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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
24.4 (1983) 

SOME FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS 
Bogdan RZEPECKI 

Abetractt Let B be a Banach space, K a nonempty closed oom-
TOX subset of B. Suppose that we haTe a continuous operator f 
which maps K into a compact subset of B and an operator F from 
fTSTxK imto K. Mel-rin 173 proTed that if for eaeh x? F(x fO is 
continuous and F(*fx) is contraction, then the equation 
F(T(x)fx) « x has a aolution. The purpose of this note is to gi-
Te some generalisations of the MtlTin a result for multiTalutd 
mappings* 

Key words* Multivalued mappingsf fixed pointf uniformly 
convex Banach space. 

Classification: 54C60, 47H10 

Let E be a Banach space, K a nonempty closed convex subset 

of B. Suppose that we haTe a continuous operator T which maps K 

into a compact subset of B and an operator F from TlKlxK into 

K. W.R. MelTin L73 proTed that if for each x, F(x^») ie continu

ous and F(«,x) is contraction, then the equation F(T(x)fx) » x 

has a solution. For F(xfy) • x + G(y) we obtain the fixed point 

theorem of Krasnoselskii 161 which combines both the Banach con

traction principle and the Schauder fixed point theorem. 

Problems of the said paper are in a tight connection with 

the results of J. Danes' (especially Proposition 9, Theorem 9 and 

the consequent Remarks 1 - 6 , pp. 34-37) in the work 12J. These 

results should be made generalized for mult lvalue a mappings. In 

this note, we consider the relation x€F(T(x)fx) with F taking 
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•alues in the family of nonempty hounded closed convex subsets 

of an uniformly convex Banach space. For other generalizations 

see 133 - [539 [8] and [9J. 

The set of all nonempty subsets of a set X is denoted by 

2r* Let 3C(X) be the family of all nonempty closed bounded con

vex subsets of a real normed linear space X. 3£(X) will be re

garded as a metric space endowed with the Hausdorff metric d™9 

i.e. 

d„(A,B) » max (sup d(xfB) f sup d(x9A))_ 

here the distance between any point xcX and subset Z of X is 

denoted by d(x9Z) (= inf {Ax - z HtzfcZ}). For metric spaces X 

and Y, C(X9Y) stands for the space of continuous bounded func

tions from X to Y endowed with the usual supremum metric 6"» 

We begin with 

Definition. Let X and Y be metric spaces and let $ be 

a real-valued nonnegative function defined on C(X9Y). A multi-
Y valued mapping PjIxY-*«2 is called a K*-mapping if (1) for 

each fixed xtX f P(xf«) is closed on Y (i.e. y n — > 7 Q aad *«-> 

— ^ z 0 with a-n€,F(xtyn) tor -*-?1 implies that zQ€ F(xfy0)) t 

and (2) for every fcC(XfY) there exists hf € C(XfY) such that 

hf(x)cF(xff(x)) for x c X and 0(ffhf) 4 $(f) - §(h f). 

Proposition. Let X be a metric space, Y a complete met

r i c space and l e t F:X;*Y—> 2r be a K$-mapping. Then there 

i a a function h€C(X fY) with h (x )c F(x f h(x)) for x c X . 

Proof. Let hQC C(XfY). Since P i s a Kj-mapping we ob

ta in h^C C(XfY) (n m 1 f 2 f . . . ) such that h n ( x ) c P ( x f h n - 1 (x)) 

for x€ Xf and 
i«t-4 

erC-VV * < ; ? J | . 6 ( W i ) -- $ ( V " * ( V 
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for O-Sk^m. Henoe $>(hQ) > $(1^) Z ^ ( h g ) . ? . . . , and oonflt-

quently (h^) is a Cauohy sequence in C(XfY). 

Let h - lim h in C(XfY). for x€X f we haTe h ( x ) — • h(x) 
SJ3U-> C 0 ** 

as m —¥ oo and hn+1(x)6 f(xfh]a(x)) (n - 1f2f...) and, since 

f(x fO is closed, it follows that h(x)€ f (x,h(x)). 

low we are able to state the following 

Theorem 1. Suppose we are given: S - a Banaoh space f Y -

a nonempty closed oonvex subset of B, and T - a singleTalued 

continuous mapping from Y into a compact subset of E. If f: f tyjx 

xY —e» 2r is a K*-mapping, then the relation xe~f(T(x),x) has 

a solution in Y. 

Proof. Put X « TtYJ. By Proposition there exists h€ C(XfY) 

with h(x)c f(x9h(x)) for each xcX. Now, we consider the conti

nuous mapping xt—* h(T(x)) of Y into itself. It can be easily 

seem that this operator has values in a compact subset of E. 

Applying Sohauder's theorem we infer that there is a point x0 

in Y suoh that h(T(xQ)) « x0. Consequently xQ€ f (T(xQ) fh(T(xQ))) 

• f(T(x0)fx0).f which completes the proof. 

The Lemma below is due to Banks and Jacobs C13 and is ba

sic in the proof of the next result. 

Lemma. Let E be a uniformly convex Banach space and X a 

metric space. If G:X — > 3£ (B) is continuous, then there is a 

unique continuous function g:X—*E suoh that g(x)c G(x) and 

l\g(x)H « inf W yl tyeG(x)\ for each x in X. 

Theorem 2. Let E be a uniformly convex Banaoh space, K 

a nonempty closed and convex subset of E, T a singleTalued con

tinuous mapping from K into a compact subset of E. Suppose 

that f is a mapping from TtKlxK to $(K) satisfying the fol-
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lowing conditions: (1) f(• 9x) is continuous oa TLKJI for erery 

x in K9 and (2) dH(P(xfx1)f f U ^ ) ) . ^ * Ilx, - Xgi for all x 

in TLK3 and xlf Xg in K and with a constant k < 1. 

tinder our assumptions there exists a point xQ in K such 

that x06f(T(x0)fx0). 

Proof. Let X - THU. first of all we note that if f & 

£C(I,K), then x)—*f(x9f(x)) is continuous on X9 and, by the 

Lemma, there is a unique function hf4C(I,K) with hf£x) e 

Cf(x,f(x)) and tlf(x - hf(x) H - d(f(x)9f(x9f(x))) on X. 

Assume that fQc C(X9K) is a glTen function. By the faets 

above, there exists a uniquely determined sequence (fn) of func

tions fXL€C(XfK) (n m 1f29...) such that 

fn(x)cf(x9fB--1(x)) and 

Bfa(x) - f ^ x ) II - d(fn-1(x)9f(xf^1(x))) 

for a l l xfcX. Henee we obtain 

9 f n ( x ) - f n - 1 ( x ) l ~ % ( * ( * . f
n - 2 ( x ) > ' »<x.*».i<*»> * 

4 K I f n . 2 (x) - f ^ t o l U ...^k11"1 i f 0 (x) - f^x))!! 

and 

%«r<v'B-i>-t^<'o.fi>--vii-tt"1< °° 2. 
m-e • 

Consequently, f is a K A-mapping on X with the function 

§ *C(X9K) — > L0f0o) defined by setting 

*(fo> - J M (fn.fn-1>-
So, our result follows from the Theorem 1. 
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