MONOMORPHISMS AND EPIMORPHISMS OF INVERSE SYSTEMS
L. STRAMACCIA

Abstract: Monomorphisms and epimorphisms in a category Pro-\(C\) are studied. Characterizations of such morphisms are obtained in case \(C = \text{SET}\) or \(C\) is a topological category over \(\text{SET}\).

Key-words: inverse system, Pro-category, topological functor, pro-reflective subcategory.

0. INTRODUCTION. Given a category \(C\), Pro-\(C\) denotes the category of inverse systems in \(C\) and their morphisms, following Grothendieck’s definition [6]. The notion of inverse systems and the pro-categories have been widely used in Algebraic Topology and, after the work of Mardešić and Segal [10,11], they are a fundamental tool in the study of Shape Theory, in all its aspects. Nevertheless, there exist, up to author’s knowledge, no characterizations of monomorphisms and epimorphisms in Pro-\(C\) yet.

In this note we give some necessary and sufficient conditions in order to recognize special morphisms in that category. We shall be mainly concerned with those (Pro-\(C\))-morphisms having as domain or codomain a rudimentary system, i.e. a system formed by a single object of \(C\). Such morphisms are interesting since they play a central role in Shape Theory and in recent investigations in Categorical Topology, concerning the connections between (epi-) reflective

Work partially supported by G.N.S.A.G.A.-C.N.R.
Part of the paper was presented at "National Topology Meeting" 1983 L'Aquila.
and (epi-) pro-reflective subcategories [3,4,5,12,13].

Most of the results of the paper are contained in section 2 where we characterize monomorphisms and epimorphisms of Pro-SET having rudimentary domain or codomain; then we extend those results to any topological category over SET [7,8]. This is possible since the following holds: if U:C→SET is a topological functor, so is its extension Pro-U:Pro-C→Pro-SET which, therefore, preserves and reflects monomorphisms and epimorphisms.

Thanks are due to the referee for having suggested the last result and for many valuable advices about the general arrangement of the paper.

1. NOTATIONS AND PRELIMINARY RESULTS. The main reference for this note is Ch.I of [11]. The categorical terminology comes from [9].

DEFINITIONS. Let C be any category.

1.1. An inverse system \(K = (K_i, p_{ij}, I) \) in C is a collection \(\{K_i\}_{i \in I} \) of C-objects indexed over a directed set \((I, \leq)\), endowed with bonding morphisms \(p_{ij}: K_j \rightarrow K_i \), whenever \(i \leq j \), in such a way that \(p_{ii} = \text{identity} \) and \(p_{ij} \circ p_{jk} = p_{ik} \) for \(i \leq j \leq k \).

1.2. A morphism \(p: X \rightarrow K \) from a C-object \(X \) (== rudimentary system) to a system \(K \), is given by a family \(\{ p_i: X \rightarrow K_i \}_{i \in I} \) of C-morphisms, such that \(p_{ij} \circ p_i = p_j \), for all \(i \leq j \); then \(p \) is a natural source in C ([9],p.133).

1.3. A morphism \(q: H \equiv Y \) from a system \(H = (H, q_a, A) \) to a C-object \(Y \) (= rudimentary system), is an equivalence class of C-morphisms from some \(H \) to \(Y \). \(q_a: H \equiv Y \) and \(q_b: H \equiv Y \) are two representatives of \(q \) iff there is a \(c \in A \), \(c \geq a,b \), such that \(q_a \circ q_{ac} = q_b \circ q_{bc} \).

Let us call a morphism with rudimentary codomain \(q: H \equiv Y \) full iff it admits a representative \(q^*: H \equiv Y \), for all \(a \in A \).

1.4. A morphism of systems \(f: H \rightarrow K \) is a family \(\{ f_i: H \rightarrow K_i \}_{i \in I} \) of morphisms of type 1.3., such that \(f_{ij} = p_{ij} \circ f_i \), whenever \(i \leq j \). The composition is defined in the obvious way.
Inverse systems in C and their morphisms form the category Pro-C.

1.5. Given two (Pro-C)-morphisms $f: H \to K$ and $g: K \to R$, we can define their composition $g \cdot f$ to be given by the natural source in Pro-C \(g \cdot f : H \to K \to R \mid c \in C \). Also, we can think of $g \cdot f$ as the natural source in Pro-C \(\{ g \cdot f \psi(c) : H \to K \to R \mid c \in C \} \), where g_c is a representative of g and where $\psi : C \to I$ is a suitable function.

1.6. A pre-order (I, \leq) is cofinite provided for all $i \in I$ the set \(\{ i \in I \mid i \leq j \} \) of its predecessors, is finite.

An inverse system with cofinite index set will be called a cofinite system.

PROPOSITION 1.7. Let $q': H' \to Y$. There exist an isomorphism $h : H \to H'$ in Pro-C and a full morphism $q : H \to Y$ such that $q = q' \cdot h$ and H is cofinite.

Proof. Let $H' = (H', q', A')$ and let \tilde{A} denote the subset of A' of all those indexes $a \in A'$ for which there exists a representative $q_i : H' \to Y$ of q'. Since \tilde{A} is a directed cofinal subset of A', if we let \bar{H} denote the subsystem of H' indexed over \tilde{A}, then the restriction morphism ([11], p.8) $h' : \bar{H} \to H'$ is an isomorphism in Pro-C. To conclude apply Theor.2, p.10 of [11] to obtain an isomorphism $h : \bar{H} \to \bar{H}$, with \bar{H} cofinite, and put $q = q' \cdot h$, where $h = h' \cdot h$.

1.8. By the preceding result, every time we are given a (Pro-C)-morphism with rudimentary codomain $q : H \to Y$, we may suppose, without loss of generality, that H is cofinite and q is full.

As a consequence, for every such q we can choose a natural sink $q^* = (q_a : H \to Y \mid a \in A)$ of representatives of q. If $a \in A$, take a unique representative q_{a_i} of q for each predecessor a_i of a and let q_a be the common value of the compositions $q_{a_i} \cdot q_{a \setminus a_i}$, for all i.

We say that q^* is a sink representing the (Pro-C)-morphism q. Obviously q does not determine q^* uniquely. If $q^* = (q'_a)$ is another sink representing q, then for all $a \in A$ there is $b \in A$ such that $q'_a = q'_b$. We express this fact by saying that the sinks q^* and q^* are cofinally equal or, simply, cofinal.

One easily verifies that if q^* , q^* are sinks representing (Pro-C)-morphisms $q , \tilde{q} : H \to Y$, respectively, then q^* and q^* cofinal implies $q = \tilde{q}$.

1.9. Recall from [7,8] that a functor $U: C \to D$ is topological if it admits
all initial (and final) liftings. In particular, every topological functor is
cotopological and preserves and reflects monomorphisms and epimorphisms \([7,8]\).

A concrete category \(C = (C, U: C \rightarrow \text{SET})\) is a topological category over \(\text{SET}\) when
the forgetful functor \(U\) is topological.

In the sequel \(H, K\) and \(R\) will always denote inverse systems \(H = (H, q, A), K = (K, p, I)\) and \(R = (R, r, C)\), unless otherwise specified.

2. MONOMORPHISMS AND EPIMORPHISMS WITH RUDIMENTARY DOMAIN OR CODOMAIN.

DEFINITION 2.1. Let \((A, \leq)\) be a directed set. A sink \(\{q_a : H \rightarrow Y \mid a \in A\}\) is said to be an epico
cofinal sink iff the following holds:
given \(f, g: Y \rightarrow Z\) with the property that for all \(a \in A\) there is an index \(b \geq a\) such
that \(f \circ q_b = g \circ q_b\), then \(f = g\).

Every epico
cofinal sink is an episink (\([9], \text{p.127}\)).

If \(q: H \rightarrow Y\) has a representing epico
cofinal sink, then every sink representing \(q\) is epico
cofinal.

THEOREM 2.2. \(q: H \rightarrow Y\) is an epimorphism in \(\text{Pro-C}\) iff \(q\) has a representing
epico
cofinal sink.

Proof. Let \(f, g: Y \rightarrow K\) be such that \(f \circ q = g \circ q\). This means that \(f \circ q = g \circ q\)
for all \(i \in I\). Let \(q^* = \{q_a : a \in A\}\) be an epico
cofinal sink representing \(q\); the sinks \(f \circ q^*\) and \(g \circ q^*\) are cofinal since they represent the same \((\text{Pro-C})\)-
morphism, hence
for all \(a \in A\) there is an index \(b \geq a\) such that \(f \circ q_b = g \circ q_b\), so that \(f \circ q^* = g \circ q^*,\)
by the hypothesis on \(q^*\), and this is true for all \(i \in I\). It follows \(f = g\) and \(q^*\) is an
epimorphism.

Let now \(q\) be an epimorphism in \(\text{Pro-C}\) and let \(q^*\) be a sink which represents \(q\).
Let \(f, g: Y \rightarrow Z\) be \(C\)-morphisms such that for all \(a \in A\) there is a \(b \geq a\) with \(f \circ q_b = g \circ q_b\).
Since \(f \circ q_b\) and \(g \circ q_b\) represent, respectively, \(f \circ q\) and \(g \circ q\), it follows
that \(f \circ q = g \circ q\), hence \(f = g\), since \(q\) is an epimorphism. Then \(q^*\) is epico
cofinal.

PROPOSITION 2.3. In \(\text{SET}\) one has:

i) \(\{p_i : X \rightarrow K_1 \mid i \in I\}\) is a monosource iff it separates points of \(X\).

ii) \(\{q_a : a \in A\}\) is an episink iff it covers points of \(Y\), i.e. for all
As we have already seen, an epic-final sink is a particular episink, hence, in SET it covers points of the codomain. The next theorem shows that a natural sink \(q \) in SET is epic-final iff it covers points in a special way.

Theorem 2.4. A natural sink \(q = (q_a) \) in SET is epic-final iff the following property holds:

(a) for every \(y \in Y \) there exists \(a \in A \) such that \(q^{-1}_a(y) \neq \emptyset \), for all \(b \geq a \).

Proof. Let \(q \) be a sink which satisfies condition (a); let \(f, g : Y \to Z \) be maps such that for all \(a \in A \) there is \(b \geq a \) with \(f \circ q_b = g \circ q_b \). It is easy to verify that in this situation one has \(f \circ q_c = g \circ q_c \) for all \(c \geq b \), too. Let us prove that \(f = g \). If \(y \) is any point in \(Y \), then there exists \(a \in A \) such that \(q^{-1}_b(y) \neq \emptyset \) for all \(b \geq a \). It is possible to choose \(b \) in order to have \(f \circ q_b = g \circ q_b \), at the same time. Then \(f(y) = (f \circ q_a)(h) = (g \circ q_a)(h) = g(y) \), for some \(h \in q^{-1}_b(y) \).

Suppose now that \(q \) is an epic-final sink and that (a) does not hold. Then there exists \(y_0 \in Y \) such that for every \(a \in A \) there is \(b(a) \geq a \) with \(q^{-1}_b(y_0) = \emptyset \).

Define two maps \(f, g : Y \to Y \) as follows. \(f = 1 \), and, if \(Y' = \bigcup_{a \in A} \text{Im } q_a \), let \(g|_{Y'} = \text{identity}, \quad g|_{Y - Y'} = \text{constant map of value } \overline{y} \in Y'. \) Then \(f \) and \(g \) are two maps which agree, at \(1 : a \in A \), on \(y_0 \) and with the property that for every \(a \in A \) there is \(b(a) \geq a \) such that \(f \circ q_{b(a)} = q \circ q_{b(a)} \). But this last equality, by epicfinality of \(q \), implies \(f = g \), which is a contradiction.

Corollary 2.5. \(g : H \to Y \) is an epimorphism in Pro-SET iff \(g \) admits a representing sink \(q \) which satisfies condition (a) above.

Also (Pro-SET)-epimorphisms with rudimentary domain have a nice characterization.

Theorem 2.6. \(p : X \to K \) is an epimorphism in Pro-SET iff for all \(i \in I \) such that \(p_i : Y \to K \) is not onto, there exists an index \(j \geq i \) with \(\text{Im } p_{ij} \subset \text{Im } p_i \).

Proof. If \(p_i \) is onto for all \(i \in I \), then \(p \) is an epimorphism in Pro-SET.

Suppose that \(p \) is an epimorphism in Pro-SET and let \(p_i : X \to K \) be not surjective. Let us consider maps \(f, g : K \to K \), given by \(f = 1 - k, \quad g|_{\text{Im } p_i} = \text{identity}, \quad g|_{K - \text{Im } p_i} \). Then \(f = g \), and thus \(p_i \) is onto for all \(i \in I \).
Since f_i and g_i represent (Pro-SET)-morphisms $f, g: K \to K_i$ and since $f_i p_i = g_i p_i$, it follows that $f p = g p$, so that $f = g$, p being an epimorphism. This equality means that there is a $j \geq i$ such that $f_i p_{ij} = g_i p_{ij}$, which implies $\text{Im } p_{ij} \subseteq \text{Im } p_i$, since, by definition $\text{Im } g_i = \text{Im } p_i$.

Conversely, let $p: X \rightarrow K$ be a (Pro-SET)-morphism with the property that for all i in I such that p_i is not onto, there is a $j \geq i$ with $\text{Im } p_{ij} \subseteq \text{Im } p_i$. Let us prove that p is an epimorphism in Pro-SET. Let $f, g: K \rightarrow H$ be such that $f p = g p$.

We may suppose, without any restriction, that K and H are indexed over the same directed set I and that f, g admit as representatives the level maps $(f_i, 1)$, $(g_i, 1)$, respectively ([11], Th.3.3). Then, from $f p = g p$ one obtains that $f_i p_i = g_i p_i$, for all $i \in I$. If p_i is not onto, let $j \geq i$ be in the hypothesis: $p_{ij} p_j = p_i$; hence $f_i p_{ij} p_j = g_i p_{ij} p_j$. Now, let $x \in K_j$, then there exists an $x \in X$ such that $p_{ij}(x) = p_i(x)$; it follows $(f_i p_{ij})(x) = f_i(p_i(x)) = g_i(p_i(x)) = (g_i p_{ij})(x)$, hence $f_i p_{ij} = g_i p_{ij}$, that is $f = g$ in Pro-SET. Hence p is an epimorphism.

Proposition 2.7. $p: X \rightarrow K$ is a monomorphism in Pro-SET iff the source p_i separates points of X.

Proof. By Proposition 2.3.11).

Theorem 2.8. $q: H \rightarrow Y$ is a monomorphism in Pro-SET iff there exists a sink $q = (q_a)$ representing q which satisfies the following property:

(8) for every $a \in A$ there is $b \geq a$ such that q_b is injective.

Proof. Let us prove that condition (8) is sufficient. Let $f, g: K \rightarrow H$ be such that $q f = q g$. We may suppose, as in the proof of 2.6., that H and K are indexed over the same directed set A, $K = (K_a)_{a \in A}$, and that f, g are represented by level maps $(f_a, 1)$, $(g_a, 1)$, respectively. In this case the sinks $\{ q_a f_a : K \rightarrow Y \mid a \in A \}$ and $\{ q_a g_a : K \rightarrow Y \mid a \in A \}$ must be cofinal, since they represent the same (Pro-SET)-morphism with rudimentary codomain; hence for every $a \in A$ there is $c \geq a$ such that $q_a f_a = q_c g_{c}$. Let now $d \in A$, $d \geq a, b, c$ and consider the following diagram:

$$
\begin{array}{cccc}
q_{a} & f_{a} & K & \rightarrow & Y \\
\downarrow & & \| & & \downarrow \\
q_{c} & g_{c} & K & \rightarrow & Y
\end{array}
$$
which gives \(q \cdot f \cdot p_{bd} = q \cdot f \cdot p_{ad} = q \cdot f \cdot p_{cd} \) and \(q \cdot g \cdot p_{bd} = q \cdot g \cdot p_{ad} \).

By the assumption that \(q \cdot f \) is a monomorphism, it follows \(f \cdot p_{bd} = q \cdot g \cdot p_{bd} \) and also \(q \cdot f \cdot p_{bd} = q \cdot g \cdot p_{bd} \), since \(q \cdot g \) is a monomorphism. Finally, one has \(f \cdot p_{ad} = a \cdot p_{ad} \).

Consider the level maps \((f, 1)\), \((g, 1)\) represent the same \((\text{Pro-SET})\)-morphism, that is \(f = g \) and \(q \) is a monomorphism.

Conversely, let \(q: H \to Y \) be a monomorphism in \(\text{Pro-SET} \) and let \(\mathbf{q} = (q_A) \) be a sink representing \(q \). Suppose that \(\mathbf{q} \) does not satisfy condition \((\beta)\), then there exists an index \(a_0 \) in \(A \) such that for all \(b \geq a_0 \), \(q_b \) is not injective. Hence, for all \(b \geq a_0 \), there are \(h'_b \neq h''_b \) in \(H_b \) such that \(q_b(h'_b) = q_b(h''_b) \). Define maps \(f, g: H \to H \), for all \(a \in A \), as follows: \(f = 1 \), \(g = 1 \), for all \(a \in A \), and if \(A = \{ b \in A | b \geq a \} \), let \(q_a = 1 \), for all \(a \in A \), while, for \(b \in A \), let \(q_b: H_b \to H_b \) be the map which permutes \(h'_b \) and \(h''_b \) and leaves all other points fixed.

Moreover, for every \(a \leq b \) in \(A \) let \(q_{ab}: H_b \to H_a \) be a map which makes the following diagram commutative

\[
\begin{array}{ccc}
H & \xrightarrow{q_b} & H \\
\downarrow {q_{ab}} & & \downarrow {q_{ab}} \\
H & \xrightarrow{q_a} & H \\
\end{array}
\]

Note that \(q_{ab} \) will act the same as \(q_{ab} \) up to a rearrangement of its values on \(h'_b, h''_b, q^{-1}(h'_b), q^{-1}(h''_b) \), when needed.

From the above it follows that \((H, q_{ab}, A)\) is an inverse system in \(\text{SET} \), denoted by \(\prod H \), while \((f, 1), (g, 1)\) are level maps which represent \((\text{Pro-SET})\)-morphisms.
Let now \((C, U: C \rightarrow \text{SET})\) be a concrete category and let \(\text{Pro-}U: \text{Pro-C} \rightarrow \text{Pro-SET}\), \(K \mapsto \text{UK} = (\text{UK}, \text{Up}, I)\), be the extension of \(U\) to the pro-categories.

Theorem 2.9. If \((C, U: C \rightarrow \text{SET})\) is a topological category over \(\text{SET}\), then \(\text{Pro-}U\) is a topological functor.

Proof. It suffices to prove that every \((\text{Pro-}U)\)-sink \(\{f^a: \text{UK}^a \rightarrow S | a \in A\}\), \(S = (S, s, A) \in \text{Pro-SET}\), has a unique \((\text{Pro-}U)\)-final lifting; that is there exists a unique, up to isomorphisms, \(H \in \text{Pro-C}\) and \(a(\text{Pro-}U)\)-final sink \(\{g^a: K^a \rightarrow H | a \in A\}\), such that \(S = UH\) and \(g^a = Uf^a\), for all \(a \in A\).

We only sketch the construction of \(H\), leaving all other easy details to the reader. For every \(a \in A\), let \(\{f^a_{\phi(a)}: \text{UK}^a \rightarrow S | a \in A\}\) be the sink where \(f^a_{\phi(a)}\) is a representative of \(f^a: \text{UK}^a \rightarrow S\), and let \(\{g^a_{\phi(a)}: K^a \rightarrow H | a \in A\}\) be its \(U\)-final lifting, which there exists by hypothesis. Then, by the properties of the final lifting, it follows that, for all \(a \leq b\), \(s_{ab}: S_b \rightarrow S_a\) comes from a certain \(C\)-morphism \(q_{ab}: H_b \rightarrow H_a\), so that \(H = (H, q_{ab}, A)\) is an inverse system in \(C\).

By virtue of the above theorem, since topological functors (1.9) preserve monomorphisms and epimorphisms, all the results in this section, characterizing monomorphisms and epimorphisms in \(\text{Pro-SET}\), can be extended to \(\text{Pro-C}\) as well, where \(C\) is any topological category over \(\text{SET}\).

Remarks.

2.10. Let \(K\) be an inverse system in \(\text{HComp}\), the category of compact Hausdorff
spaces, and let \(\varphi: X \rightarrow K \) be the inverse limit morphism [1]. If \(\varphi_i(K) \) is an open
set in \(K_i \), for all \(i \), then \(\varphi \) is an epimorphism in Pro-HComp. This follows from
[2], Th.3.7, p.217, and Th. 2.6. above.

2.11. Let HComp be the category of locally compact Hausdorff spaces and
let TYCH be the category of completely regular \(T_\infty \) spaces. Every \(X \in TYCH \) admits
an HComp-expansion \([3,11] \) \(\varphi: X \rightarrow K \), where \(K \in \text{Pro-HComp} \) is formed by taking
all open neighbourhoods of \(X \) in \(\beta X \), its Stone-Čech compactification, directed by
reversed inclusion. \(\varphi \) is an epimorphism in Pro-TYCH, in fact each \(\varphi_i \) is an
epimorphism in TYCH.

If \(S \) is any topological space and \(\eta: S \rightarrow X \) is its epireflection in TYCH, then
\(\varphi \circ \eta: S \rightarrow K \) is an HComp-expansion of \(S \) which is not an epimorphism in
Pro-TOP (TOP being the category of all topological spaces and continuous maps)
This may be seen using Th. 2.6.

3. GENERAL MONOMORPHISMS AND EPIMORPHISMS IN Pro-\(C \). Let now \(C \) be an
arbitrary category.

Lemma 3.1. Let \(e: H \rightarrow K, f, g: K \rightarrow R \) be given morphisms in Pro-\(C \). Then
\(f \circ e = g \circ e \) holds iff there is an index \(i \in I \) such that \(f_i \circ e_i = g_i \circ e_i \), where \(f_i, g_i \)
represent \(f, g \), respectively.

Proof. Follows from the definitions and from 1.5.

Proposition 3.2. \(e: H \rightarrow K \) is an epimorphism in Pro-\(C \) iff there is an index
\(i \in I \) such that \(e_i: H_i \rightarrow K_i \) is an epimorphism, i.e. has a representing epicofinal
sink.

Proof. Let \(e_i \) be an epimorphism. If \(f_i, g_i: K_i \rightarrow R \) are such that \(f_i \circ e_i = g_i \circ e_i \),
then \(f \circ e = g \circ e \) for all c.e.c, which means \(f \circ i \circ e = g \circ i \circ e \), by the Lemma, hence
\(f \circ i = g \circ i \), for all c.e.c. It follows \(f = g \), and \(e \) is an epimorphism.

Conversely, let \(e \) be an epimorphism and suppose that no \(e_i, i \in I \), is an epimorphism.
Then, for all \(i \in I \), there are \(f \neq g: K_i \rightarrow R \) such that \(f \circ e_i = g \circ e_i \). This last
implies \(f \circ e = g \circ e \), for all c.e.c, then \(f \circ e = g \circ e \), for all c.e.c, by the Lemma.
By assumption one obtains \(f \circ c = g \circ c \), for all c.e.c, that is \(f = g \), which is a
contradiction.

- 503 -
PROPOSITION 3.3. If $m: K \to R$ is such that $m_c: K \to R$ is a monomorphism, for some $c \in C$, then also m is a monomorphism in $\text{Pro-} C$.

Proof. Suppose m_c is a monomorphism in $\text{Pro-} C$ and let $f, g: H \to K$ be such that $m_c f = m_c g$. This means $m_c^{-1} f = m_c^{-1} g$, for all $d \in C$, then $f = g$.

This proposition may be inverted in some cases, such as the following.

PROPOSITION 3.4. Let $m: K \to R$ be a monomorphism in $\text{Pro-} C$. If there is an index $c \in C$ with the property that $r_d: R \to R$ is a monomorphism in C for every $d \geq c$, then $m: K \to R$ is a monomorphism in $\text{Pro-} C$.

Proof. Let $f, g: H \to K$ be such that $m_c f = m_c g$. Then, for all $e \in C$, one has the following commutative diagram, where $d \geq c$,

Since r_d is a monomorphism, $m_e f = m_e g$. Finally $f = g$ by the assumption and by 1.5.

Note that, in case $C = \text{SET}$ or C is a topological category over SET, then one can apply the results of section 2 in order to obtain information about monomorphisms and epimorphisms in $\text{Pro-} C$ of the general form $H \to K$.

I wish to thank George Strecker for his suggestions and for his kindness.

REFERENCES

3. E. GIULI: "Relations Between Reflective Subcategories and Shape Theory"
 Glasnik Matematicki, 16 (1981).

 Proc. 5th Prague Symp. in Topology.

5. E. GIULI-A. TOZZI: "On Epidense Subcategories of Topological Categories" to
 appear in Quaestiones Mathematicae.

6. A. GROTHENDIECK "Technique de descente et théorèmes d' existence en Géometrie

9. H. HERRLICH-G. STRECKER: "Category Theory" 2nd ed. Heldermann Verlag,
 Berlin 1980.

 (1971), 41-59.

12. L. STRAMACCIA: "Reflective Subcategories and Dense Subcategories" Rend.

13. W. THEOLEN: "Pro-categories and Multiadjoint Functors" Seminarberichte,
 Fachbereich Mathematik und Informatik, FernUniversität, nr. 15, 1982.

Luciano Stramaccia
Dipartimento di Matematica
Università di PERUGIA
Via Pascoli, 06100 PERUGIA, ITALY.

(Oblatum 18.2.1983)