)\)). Then for each \(\zeta \) there exist at most \(\zeta - 1 \) values of \(\zeta \) for which \(U_\zeta \in j_\zeta \). Thus there exists an ordinal \(\zeta \) such that \(U_\zeta \notin j_\zeta \) for each \(\zeta \in \omega \). This yields \(q_k, \ell \notin \widehat{D} \).

q.e.d.

References

[1] L. Bukovský, E. Butkovičová: Ultrafilter with \(\kappa \)
predecessors in Rudin-Frolik order, Comment. Math.

Soc. 73(1967), 87-91.

Matematický ústav SAV

Februárového víťazstva 9, 041 54 Košice
Czechoslovakia

(Oblatum 2.8. 1982)