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AN EXISTENCE THEOREM FOR THE URYSOHN INTEGRAL
EQUATION IN BANACH SPACES
- Stanistaw SZUFLA

Abstract: The paper contains an existence theorem for -
solutions of the Urysohn integrel equation, where 1.,(1),1) 1019

a generalized Orlicsz space over a Bsnach space X. For the case
when X is finite dimensional and 9 is a ususl N-function, our
theorem reduces to some results from Ch. IV of [4].

§g¥ wordg: Urysohn integral equations, Orli¢s spaces, me-
asure of non-compactness. ’ ’

Classification: 45N05

4

Let X be & separable Banach space and let D be & compact
subset of the Buclidean spsce R®. In this paper we shall present
sufficient conditions for the existence of a solutién x of the
integral equstion
() x(t) = p(t) + 7‘»_& £(t,s,x(s))ds

belonging to a qertain Orlics space L,(D,X).

1. Prelimiperies. A function ¢ :R,x D — N, 1l called a
(genereliged) N-fumction if

() 9 (0,t) = O for almost all teD;
(11) for slmost every t€ D the function u — P (u,t) is
convex end non-decreasing on R}

(111) for eny ue R, the function t — @ (u,t) is L-measu-

-
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rable on D;
(iv) for almost every teD
1im -200Y) - 5 ong 14m 2lWt) o

w>0 u w50 u
The function ¢* defined by
@¥* (u,t) sva:po (uv - @ (v,t)) (uz0, teD)

is called the complementary function to @ -
For a given N-function ¢ we denote by I.v(D,R) the set of
all L-measurable functions u:D — R for which the number

Bull, = inf $r>o0: J;, @ (lu(t))/r,t)dt< 1t

¢
is finite. Lg(D,R) is called the (generalized) Orlicz space. It
is well known (cf. [31,[4]) that <L, (D,R),N-A.? 1s e Benech
space and

1.1. The convergence in Lq(D,R) implies the convergence
in measure.

1.2, For eny ue qu(D,R) and veL?*(D,R) the function uv

is integrable and
_9) lu(t)v(t)lat£ 2l ll,f \lvllq, (Holder “s inequality).
If, in waddition, the function 9 satisfies Condition A:
L, 9 (u,t)at < @ for all u>0,

then we may consider the set E\?(D,R) defined to be the closure
in Lq(D,R) of the set of simple functions. Clearly Eg(D,R) is
a Banech subspace of Lq(D,R). It can be shown (cf. [3],[4])
that

1.3. The following stetements sre equivalent:

(1) x € Eg(D,R);

(11) x&Lg(D,R) and x hes absolutely continuous norm;
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(111) [} @ (eclu(t)],t)at < 0 for e1l > O.

1.4. If a sequence (un) in Eq(D,R) hes equi-absolutely con-
tinuous norms and converges in messure, then (\5‘) coriverges in

Eg(D,R).

Further, denote by I..!,(D,X) the set of all strongly measu-
rable functions x:D —> X such that || x\lsLy(D,R). Analogously we
define Eq(D,X). Then ]\,(D,X) is a Banach space with the norm
Kxby =0 ¥ xll “,? . Moreover, let L'(D,X) denote the Lebesgue
space of all (Bochner) integrable functions x:D — X provided
with the norm M xll, = '[D N x(t)ll dt. We shall slways assume that
all functions from L‘(D,X) are extended to R™ by putting x(t) =
= 0 for te R®\D,

Let 3 end [3‘ be the Heusdorff measures of noncompactness
(cf. [6]) in X and L‘(D,X), respectively. For any set V of func-
tions from D into X denote by v the function defined by v(t) =
= (3(V(t)) for t€D (under the convention that 3(A) = co if A
is unbounded), where V(t) = {x(t):xeVf. In what follows we
shell use the following

Theorem 1, Let V be a countable subset of L'(D,X) such that
there exists we& L‘(D,R) such that llx(t) < (L) for all xeV
and t€ D. Then the function v is integrable on D and for any me-
asureble subset T of D
(2) BEL xtv)at:xc Vh £ [v(tiat.

If, in eddition, lim sup J;le(t +7) - x(t) lat = 0, then
>0 xeV

B, (V) & [ v(t)at.

We omit the proof of this theorem, because it is similer
to that of Theorem 1 from (51,
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2. The main result. Assume now that

1° M,N:R ,x D —> R, are complementary N-functions end M
satisfies Condition A.

2° @:R,xD — R, is an K-fumction satisfying Conditien A
and such that

(3) uzcq@(u,t) + a(t) for all uz0 end a.a. teb,

where ¢ is a positive number and ae L’(D,R). Let y be the com-
Plementary function to ¢ -

3° (t,s,x)—> f(t,s,x) is a function from D°x< X into X
which is continuous in x for a.e. t,s€ D and strongly measur-
able in (t,s) for every x¢ X.

4° I£(t,s,x)l £ K(t,8)g(s,lixh) for t,s€D and x&X, where

(1) (s,u) — g(s,u) is & function from DxR, into R,, me-
asurable in s and continuous in u, and there exist o« ,7> 0 snd
beL'(D,R), 20, such that N(ocg(s,u),s) £ 3 olu,s) + b(s) for
all u>0 and a.a. s€D;

(11) (t,s) — K(t,s) is a function from D? into R, such
that K(t,<) &€ Ey(D,R) for a.e. t€ D and the function
t— | l((t,~)i\ll belongs to E,(D,R).

For simplicity put L' = 1(D,X), I, = Ly(D,X), By = By(D,X)
and n; ={xG By I xll < r}. Let P be the mapping defined by

F(x)(t) =,&f(t,s,x(l))dc (x&E,, teD).

Theorem 2. Assume in addition that

5° 1im sup &ﬁF(x)(t +7) - F(x)(t) at = 0 for all r>0
>0 x¢ B

and ¢
6° [(£(t,s,2))£H(t,s) H(2) for almost every t,s €D and

for every bounded subset Z of X, where (t,s) —> H(t,s) is a
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function from D into R, such that H(t,-)cL.'.(D,R) for s.e. t&D
and the function t —> JIH(t, <)l belongs to Lg(D,R).

Then for any pe Eg, there exists a positive number ({ such
that for any A€ R with |A|< @ the equation (1) has a solution

XEE .
b4

Remark 1. For example, the condition 5° holds if
f(t,s,x) = K(t,s)q(s,x)

end lim _(:Dﬂx(t +%,°) - K(t,*)l,dt = 0 end Ngqle,x)i =

< g(s, Ixll) for x€X and a.e. s€D.

Remark 2. The condition 6° holds whenever f = f.' + fz,
where £, and f, asre such that

(%) for a.e. t,8€D the function x —> f,(t,s,1) is comp-
letely continuous;

(k%) Wf,(t,8,x) - fz(t,s,y)lé—ﬂ(t,s) fix - y0 for x,y€X

end a.e. t,scD.

Proof. By 4° end the Holder inequality we have
NF(x)(t) &2 lK(t,-) ] x lel- ,llxll)"“ for te€ D,
Since

beleixly = L hagle,ixl s 201 + [ Nocg(s,ix(a) D) ,8)d8)4

35(1 +1;J b(s)ds + T&ﬂax(u)l,s)dl),
we get

(4) WF) (& ()1 + bl + 'x'r?(x)) for x€ E, end teDd,

where k(t) = ,%lﬂ((t,-)ﬂl and rq(x) = J;cy (tx(s)§,s)ds. From 4°
(11) end (3) it is clear thet keEg,(D,R)r\ L‘(D,R). Hence

(5) WF(x) xplly < Negqplly (1 + Bl + ¥ rg(x))

for er? and eny measurable subset T of D.
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Similerly it cen be shown that
(6)  Lhe(t,s,x(a)l aseZ IKCt, ) gyt +Woly + gz (x)

for xe E?, te D and any measurable subset T of D.
In virtue of 1.3, from (5) we infer that F is a mepping of E},
into itself. We shell show that F is continuous. Let x, x €E

¥

and n]ij-;:a"xn - xoﬂ? = 0. Suppose that llF(xn) - F(xo)ll? does not

converge to 0 as n—> o0 . Thus there exist € > O and a subse-

quence (xnj) such that
%)) lIF(xnj) - F(xo)ll? >€ for J = 1,2,4e0

and lim x, (t) = x,(t) for a.e. teD. From 1.3 and the inequa-
> 7
1lity

Ty (X)) 4§ T (2(x, - x,)) + § T (2x)

it follows the boundedness of the sequence (r,,(xn)). By (6) this

implies that for a.e. t¢ D the sequence (fif(t,s,x (s))f) is equi-

integrable on D. As lim f(t,s,x (8)) = £(t,s,x,(s)) for a.e.
3> J

t,se D, the Vitali convergence theorem proves that
lm F(x )(t) = F(x )(t) for a.e. teD.
3r0 Ty
Moreover, in view of (5), the sequence (F(x, )) has equi-absolu-
tely continuous norms in L . Thus, by 1.4, lim (IF(x_) -
4 3> ny
- F(xo)il? = 0 which contradicts (7).

Fix a function p € E;. Denote by Q the set of all q>0 for
which there exists r >0 such that J_; @ (hp(t)h + qk(t) (1 + Hbl)‘-r
+ yr),t)dt&«r. Let @ = min (sup Q, I/thlq ), where h(t) =
= §H(t,.)ly for teD,

Fix Ae R with {Al< @© . From the definition of (@ we deduce
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that there exists 4 >0 such that
(8) J; @ Up{t) Il + [21k()(1 +libH, + pd),t)at&a.

Set U = {x¢ E?:rg,(x)é d$ end G(x) = p + A F(x) for xe¢ Eg. Then
@ is a continuous mapping E, — E, and, by (4) and (8), G(UcUV),
Censequently

(9) G{Mc (M c T,

Obviously, Tis a bounded, closed snd convex subset of Eg,, end
(10) Te B;“.

Now we shall show that for eny countable subset V of U

(11) Ve éonv (G(V)u103) => V is relatively compact in Eg -
Assume that V is a countable set of functions belonging to T and
(12) Vc &onv (G(V)u {03).

Owing to 1.1 it is clear that

V(t)econv (G(V)(t)u 10%) for ae.e. te€D,
so that
(13) B(V(t)) £ R(G(V)(t)) for a.e. t&D.

From (4) it follows that for sny ye G(U)

Hy(t)ll £ w{t) for a.e. teD,
where w(t) =dp(t)Il +{A1k(t)(1 +§Dbll, + 3 d)., As V is count-
atle, in view of (9) end (12), this implies that there exists o

set Do of Lebesgue measure zero such that
(14) Ix(t)l % «(t) ftor 211 xcV and te DN\D,.

Let us remark thet w€ Ey(D,R)n L' (0,R).
On the other hand, by 5°, (10) and (12), we have

lim sup gllx(t + %) - x{(t)hdat = 0.
0 xeV
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Hence, by Theorem 1, the function t — v(t) = B(V(t)) is inte-
grable on D and
(15) By(v) £ fv(viat,

Furthermore, from 4% and (14) it follows that for any t €D such
that K(t,:)e EI(D,R) , we have

h£(t,s,x(8))0 = 7 (8) for xeV and s.e. 8€D,
where 7 (8s) = K(t,8)g(s,u(s)). As ue b‘b(D,R), 4°(1) implies
that g(+, w)& Ly(D,R), end consequently, by the Holder inequa-
lity, 1€ L1(D,R). Hence, owing to 6° and (2),

RGN = F({A.&f(t,s,x(a))ds:xc Vi) £
AL B (i2Ce,8,x(8))ixc VE)ds <11 [H(t,8) B (V(s))ae

In view of (13), this shows that
v(t) ¢ )Mgﬂ(t,s)v(s)da for a.e. t €D,

Moreover, by (14), we have v(t) £ (t) for a.e. teD, end there-
fore ve€ E,(D,R). Thus, by the Hoider inequality,

v(t) £ 1AL DH(t, =)l Hv“q, for a.e. LED,
so that
“v',i £ lAl In !ly Ivﬁ? .

Since Al ||hll,,<1, this implies that ilvlly = 0, 1.e. v(t) = O for
a.e. te&D. Hence, by (15), 3,(V) = 0, 1.0, V is relatively com-

pact in L1

« On the other hand, es wé€ ET(D,R), (14) implies that
V has equi-absolutely continuous norms in I?. From this we dedu-
ce that V is relatively compact in E;g, which proves (11).

Applying now Dsher’s generalizstion of the Schauder fixed point
theorsm (cf. [1]), we conclude that there exists xe U such thet

x = G(x). It is clear that x is a solution of (1).
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