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COMMENTATIONES MATHEMATICAE UNIVERSITAT1S CAROLINA€ 
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AN EXISTENCE THEOREM FOR THE URYSOHN INTEGRAL 
EQUATION IN BANACH SPACES 

Stanlstaw SZUFLA 

Abstract: The paper contains an existence theorem for I.»-
solutions of the Urysohn integral equation, where I.w,(D,X) is 
a generalized Orlics space over a Banach space X* For the case 
when X is finite dimensional and $> is a usual N-function, our 
theorem reduces to some results from Ch. I? of £43* 

Key words: Urysohn integral equations, Orlics spaces, me­
asure of^rTon-compa etnas s • 

Classification: 45N05 

Let X be a separable Banach space and let D be a Compact 

subset of the Buclidean space K*. In this paper we email present 

sufficient conditions for the existence of a solution x of the 

integral equation 

(1) x(t) • p(t) • *j£ f(t,a,x(»))ds 

belonging to a certain Orlics space L^(D,X). 

*• Prslisiinariaa. A function <p :R̂ >c D -* \ il called a 

(generalised) N-function if 

(1) $>(0,t) - 0 for almost all tcD; 

(il) for almost every t « D the function u —*> p(u,t) is 

convex and non-decreasing on R+j 

(ill) for any u€ R^ the function t —*• 9 (u,t) IS L-measu-
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rablt on D; 

(iv) for almost tvery t€D 

U » y ^ t t ) s o and lim gW.t? * « . 
4t~-i- 0 u -a.—•(? u 

The function ^>* dtfintd by 

g>*(u,t) » sup (uv - 0>(v,t)) (u?0, t6D) 
ira* 0 

is called the complementary function to <p * 

For a given N-function $> we denote by Lto(D,R) the set of 

all Immeasurable functions u:D-^ R for which the number 

Hull « inf * r > 0 : J^ # (lu(t)|/r,t)dt.6 1 I 

is finite. Lcp(D,R) is called tht (generalized) Orlict space. It 

is wtll known (cf. C3l»[4]) that <L^(D,R), H- Ay> is a Banach 

space and 

1.1. The convergence in L^(D,R) implies the convergence 

in measure. 

1.2. For any u€l.w(D,R) and v6L1|f(D,R) the function uv 

is integrable and 

JL lu(t)v(t)(dt^2llulirf ttvH * (Holder's inequality). 

If, in addition, the function y satisfies Condition A: 

f 9?(u,t)dt-i OD for all u?0, 

then we may consider the set E^(D,R) defined to be the closure 

in L^(D,R) of the set of simple functions. Clearly E (D,R) is 

a Banach subspace of I^(D,R). It can be shown (cf. C3J,E43) 

that 

1.3. The following statements ere equivalent: 

(i) x€E9(D,R); 

(ii) i6LJD,R) and x has absolutely continuous norm; 
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(iii) L q (<*) u(t)l ,t)dt < co for all o& :> 0. 

1.4. If a sequence (u^ in E^(D,R) has equi-absolutely con­

tinuous norms and converges in measure, then (ir ) converges in 

iyD,R). 

Further, denote by Iy(D,X) the set of all strongly measu­

rable functions x:D —+* X such that )| x)leiy(D,R). Analogously we 

define %(D,X). Then I^(D,X) is a Banach space with the norm 

Sxl^ =- I i i i ly • Moreover, let L (D,X) denote the Lebesgue 

space of all (Bochner) integrable functions x:D->- X provided 

with the norm H xi^ - C/lx(t)ll dt. We shall always assume that 

all functions from L (D,X) are extended to Rm by putting x(t) * 

= 0 for t€ R m\D. 

Let p> and p>. be the Hausdorf f measures of noncompactness 

(cf. [6]) in X and L (D,X), respectively. For any set V of func­

tions from D into X denote by v the function defined by v(t) * 

= ft(V(t)) for teD (under the convention that /3(A) * co if A 

is unbounded), where V(t) = { x(t) :x e V?. In what follows we 

shall use the following 

Theorem 1. Let V be a countable subset of L (D,X) such that 

there exists (*.* L1(D,R) such that I) x(t))) £ £*(t) for all xeV 

and teD. Then the function v is integrable on D and for any me­

asurable subset T of D 

(2) fi^Sj. x(t)dt:xCVj)-S J!J.v(t)dt. 

If, in addition, lim sup jf ))x(t + r ) - x(t) J) dt « 0, then 

fy(V)*j£v(t)dt. 

We omit the proof of this theorem, because it is similar 

to that of Theorem 1 from [5-1. 
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2. The main result. Assume now that 

1° M,N:R^xD -> R+ are complementary M-functions and M 

satisfies Condition A. 

2° 9?:R+x D -• R+ it in H-fuaction satisfying Condition A 

and such that 

(3) u-£c9(u,t) + a(t) for all uzO and a.a. t€D, 

where c is a positive number and acL (DfR). Let y be the com­

plementary function to $p • 

3° (tfsfx)—-• f(tfs,x) is a function from D
2x X into X 

which is continuous in x for a.e. t,seD and strongly measmr-

able In (t,s) for every xcX. 

4° llf(tfsfx)ll^ K(t,s)g(s,l|xll) for t,seD and xeX f where 

(i) (s,u)—-> g(sfu) is a function from D x R 4 into R4f me­

asurable in s and continuous in u, and there exist QC , *y*> ° • n d 

b€L 1(D fR) f b>0, such that N(oCg(s,u) ,s) * ^^(u.s) • b(s) for 

all u > 0 and a.a. s € D; 

(ii) (t,s) —^ K(t,s) is a function from D 2 into R+ such 

that K(t,Os E^DjR) for a.e. t e D and the function 

t—> HKCtjOHjj belongs to B^(D,R). 

For simplicity put L1 - L1(D^C)f L^ - L^(D,X)f 1^ - B^CD-JC) 

and B £ -ixc E^s II x H<^ r}. Let F be the mapping defined hy 

F(x)(t) «J^f(t,sfx(s))ds ( x c ^ f t € D ) . 

Theorem 2. Assume in addition that 

5° lim sup. £ j F ( x ) ( t +aO - F ( x ) ( t ) ) l d t • 0 for a l l r > 0 

nd 

6° f 5 ( f ( t , s , Z ) ) ^ H(t ,s) /J(Z) for almost every t , s € D and 

for every bounded subset Z of X, where (t,s) —•* H(t,s) is a 
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function from D* into R+ such that E(t , *)€ L.J(D,R) for a .e . t s D 

and the function t —• JlH(t, •)it^r belongs to L-,(D,R). 

Then for any pc Ey there ex i s t s a p o s i t i r s number p> such 

that for any l̂ € R with \A\<$> the equation (1) has a solution 

Remark 1. For example, the condition 5° holds i f 

f ( t , s , x ) = K( t , s )q ( s , x ) 

and lim IpHKU • * , •> - K(t,«)ilMdt * 0 and llq(s,x)i/ ** 

.4g(s, Uxll) for x € X and a . e . s € D . 

Remark 2. The condition 6° holds whenever f » f* • f2» 

where f1 and f« are such that 

( # ) for a .e . t , s € D the function x—.>• f - ( t , s , x ) i s comp­

l e t e ly continuous; 

(X*) l l f 2 ( t , s , x ) - f 2 ( t , s , y ) i ^ H ( t , s ) Wx - y l for x , y c X 

and a .e . t , s € D. 

Proof. By 4° and the Holder inequality we have 

l |F (x) ( t )JU2 ! iK ( t , - ) i l M lig(*,!lxll)liN for t e D. 

Since 

»g(-,}lxlDilN « i l cCg<- f rtxt ) l K *i<l + j£ N<ocg<s,lx(s)IJ),s)ds)^ 

1 (1 *j£ b(s)ds • r^Y<9*<*>i,«>*•>. 

we get 

(4 ) S F ( x ) ( t ) ! U k ( t ) ( 1 + «t>Ht • r^(x) ) for x€E^ and teD, 

where k(t) = ̂ ilK(t,-)IIM and r (x) « ̂ <y (flx(s)K ,s)ds. From 4° 

(ii) and (3) it is clear that ke E (D,R)r> L1 (D,R). Hence 

(5) •F(x)t TH f f-*lkt T» y (1 • Hbl- * yr?(x)) 

for x e E and any measurable subset T of D. 
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Similarly it can be shown that 

(6) Jrlf(tfs>x(s))H ds*!/lK(t,.)xT&M0 •«b«1 * r ^ ) ) 

for x€ IL, t c D and any measurable subset T of D. 

In virtue of 1.3» from (5) we infer that F is a mapping of E*> 

into itself. We shall show that F is continuous. Let x^, x Q€ E y 

and lim Hx^ - x 1L * 0. Suppose that llF(x_) - F(x_)JL does not ms>co *- o y n o y 

converge to 0 as n —-> co • Thus there exist B > 0 and a subse­

quence (x^ ) such that 

(7) l!F(xn ) - F(x 0)H 9> 6 for j = U2,... 
J 

and lim x_ (t) * xrt(t) for a.e. tfeD. From 1.3 and the inequa-

lity 

r<9ixnUl T
9

{2Un ' x o ) } * 1 V 2 * © ' 

it follows the boundedness of the sequence (r~(x )). By (6) this 

implies that for a.e. t £ D the sequence (fff (t,s,xn(s))|) is equi-

integrable on D. As lim f(t,s,x^ (s)) = f(t,s,xrt(s)) for a.e. 
i-~*co ^ ° 

t,seD, the Vitali convergence theorem proves that 

lim F(x„ )(t) * F(xJ(t) for a.e. 16 D. 
$+oo nj ° 

Moreover, in view of (5), the sequence (F(x )) has equi-absolu-
%} 

te ly continuous norms in L . Thus, by 1.4, lim l|F(x ) -
y i->co n j 

- F(xQ)IL - 0 which contradicts (7). 

Fix a function p€E^. Denote by Q the set of all q ^ O for 

which there exists r > 0 such that Ĵ  g> (llp(t)ll + qk(t)(1 + libit..+ 

• # r ) , t ) d t . 4 r . Let f =- min (sup Q, 1/Uhli^), where h(t) =-

= HH(t,0ll1|r for t £D. 

Fix A e R with \X\< ip • From the definition of rt> we deduce 
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that there ex i s t s d > 0 such that 

(8) j£ 9<lp(t )H • ialk(t)<1 •IjbK, • T d ) , t ) d t £ d . 

Set U * {x£ E.:r (x)* d} end G(x) » p + J\F(x) for zcE^. Then 

G is a continuous mapping IL —> E y and, by (4) and (8), G(UcU). 

Consequently 

(9) G(U)c GvUlcif. 

Obviously, IJ is a bounded, closed and convex subset of IL>, and 

(10) UcB* + 1. 

Mow we shall show that for eny countable subset V of IJ 

(11) VcclJnv (G(V)u-COl) -—-> V is relatively compact in B^ * 

Assume that V i s a countable set of functions belonging to tf and 

(12) Vc conv (G(V)uiO}). 

Owing to 1.1 it is clear that 

V(t)cconv (G(V)(t)u iO*) for a.e. t€D f 

so that 

(13) j3(V(t))-*/S(G(V)(t)) for a.e. tCD. 

From (4) it follows that for any y€ G(U) 

j| y(t) II -£ <a(t) for a.e. tc D, 

where <a,(t) = H p(t)ll + aik(t)(1 + 8 bll, + y d ) . As V is count­

able, in view of (9) and (12), this implies that there exists 8 

set DQ of Lebesgue measure zero such that 

(14) llx(t)ll^ ̂ (t) for all x 6 V and t*D\J> . 

Let us remark that <u€ E (D,F)n L1(D,R). 

On the other handv by 5°, (10) and (12), we have 

lim sup f llx(t + *) - x(t)!ldt = 0. 
TJ-V0 *«,\/ * 
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Htnct, by Thtortm 1, tht function t —• v(t) * /3(V(t)) is intt-

grable on D and 

(15> P,(V) £^v(t)dt. 

Furthermore, from 4° tnd (14) it follows that for any t e D such 

that K(t tO« EjjfD.R), we have 

(lf(t,s,x(s))H & *j(s) for x e V and a.e. s€D, 

where ^(s) -= K(t,s)g(s,(U(s)). As <et€ l^(D,R), 4°(i) implies 

that g( •, (to) 4 LJJ(D,R), and constqutntly, by the Holder inequa­

lity, ij e L (D,R). Hence, owing to 6° and (2), 

(*(G(V)(t)) » (3 (-C^J5)f(t,slx(8))ds:xtf Vl) & 

iai^^(4f(t,s,x(s)):x6VJ)as & »ai^H(t,s) ft (V(s))da 

In view of (13)f this shows that 

v(t) -6 l&i fH(t,s)v(s)ds for a.e. t € D. 

Moreover, by (14), we have v(t) JS? p,(t) for a.e. t€D, and there­

fore v c E (D,R). Thus, by tht Hoidtr inequality, 

v(t)* IAI 0H(ty-)lfy ttvll^ for a.e. teD, 

so that 

IIvl^ *- U l flhlty lv/iy • 

Since lAi llhily<1, this implies that Iwfl-p -= 0, i.e. v(t) « 0 for 

a.e. teD. Htnct, by (15), (^(V) « 0, i.t. V is rtlativtly com­

pact in L . On tht other hand, as (*.€ E (D,R), (14) implits that 

V has equi-absoluttly continuous norms in L,, From this wt dedu­

ce that V is rtlativtly compact in EL, which proves (11). 

Applying now Dahtr's generalization of tht Schauder fixed point 

theormm (cf. EL]), wt concludt that there txlats x e U such that 

x = G(x). It is clear that x is a solution of (1). 
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