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NOTES ON DISTRIBUTIVE GROUPOIDS

J.JEZEK , T.KEPKA

Abgtract: It is proved that every distributive groupoid
is strongly trimedial. Various other similar results on the
structure of distributive groupoids are derived.
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1. Introduction. We have begun the investigation of dis-
tributive groupoids in the paper [2] (with which the reader
is assumed to be acquainted). Chapter IV of [ 2] revealed some
deep connections between the distributive and medial laws,
but left the following two important questions unanswered:
Is every distributive idempotent groupoid symmetric-by-medial?
Is every free diatributive idempotent groupoid cancellative?
Recently ([1]), the authors succeeded in answering both these
questions, and namely ~ in the affirmative. The aim of the
present paper is to derive various (rather scattered) conse-
quences of these two results and to continue in the strusture

theory of distributive groupoids.

2. Subdirectly irreducible distributive groupoids

2.1. Proposition. Let G be a subdirectly irreducible

(or, more generally, subdirectly g-irreducible) cancellative
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digtributive groupoid. Then G is a locally finite quasigroup.

Proof. By [7], there exists a distributive quasigroup
Q such that G is a dense spubgroupoid of Q. Using Proposition
V.2.5 of [2], we see that Q is subdirectly q-irreducible, The
variety of pointed distributive quasigroups is equivalent to
the variety of special R-quasimodules for a commutative noet-
herian ring R (see [6] and [3]). Using this and Propositions
4.17 and 5.5 of [3]), it is easy to show that every finitely
q-generated subquasigroup of Q is finite. In particular, eve-
ry subgroupoid of Q is a quasigroup.

2.2, Proposition. Let G be a subdirectly irreducible
distributive idempotent groupoid containing no zero.

(1) 1t ﬁi(G)aidG=|ﬂr(G) then G is a locally finite quasi-
group.
(2) If either ﬂ-l((})#idq or 7t,x_(G)=(=idG then G is medial.

Proof, (1) By Lemma 3.3 of [1], G is cancellative and
the result follows from 2.1.

(2) Let 2A_(6)#id;. By Proposition V.5.10 of [2],
n(G)4=idG. On the other hand, by Theorem 4.1 of [1], there
exigts a congruence r of G such that G/r is medial and every
block of r is symmetric. Clearly, rrﬁ?L(G)=idg, so that r=idG
and G is medial.

2.3. Proposition. Let & be a subdirectly irreducible
distributive groupoid. Then at least one of the following
three cases takes place:

(1) G is medial.
(2) G is a quasigroup.
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(3) G contains a zero element 0, K=G\{0} is a subgroupoid
of G eand K is a quasigroup.
Proof. If G is not idempotent then G is medial by Coro-
llary III.1.9 of [2], If G is idempotent, the assertion fol-
lows from 2.2 gnd from Proposition V.5.4 of [2]. ‘

Denote by W the variety of distributive groupoids satis-
fying the identities xy=yx and x(x.xy)=xy.

2.4. Proposition. Let GeW be idempotent and subdirectly
irreducible. Then either G is symmetric or G contains a zero
element 0, K=G\ {0} is a subgroupoid of G and K is symmetric.

Proof. We can assume that G contains no zero element.
Since G is commutative, A,(G)=idg= A_(G) and G is a quasi-

group by 2.2. Then G is symmetric.

3. Some consequences

3.1. Proposition. Every distributive groupoid satisfies
the following identities:

((xexy)y) (uv) =((xexy)u) (y¥),

((yx.x)y) (uv) =((yx.x)u) (yV),

((xeyx)¥) (uv) =((x. yx)u) (yv).,

(xy.yx) (uv) =(xy.u) (yx.v).

Proof, Any of these identities is satisfied in every
cancellative distributive groupoid by Theorem IV.3.7 of [2].
However, free distributive idempotent groupoids are cancel-
lative by Theorem 4.2. of [1]. For the non-idempotent case
see Proposition IV.1.1 of [2],

3.2, Proposition. Let G be a distributive groupoid and
let a,b,c,d,4d G be such that ab,cd=mn,bd. Then the sub-
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groupoid of G generated by a,b,c,d is medial.

Proof., We can assume that G is subdirectly irreducible.
Now, the result is an easy consequence of 2.3, Proposition
IV.2.7 of (2] and Theorem IV.2.8 of [2].

In the terminology of [2], this means that every distri-
butive groupoid is strongly trimedial.

For a distributive groupoid G, define a relation (L(G)
on G by (a,b)e (w(G) iff ab.xy=ax.by for all x,y€ G. By 3.2,
we have ((G)= ¢g» where w. is defined in Section IV.3 of
[2J.

3.3. Proposition. Let G be a distributive groupoid and
a,be G. Then (a.ab,b), (ba.a,b), (a.ba,b), (ab,ba) belong to
(@),

Proof., This is an immediate consequence of 3.1.

3.4. Proposition. Let G be a distributive groupoid. Then
there exists a congruence r of G such that rc w(G) and
G/reW,

Proof., We can assume that G is subdirectly irreducible,
idompotont‘and not medial. The result then follows from 2.4
and Theorem IV,3.7 of [2],

3.5. Proposition. Let G be a distributive groupoid and
let a,b,c,d€ G be such that ab.cd +ac.bd. Denote by K the
subgroupoid generafed by these elements. Then there exists a
congruence r of K such that K/r is a finite non-medial dist-
ributive quasigroup and K/r is subdirectly irreducible,

Proof. There exists a congruence r of K such that H=K/r
is subdirectly irreducible and not medial. If H contains no
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zero element then the result follows from 2.3 and 2,1. Suppo-
ge that H contains a zero O and put A=H\<{0}. Then A is a
distributive quasigroup and A is not medial. On the other hand,
H is generated by four elements and it is easy to see that A
is generated by three elements. Hence A is medisl, a contra-

diction.

3.6. Corollary. Let V be a class of distributive group-
oids closed under subgroupoids and homomorphic images. Suppose
that no groupoid from V is a finite non-medial quasigroup.
Then every groupoid from V is medial.

3.7. Proposition. Let V be a class of groupoids closed
under isomorphic imeges and subgroupoids and not containing e
non-trivial symmetric groupoid. Let G be a distributive idempo-
tent groupoid and r be a congruence of G such that G/r is me-
dial end every block of r belongs to V. Then G is medial.

Proof., By Theorem 4.1 of [1), there is a congruence
of G such that G/s is medial and every block of s is symmetric,
Clearly, rn s::l.dG, and hence G is medial.

4, Ideals

4.1, Proposition. Let I be an ideal of a distributive
idempotent groupoid G. Then G is isomorphic to a subgroupoid
ot 121 (a/1).

Proof. Denote by r the congruence (Ix<I)u idG. For eve-
ry a€l, both I‘a end Ra can be viewed as homomorphisms of G
into I. Clearly, rnf) {Rer(Ly)nKer(R,); ac I3 =1d5.

4.2, Corollary. Let I be an ideal of a non-medial dist-
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ributive idempotent groupoid G. Then either I or G/I is not
medial.

4.3, Lemma. Let I and K be two left ideals of a distri-
butive groupoid G. Suppose that both I and K are medial grou-
poids. Then the left ideal IVvK is a medial groupoid.

Proof, Put A=IuK. It suffices to show that f£(A) is me-
dial whenever f is a homomorphism of G onto a subdirectly ir-

reducible distributive groupoid H. To this purpose, we can asg-

sume that H is not mediel. If H is a quasigroup, then £(I)=H,
since f(I) is a left ideal of H, and hence H is medial, a
contradiction. Now, by 2.3, H has a zero O and H\{0} is a
quasigroup. Again, since H is not medial and both £{I) and
£(K) are left ideals of H, we must have £(I)= {0} = £(K. Con~
sequently, f(A)= §0} is medial.

4.4, Lemma., Let G be a distributive groupoild and I be a

left ideal of G such that I is a medial groupoid. Then the i-
deal K of G generated by I is a medial groupoid.

Proof. It suffices to show that f(K) is a medial group-
0id whenever £ is a homomorphiam of G onto a subdirectly irre-
ducible groupoid H. Proceeding similarly as in the proof of
4.3, we can assume that H contains a zero elemsnt O and H™\ {03
is a non-medial quasigroup. Since f£(I) is a left ideal of H
and £(I)+H, we have £(I)= {0t . However, then £(K)= {0} is
medial.

Por every distributive groupoid G denote by M(G) the u-
nion of all ideals of G which are medial groupoids.

4.5. Proposition. Let G be a distributive groupoid such
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that M(G) is non-empty. Then:

(1) M(G) is an ideal of G and it is a mc? al groupoid.

(2) Every left (or right) ideal of G which is a medial grou-
poid is contained in M(G).
Proof. Apply 4.3 and 4.4.

5. Perfect distributive groupoids. A distributive group-
oid G is called perfect if it satisfies the following quasii-

dentities:
(xu.vz=xv,uz & (xy.u)(vz)=(xy.v) (uz)) — yu.vz=yv.uz,
(xu.vz=xv.uz & (yx.u)(vz)=(yx.v)(uz))— yu.vzayv.uz,
(ux.vz=uv.xz & (u.xy)(vz)=(uv)(xy.z)) —> uy.vz=uv.yz,
(ux.vz=uv.xz & (u.yx)(vz)=(uv)(yx.z)) — uy.vz=uve.yz,
(uv.zx=uz.vx & (uv)(z.xy)=(uz)(v.xy)) —> uv.zy=uz.vy,
(uv.zx=uz.vx & (uv)(z.yx)=(uz)(v.yx))—> uv.zy=uz.vy.

The class of perfect distributive groupoids is thus a quasi-

variety.

5.1. Proposition. A distributive groupoid G is perfect,
provided it satisfies at least one of the following conditions:
(1) G is cancellative.

(2) G is regular.
(3) G is medial.

Proof. See Proposition IV.2.7 of [ 2] and Theorem 4.1 of

1],

5.2, Proposition. Every ideal-free distributive groupoid
is perfect.

Proof. Let G be an ideal-free distributive groupoid.
Without loss of generality,we can assume that G is subdirectly
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irreducible and not medial. Then G contains no zero and G is

a quasigroup by 2.3, Hence G is perfect by 5.1.

5.3. Proposition. Let G be a left (or right) cancella-
tive distributive groupoid. Then G iz perfect.

Proof. By Lemma 2.5 of [1], G is a subgroupoid of a dia-
tributive groupoid H such that H is a left quasigroup. Then
H is ideal-free and 5.2 can be applied.

5.4. Proposition. Let G be a distributive groupoid which
can be generated by four elements. Then G is perfect.

Proof. Proceeding similarly as in the proof of 3.5, we
can show that every subdirectly irreducible factor of G is

perfect.

5¢5¢ Proposition. Let G be a perfect distributive group-
oid. Then w(G) is a congruence of G and G/ « (G) is symmetric.
Proof. Apply 3.3 and Proposition IV.3.3 of [2].

5.6, Corollary., Every perfect distributive groupoid is
medial-by-symmetric.

5.7. Proposition. Let H be a dense subgroupoid of a per-
fect distributive groupoid G. If H is medial then G is medial.

Proof. Suppose that H is medial and denote by K a sub-
groupoid of G such that Hc K, K is medial and K is maximal
with respect to fhese properties., It is enough to show that
K is closed in G, For, let aeG, be K and abe K. Denote by A
the subgroupoid generated by the set B=Kuf{al. Since G is
perfect and K is medial, xy.uvsxu.yv for all x,y,u,v€B, Now,
A is medial by Proposition IV.2.2 of [2], A=K and acK.
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5.8. Corollary. Let G be a perfect, non-mediel distri-
butive groupoid and I be a left (or right) ideal of G. Then
I is not medial. Consequently, M(G)=g.

5.9. Proposition. Let V be a class of groupoids closed
under isomorphic imeges and subgroupoids and containing no
non-trivial symmetric groupoid. Let G be a distributive idem-
potent groupoid end r be a congruence of G such that G/r is
perfect and every block of r belongs to V. Then G is perfect.

Proof. Similar to that of 3.7.

5,10, Proposition. Let G be a finite, left- and right-
ideal-free distributive groupoid. Then G is a quasigroup.

Proof. We shall proceed by induction on the number of
elements of G, By Theorem V.6.6(i) of [2], G is regular and
idempotent. It follows that if 'rl(G)=idG-So(G) then G is can-
cella%ive, and hence a quasigroup, since it is finite. Now,
we can assume that 7 (G)+1d;. Then, according to the induc-
tion hypothesis, the groupoid H=G/ 7 (G) is a quasigroup. Sin-
ce G is regular, H is isomorphic to the subgroupoid Ga of G
for every a€ G. Define a relation r on G by (a,b)e r iff Ga=
=Gb, Then r is an equivalence, Further, let (e,b)e r and ceG.
We have b=da for some d€ G, be=dc.ac, cb=cd.ca, bceG.ac,
cbe G.ca, (Geac)(be)=G.ac and (G.ce)(cb)=G,ca, since both G.ac
and G.ca are quasigroups. Hence G.ac £G.bc and G.ca%G.cb. The
‘converse inclusions can be proved similarly and we see that r
is a congruence of G. As abeGb and thus Gb=G.ab for all a,be
€ G, G/r is a semigroup of right zeros. On the other hand, if
(ayb)e r n 7 (G) then am=cb for some ceG and (a,c) € 7 (G),

since H is a quasigroup. Then a=aa=cb=ab=bb=b and we get
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rnaq (G)-idg. Finally, G/r is a left- and right-ideal-free
semigroup of right zeros, so that r=G <G and consequently
'Q(G)-idG, a contradiction.

6. The radical € . In this section, the reader is sup-
posed to be acquainted with the theory of semipreradicals, as
developed in [4] and [5].

Let V be a variety of groupoids. Consider the following
two conditions for a semipreradical r on V:

(D) If G,HeV and f is a homomorphism of G onto H then

£(r(G)) < r(H).

(L) If G,HeV, H is a closed subgroupoid of G and if (a,b)e

e r(G) where acH, then beH and (a,b) e r(H).

6.1. Lemma, Let r, s be two semipreradicals on V satis-
tying (D) and (L). Then r:s satisfies (D) and (L).

Proof., 1r:s satisfies (D) by Proposition 2.1 of [4]. Let
H be a closed subgroupoid of a groupoid GeV; let (a,b) €
e (r:8)(G) and ae H. Denote by £ the natural projection of G
onto G/a8(G) and put K=£(H). Then K is isomorphic to H/t where
t=(Hx<x H)n 8(G). By (L) we have t<s8(H). If £(cd)=f(e) where
c,d,ecG and c,ec H then (cd,e) e 8(G), so that cde H and d€ H,
Similarly, if f£(cd)=e where c,d,ecG end d,ecH, then ceH.
This shows that K is a closed subgroupoid of G/s(G). We have
(£(a),f(b))e r(G/s(G)) and f£(a)e K, By (L) we get f£(b)ec K and
(£(a),2(b)) e r(K). There is a ¢ ¢H such that £(b)=f£(e), i.e.
(b,c)c 8(G). However, then be H, Defiote by g the natural pro-
jeotion of K onto H/s(H). By (D) we have (gf(a),gf(b)) €
€ r(H/s(H)). Thus (a,b) e (r:s)(H).
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Now consider the idempotent preradicals .'7&.1 and Z‘r on
the variety of distributive idempotent groupoids. Define a
chain T ,Tqjsees of preradicals as follows: ronid; it 1iZ1 is
0dd then ry= Aj:r; .3 1f 122 is even then ry= A sr, ,. The
join of this (countable) chain of preradicals will be denoted
by © .

6.2. Propogition. © 1is an idempotent radical on the
variety of distributive idempotent groupoids and & satisfies
(L). If G is a distributive idempotent groupoid then G/ ¢ (G)
is both A,- and A -~torsionfree.

Proof. Evidently, both A, and A, satisfy (L). Now it
follows easily from 6.1 that ¢ satisfies (L). The rest is easy.

6.3. Proposition. Let G be an ¢ -torsion distributive i-
dempotent groupoid. Then G is medial.

Proof. Suppose that G is not medial. By 3.5, G contains
a subgroupoid H such that a factorgroupoid of H is a non-medi-
al quasigroup. Since (by 6.2) & satisfies (L), G is just the
least closed subgroupoid of G containing H. Hence by Proposi-~
tion V.2.5 of [2] every normal congruence of H can be extend-
ed to a normal congruence of G, Consequently, a factorgroupoid
K of G is a non-medial quasigroup. Now, K must be an ¢ -torsi-
on groupoid; on the other hand, K is cancellative and so both

?\al- and %r-torsionfree, a contradiction.

6.4, Lemma. Let G be an € -torsion distributive idempo-
tent groupoid. Then every cancellative subaroupoid of G is tri-
vial.
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Proof. Let H be a. cancellative subgroupoid of G. Since
& satisfies (L), we can assume that H is dense in G. Then
the identity congruence of H can be extended to a cancellati-
ve congruence r of G. Let £ denote the natural homomorphism
of G onto K=G/r. If a,beH then (a,b) € &(G), (£(a),2(b)) <
c e (K)-idx, £(a)=£(b) and a=b, since f£|H is injective. We ha-
ve proved thaet H 1is trivial.

6.5. Lemma, Let G be a distributive idempotent groupoid

and let r be a congruence of G such that every block of r is
cancellative. Then r ne (G)sidg.
Proof. Apply 6.4.

6.6. Proposition. Let G be a distributive idempotent
groupoid such that G/ € (G) is medial. Then G is medial,

Proof. By 6.5, a(G)n r=idG where r is a congruence of
G such that G/r is medial and every block of r is symmetric.

6.7. Propogition. Let G be a distributive idempotent
groupoid such that G/ € (G) is perfect. Then G is perfect,
Proof. Similar to that of 6.6.
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