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COMMENTAT!ONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
24,2(1983) 

NOTES ON DISTRIBUTIVE GROUPOIDS 

J.JEZEK , T.KEPKA 

Abstract: It is proved that every distributive groupoid 
is strongly trimedial. Various other similar results on the 
structure of distributive groupoids are derived. 

Key words: Distributive groupoid, quasigroup. 

Classification: 08A05, 20N99 

1« Introduction. We have begun the investigation of dis­

tributive groupoids in the paper [2] (with which the reader 

is assumed to be acquainted). Chapter IV of [2] revealed some 

deep connections between the distributive and medial laws, 

but left the following two important questions unanswered: 

Is every distributive idempotent groupoid symmetric-by-medial? 

Is every free distributive idempotent groupoid cancellative? 

Recently ([1]), the authors succeeded in answering both th«ae 

questions, and namely - in the affirmative. The aim of the 

present paper is to derive various (rather scattered) conse­

quences of these two results and to continue in the structure 

theory of distributive groupoids. 

2. Subdirectly irreducible distributive groupoids 

2.1. Proposition. Let G be a subdirectly irreducible 

(or, more generally, subdirectly q-irreducible) caneellative 
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distributive groupoid. Then G is a locally finite quasigroup. 

Proof. By [7Jt there exists a distributive quasigroup 

Q such that G is a dense subgroupoid of Q. Using Proposition 

V.2.5 of C2]f we see that Q is subdirectly q-irreducible. The 

variety of pointed distributive quasigroups is equivalent to 

the variety of special R-quasimodules for a commutative noet-

herian ring R (see [6l and [3.3)• Using this and Propositions 

4.17 and 5.5 of [3]# it is easy to show that every finitely 

q-generated subquasigroup of Q is finite. In particular, eve­

ry subgroupoid of Q is a quasigroup. 

2.2. Proposition. Let G be a subdirectly irreducible 

distributive idempotent groupoid containing no zero. 

(1) If %1(G)aidG»^r(G) then G is a locally finite quasi­

group. 

(2) If either ^ ( G ) ^ i<->G or Ar(G)4=id£} then G is medial. 

Proof. (1) By Lemma 3.3 of E1]f G is cancellative and 

the result follows from 2.1. 

(2) Let «%r(G)4-idG. By Proposition V.5.10 of [2] f 
/>2(G)4-idG. On the other hand, by Theorem 4.1 of C1]f there 

exists a congruence r of G such that G/r is medial and every 

block of r is symmetric. Clearly, rn^(G)»idGf so that r-*idG 

and G is medial. 

2»3» Proposition. Let G be a subdirectly irreducible 

distributive groupoid. Then at least one of the following 

three cases takes place: 

(1) G is medial. 

(2) G is a quasigroup. 
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(3) G contains a zero element 0, K«G\iO} is a subgroupoid 

of G and K is a quaaigroup. 

Proof. If G is not idempotent then G is medial by Coro­

llary III.1.9 of [2l. If G is idempotent, the assertion fol­

lows from 2.2 and from Proposition V.5.4 of C2]. 

Denote by W the variety of distributive groupoids satis­

fying the identities xy=yx and xlx.xy)-*xy. 

2.4. Proposition. Let GeW be idempotent and subdirectly 

irreducible. Then either G is symmetric or G contains a zero 

element 0, K-*G\-£0} is a subgroupoid of G and K is symmetric. 

Proof. We can assume that G contains no zero element. 

Since G is commutative, ^, (G)-*id«» A (G) and G is a quasi-

group by 2.2. Then G is symmetric. 

3* Some consequences 

3.1. Proposition. Every distributive groupoid satisfies 

the following identities: 

((x.xy)y)(uv)«((x.xy)u)(yv)f 

((yx.x)y)(uv)»((yx.x)u)(yv)f 

((x. yx)y) (uv) *-( (x.yx)u) (yv)-f 

(xy.yx) (uv)=-(xy.u) (yx.v). 

Proof. Any of these identities is satisfied in every 

cancellative distributive groupoid by Theorem IV.3.7 of 121. 

However, free distributive idempotent groupoids are cancel­

lative by Theorem 4»2. of C1J. for the non-idempotent case 

see Proposition IV.1.1 of L2l. 

3»2» Proposition. Let G be a distributive groupoid and 

let afbfcfdfd G be such that ab.cd-.-iri.bd. Then the sub-
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groupoid of G generated by a9t>9c9d is medial. 

Proo.f. We can assume that G is subdirectly irreducible. 

How9 the result is an easy consequence of 2.39 Proposition 

IV.2.7 of L23 and Theorem IV.2.8 of [2.3. 

In the terminology of [2j9 this means that every distri­

butive groupoid is strongly trimedial. 

for a distributive groupoid G9 define a relation (tc(G) 

on G by (a9b) e >o,(G) iff ab.xy-ax.by for all x9y€G. By 3.2, 

we have <a(G)- ^ Q 9 where ^ Q is defined in Section IV.3 of 

[23. 

3»3» Proposition. Let G be a distributive groupoid and 

a9beG. Then (a.ab9b)9 (ba.a9b)9 ( a . b a , b ) , (ab9ba) belong to 

<""(G). 

Proof. This is an Immediate consequence of 3.1. 

3.4. Proposition. Let G be a distributive groupoid. Then 

there exists a congruence r of G such that r £ ^(G) and 

G/reW. 

Proof. We can assume that G is subdirectly irreducible, 

idempotent and not medial. The result then follows from 2.4 

and Theorem IV.3.7 of [23. 

3.5. Proposition. Let G be a distributive groupoid and 

let a9b9c9deG be such that ab .cd4 -ao .bd . Denote by K the 

subgroupoid generated by these elements. Then there exists a 

congruence r of K such that K/r is a finite non-medial dist­

ributive quasigroup and K/r is subdirectly irreducible. 

Proof. There exists a congruence r of K such that H*-K/r 

is subdirectly irreducible and not medial. If H contains no 
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zero element then the result follows from 2.3 and 2.1. Suppo­

se that H contains a zero 0 and put A«H\*£o}. Then A is a 

distributive quasigroup and A is not medial. On the other hand, 

H is generated by four elements and it is easy to see that A 

is generated by three elements. Hence A is medial, a contra­

diction. 

3»6# Corollary. Let V be a class of distributive group-

oids closed under subgroupoids and homomorphic images. Suppose 

that no groupoid from V is a finite non-medial quasigroup. 

Then every groupoid from V is medial. 

3.7# Proposition. Let V be a class of groupoids closed 

under isomorphic images and subgroupoids and not containing a 

non-trivial symmetric groupoid. Let G be a distributive idempo-

tent groupoid and r be a congruence of G such that G/r is me­

dial and every block of r belongs to V. Then G is medial. 

Proof. By Theorem 4»1 of [13, there is a congruence 

of G such that G/s is medial and every block of s is symmetric. 

Clearly, rns»idQf and hence G is medial. 

4* Ideals 

4.1. Proposition. Let I be an ideal of a distributive 

idempotent groupoid G. Then G is isomorphic to a subgroupoid 

of I2>tIx(G/I). 

Proof. Denote by r the congruence (I^I)u IcU. For eve­

ry ae I, both L and R can be viewed as homoraorphisms of G 

into I. Clearly, rr> Pi-C Ker(Lft)n Ker(R&); aclj "ic-Q. 

4«>2. Corollary. Let I be an ideal of a non-medial dist-
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ributive idempotent groupoid G. Then either I or G/I is not 

medial. 

4*3* Lemma. Let I and K be two left ideals of a distri­

butive groupoid G. Suppose that both I and K are medial grou-

poidfl. Then the left ideal IuK is a medial groupoid. 

Proof. Put A-IuK. It suffices to show that f(A) is me­

dial whenever f is a homomorphism of G onto a subdirectly ir­

reducible distributive groupoid H. To this purpose, we can as­

sume that H is not medial. If H is a quasigroup, then f(I)«H, 

since f(I) is a left ideal of H, and hence H is medial, a 

contradiction. Now, by 2.3, H has a zero 0 and H\~iOj is a 

quasigroup. Again, since H is not medial and both f (I) and 

f(K) are left ideals of Hf we must have f(I)« -to} » f(K. Con­

sequently, f(A)» io} is medial. 

4»4» L e m m a* -"»e"fc G be a distributive groupoid and I be a 

left ideal of G such that I Is a medial groupoid. Then the i-

deal K of G generated by I is a medial groupoid. 

Proof. It suffices to show that f(K) is a medial group­

oid whenever f is a homomorphism of G onto a subdirectly irre­

ducible groupoid H. Proceeding similarly as in the proof of 

4.3, we can assume that H contains a zero element 0 and Kx£o5 

is a non-medial quasigroup. Since f(I) is a left ideal of H 

and f(I)4=H, we have f(I)« i0\ . However, then f(K)« \0\ is 

medial. 

For every distributive groupoid G denote by M(G) the u-

nion of all ideals of G which are medial groupoids. 

4*5. Proposition. Let G be a distributive groupoid such 
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that M(G) is non-empty. Then: 

(1) M(G) is an ideal of G and it is a moc" al groupoid. 

(2) Every left (or right) ideal of G which is a medial grou­

poid is contained in M(G). 

Proof. Apply 4.3 and 4.4. 

5. Perfect distributive groupoids. A distributive group­

oid G is called perfect if it satisfies the following quasii-

dentities: 

(xu.vz--xv.uz &. (xy.u)(vz)*(xy.v)(uz))—-> yu.vz»yv.uzf 

(xu.vz-sxv.uz & (yx.u)(vz)«(yx.v)(uz))—> yu.vz«yv.uzf 

(ux.vz--uv.xz <£ (u.xy)(vz)«(uv)(xy.z)) —> uy.vz*uv.yzf 

(ux.vzsuv.xz it (u.yx)(vz)-*(uv)(yx. z))—> uy.vz»uv.yzf 

(uv.zx=uz.vx & (uv)(z.xy)=(uz)(v.xy))—> uv.zy-uz.vy, 

(uv.zx»uz.vx & (uv)(z.yx)«(uz)(v.yx))—> uv.zy«uz.vy. 

The class of perfect distributive groupoids is thus a quasi-

variety. 

5.1. Proposition. A distributive groupoid G is perfect, 

provided it satisfies at least one of the following oonditions: 

(1) G is cancellative. 

(2) G is regular. 

(3) G is medial. 

Proof. See Proposition IV.2.7 of [2] and Theorem 4.1 of 

m. 

5.2. Proposition. Every ideal-free distributive groupoid 

is perfect. 

Proof. Let G be an ideal-free distributive groupoid. 

Without loss of generality,we can assume that G is subdirectly 
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irreducible and not medial. Then G contains no zero and G is 

a quasigroup by 2.3. Hence G is perfect by 5.1. 

5.3. Proposition. Let G be a left (or right) cancella-

tive distributive groupoid. Then G is perfect. 

Proof. By Lemma 2.5 of [13, G is a subgroupoid of a dis­

tributive groupoid H such that H is a left quasigroup. Then 

H is ideal-free and 5.2 can be applied. 

5.4. Proposition. Let G be a distributive groupoid which 

can be generated by four elements. Then G is perfect. 

Proof. Proceeding similarly as in the proof of 3.5, we 

can show that every subdirectly irreducible factor of G is 

perfect. 

5.5. Proposition. Let G be a perfect distributive group­

oid. Then <o.(G) is a congruence of G and G/ ̂ 6 (G) is symmetric. 

Proof. Apply 3.3 and Proposition IV. 3.3 of [2]. 

5-6. Corollary. Every perfect distributive groupoid is 

medial-by-symmetric. 

5.7. Proposition. Let H be a dense subgroupoid of a per­

fect distributive groupoid G. If H is medial then G is medial. 

Proof. Suppose that H is medial and denote by K a sub­

groupoid of G such that HfiK, K is medial and K is maximal 

with respect to these properties. It is enough to show that 

K is closed in G. For, let aeG, be K and abeK. Denote by A 

the subgroupoid generated by the set B«Ku-Cal. Since G is 

perfect and K is medial, xy.uv«xu.yv for all x,y,u,vcB. How, 

A is medial by Proposition IV.2.2 of [2], A»K and a e K. 
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5*8. Corollary. Let G be a perfect9 non-medial distri­

butive groupoid and I be a left (or right) ideal of G* Then 

X is not medial. Consequentlyt M(G)-0. 

5.9. Proposition. Let V be a class of groupoids closed 

under Isomorphic images and subgroupoids and containing no 

non-trivial symmetric groupoid. Let G be a distributive idem-

potent groupoid and r be a congruence of G such that G/r» is 

perfect and every block of r belongs to V. Then G is perfect. 

Proof. Similar to that of 3.7. 

5.1;0. Proposition. Let G be a finite, left- and right-

ideal-free distributive groupoid. Then G is a quasigroup. 

Proof. We shall proceed by induction on the number of 

elements of G. By Theorem V.6.6(i) of [2], G is regular and 

idempotent. It follows that if ^ (G)«icU-« £>(G) then G is can-

cell ativet and hence a quasigroupt since it is finite. Nowt 

we can assume that ^(G)-fcicL. Then, according to the induc­

tion hypothesis, the groupoid H--G/77 (G) is a quasigroup. Sin­

ce G is regular, H is isomorphic to the subgroupoid Ga of G 

for every aeG. Define a relation r on G by (a,b)e r iff Ga= 

«Gb. Then r is an equivalence. Further, let (a,b)e r and o€G. 

We have b*da for some de6 f bc»dc.ac# cb»cd.cat bee G.ac, 

cbeG.ca, (G.ac)(bc)»G.ac and (G.ca)(cb)=G.cat since both G.ac 

and G.ca are quasigroups. Hence G.ac £G.be and G.caCG.cb. The 

converse inclusions can be proved similarly and we see that r 

is a congruence of G. As abfeGb and thus Gb*G.ab for all atb e 

e Gt G/r is a semigroup of right zeros. On the other hand, if 

(atb)c r r. -̂  (G) then aa»cb for some ceG and (atc) € ^ (G) t 

since H is a quasigroup. Then a=-aa=-cb=ab=bb--b and we get 
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r n ii (G)»idg. Finally, G/r is a left- and right-ideal-free 

semigroup of right zerost so that T*QX(X and consequently 

^(G)--idc,t a contradiction. 

6* The radical & • In this section, the reader is sup­

posed to he acquainted with the theory of semipreradicals, as 

developed in [43 and [5J. 

Let V be a variety of groupoids. Consider the following 

two conditions for a semipreradical r on V: 

(D) If GtH€ V and f is a homomorphism of G onto H then 

f(r(G))£r(H). 

(L) If GtH€Vt H is a closed subgroupoid of G and if (atb)e 

e r(G) where aeH, then beH and (atb)er(H). 

6-1* Lemma. Let r, a be two semipreradicals on V satis­

fying (D) and (L). Then r:s satisfies (D) and (L). 

Proof. r:s satisfies (D) by Proposition 2.1 of C4-U •-»•* 

H be a closed subgroupoid of a groupoid G€.V; let (atb) e 

e (r:s)(G) and ae H. Denote by f the natural projection of G 

onto G/s(G) and put K«f(H). Then K is isomorphic to H/t where 

t=(HxH)ns(G). By (L) we have t£s(H). If f(cd)»f(e) where 

ctdte&G and c tesH then (cdte)es(G)t so that cdeH and d€ H. 

Similarly, if f(cd)«e where c,d,eeG and dteeH, then ceH. 

This shows that K is a closed subgroupoid of G/s(G). We have 

(f(a)tf(b))e r(G/s(G)) and f(a)e K. By (L) we get f (b) € K and 

(f(a)tf(b))€ r(K). There i s a o e H such that f(b)«f(c)t i.e. 

(b,c)c s(G). However, then beH. Denote by g the natural pro­

jection of K onto H/s(H). By (D) we have (gf (a) tgf (b)) € 

er(H/s(H)). Thus (atb) e (r:s)(H). 
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How consider the idempotent preradicals &^ and X on 

the variety of distributive idempotent groupoids. Define a 

chain r »r1f... of preradicals as follows: r «id| if i£ 1 is 

odd then r^« ^isri_i* *f i--" 2 is even then r^* ^r*
ri_i» *̂-e 

join of this (countable) chain of preradicals will be denoted 

by & . 

6.2. Proposition. 6 is an idempotent radical on the 

variety of distributive idempotent groupoids and 6 satisfies 

(--)• If G is a distributive idempotent groupoid then G/e(G) 

is both «^n- and X -torsionfree. 1 r 

Proof. Evidently$ both A, and A r satisfy (L). How it 

follows easily from 6.1 that s satisfies (L). The rest is easy. 

6.3. Proposition. Let G be an e-torsion distributive i-

dempotent groupoid. Then G is medial. 

Proof. Suppose that G is not medial. By 3.5, 6 contains 

a subgroupoid H such that a factorgroupoid of H is a non-medi­

al quasigroup. Since (by £.2) & satisfies (L), G is just the 

least closed subgroupoid of G containing H. Hence by Proposi­

tion V.2.5 of L23 every normal congruence of H can be extend­

ed to a normal congruence of G. Consequently, a factorgroupoid 

K of G is a non-medial quasigroup. Now, K must be an s -torsi­

on groupoid; on the other hand, K is cancellative and so both 

%-,- and ^ -torsionfree. a contradiction, l r ' 

6»4. Lemma. Let G be an e -torsion distributive idempo­

tent groupoid. Then every cancellative subgroupoid of G is tri­

vial. 
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Proof. Let H be a cancellative eubgroupoid of G. Since 

£ satisfies (L) 9 we can assume that H is dense in G. Then 

the identity congruence of H can be extended to a cancellati­

ve congruence r of G. Let f denote the natural homomorphism 

of G onto K«G/r. If a,beH then (a,b) e B (G), (f(a),f(b)) c 

c e (Kja-id-j, f(a)«f(b) and a-=b, since flH is injective. We ha­

ve proved that R\ is trivial. 

6»5# Lemma. Let 6 be a distributive idempotent groupoid 

and let r be a congruence of G such that every block of r is 

cancellative. Then r n © (G).*id£. 

Proof. Apply 6.4. 

6.6. Proposition. Let G be a distributive idempotent 

groupoid such that G/&(G) is medial. Then G is medial. 

Proof. By 6.5, e» (G) n r=-id« where r is a congruence of 

G such that G/r is medial and every block of r is symmetric. 

6.7. Proposition. Let G be a distributive idempotent 

groupoid such that G/G(G) is perfect. Then G is perfect. 

Proof. Similar to that of 6.6. 

R e f e r e n c e s 

til J. JE2EK, T. KEPKA: Distributive groupoids and syrametry-

by-mediality*(to appear). 

C21 J. JE2EK, T. KEPKA, P. HfiMEC: Distributive groupoids, 

Rozpravy CSAV, Rada Mat. a Prir. Ved, 91/3 

(1981), 1-94. 

C 33 T. KEPKA: Botes on qua.si*modulesf Comment. Math. Univ. 

Carolinae 20(1979), 229-247. 

141 T. KEPKA: Distributive.groupoids and preradicals, I, 

Comment. Math. Univ. Carolinae 24(1983), 

- 248 



183-197. 

15] T. KBPKAs Distributive groupoids and preradicalsf II f 
Comment. Math. Univ. Carolinae 24(1983)f 

199-209. 

161 T. KEPKA, P. NSMBCX Distributive groupoids and the fini­

te basis property, J. of Algebra 70(1981), 

229-237. 

[7J J. P. SOUBLINJ -ftude alge*bxique de la notion de moyennef 

J. Math. Pures et Appl. 50(1971)f 53-264. 

Matematicko-fyzikální fakultaf Universita Karlova, Sokolovská 
83, 18600 Praha 8, Czeohoslovakia 

(Oblátům 3.1.1983) 

249 -


		webmaster@dml.cz
	2012-04-28T09:07:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




