Aleš Pultr
Pointless uniformities. I. Complete regularity

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 1, 91--104

Persistent URL: http://dml.cz/dmlcz/106281

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
Abstract: The equivalence of complete regularity and uniformizability is shown for general locales. Also, a characterization of complete regularity by means of the behavior of diameters is presented.

Key words: Locale, uniformity and uniformizability, complete regularity, diameter.

Classification: 54E15, 06D10

The definition of uniformity in the form of a system of covers can be extended in an obvious way to locales (see also [5]). In this paper we prove the fact one could expect, namely that, also in locales, uniformizability coincides with complete regularity.

More explicitly: A system of covers \mathcal{A} of a locale L gives naturally rise to a subset $L_\mathcal{A} \subseteq L$ (see Section 2). A locale is shown to be completely regular iff there is a uniformity \mathcal{U} such that $L_\mathcal{U} = L$. (By the way, it is regular iff there is a system of covers \mathcal{A} such that $L_\mathcal{A} = L$.) Moreover, another characterization of complete regularity by means of separation by diameter functions is presented.

The paper is divided into five sections. The first one contains the necessary definitions and basic facts. Section 2 deals with the sublocales induced by systems of covers. In...
Section 3 the notions of uniformity and weak uniformity are introduced. Section 4 deals with diameters. The characterization theorem is proved in the last, fifth section.

1. Preliminaries

1.1. A locale (see, e.g., [6]) is a complete lattice L satisfying the distribution law $x \land \lor A = \lor \{x \land a | a \in A\}$. The bottom resp. top of L will be denoted by 0 resp. e.

the pseudocomplement of $x \in L$ by

X.

An element x is said to be complemented if $\overline{x} \lor x = e$.

1.2. One writes $x < y$ if there is a z such that $x \land z = 0$ and $y \lor z = e$

(or, equivalently, if $\overline{y} \lor y = e$).

Note that $x < x$ iff x is complemented. Consequently, $y < x$ with non-complemented x implies $y < x$.

1.3. A locale is said to be regular iff $x = \lor \{z | z < x\}$ for each $x \in L$ (see, e.g., [1], [3]).

1.4. One writes $x \leftrightarrow y$

if there is a family x_k of elements of L such that

$x_2 = 0, 1, \ldots, k = 0, 1, \ldots, 2^i, x_0 = x, x_1 = y,$

$x_{1k} < x_{1k+1}$, and finally $x_{1k} = x_{i+1, 2^k}$.

A locale is said to be completely regular iff $x = \lor \{z | z \leftrightarrow x\}$ for each x (see e.g. [1], cf. [3], [2]).

1.5. Lemma: Let R be a binary relation on L such that
(1) \(x R y \rightarrow x < y \), and (2) \(x R y \Rightarrow \exists z, x R z R y \). Then
\[x R y \rightarrow x \ll y. \]

Proof: Put \(x_{00} = x, x_{01} = y. \) Let us have \(x_{ij} \) defined for all \(i < n \) and all \(k = 0, 1, \ldots, 2^4 \) so that \(x_{ik} R x_{i,k+1}. \) Put
\[
 x_{n,2k} = x_{n-1,k}
\]
and choose \(x_{n,2k+1} \) such that \(x_{n,2k} R x_{n,2k+1} R x_{n,2(k+1)}. \)

1.6. **A cover of a locale** \(L \) **is a subset** \(A \subset L \) **such that**
\[\bigvee A = L. \]
The system of all covers of \(L \) will be denoted by \(\mathcal{C}(L). \)

For \(A, B \in \mathcal{C}(L) \) we write
\[A \prec B \]
if for each \(a \in A \) there is a \(b \in B \) such that \(a \leq b. \)

For \(A, B \in \mathcal{C}(L) \) set
\[A \wedge B = \{ a \wedge b | a \in A, b \in B \}. \]

(Obviously, \(A \wedge B \in \mathcal{C}(L). \))

Finally, take an \(A \in \mathcal{C}(L) \). Put
\[
 A^{(2)} = \{ a \vee b | a, b \in A, a \wedge b \neq 0 \}, \\
 A^x = \{ \forall B \subset A, (a, b \in B \Rightarrow a \wedge b \neq 0) \},
\]
for \(x \in L \) put
\[
 Ax = \{ \forall a | a \in A, a \wedge x \neq 0 \}.
\]

1.7. **Proposition.** 1. \(A \prec B \Rightarrow Ax \preceq Bx. \)
2. \((A \wedge B)x \preceq Ax \wedge Bx. \)
3. \(A(Ax) \preceq A^{(2)}x. \)

Proof is straightforward.

1.8. **Proposition:** Let there be an \(A \in \mathcal{C}(L) \) such that
\[Ax \preceq y. \] Then \(x \ll y. \)

Proof: Put \(z = \{ a | a \in A, a \wedge x = 0 \}. \) We have \(z \wedge x = 0 \)
and \(z \vee y \geq \forall A x = \forall A = e. \)

- 93 -
2. Systems of covers, induced sublocales and a characterisation of regularity

2.1. Let \mathcal{A} be a subset of $\mathcal{C}(L)$. We write

$$x \not\leq y$$

iff there is an $A \in \mathcal{A}$ such that $Ax \leq y$.

2.2. By 1.8 we immediately obtain

Proposition: $x \not\leq y \Rightarrow x \not\leq y$. □

2.3. Also the following statement is obvious:

Proposition: Let $\mathcal{A} \subseteq \mathcal{B}$. Then

$$x \not\leq y \Rightarrow x \not\leq y$$. □

2.4. We set

$$L_{\mathcal{A}} = \{x \in L | x = \bigvee \{y \in \mathcal{A} | y \leq x\}\}$$

2.5. From 2.3 we immediately obtain

Proposition: $\mathcal{A} \subseteq \mathcal{B} \Rightarrow L_{\mathcal{A}} \subseteq L_{\mathcal{B}}$. □

2.6. Lemma: Let $\mathcal{A} \subseteq \mathcal{C}(L)$ be such that

$$A, B \in \mathcal{A} \Rightarrow A \wedge B \in \mathcal{A}$$.

Then $u \not\leq x \wedge v \not\leq y \Rightarrow u \wedge v \not\leq x \wedge y$.

Proof: We have $A, B \in \mathcal{A}$ such that

$$Au \leq x$$ and $$Bv \leq y$$.

Thus, by 1.7.1, $(A \wedge B)(u \wedge v) \leq (A \wedge B)u \leq Au \leq x$,

$$(A \wedge B)(u \wedge v) \leq (A \wedge B)v \leq Bv \leq y$$,

and hence $(A \wedge B)(u \wedge v) \leq x \wedge y$. □

2.7. Theorem: Let $\mathcal{A} \subseteq \mathcal{C}(L)$ be non-void and such that

$$A, B \in \mathcal{A} \Rightarrow A \wedge B \in \mathcal{A}$$.

Then $L_{\mathcal{A}}$ is a sublocale of L.

Proof: Obviously, $0, e \in L_{\mathcal{A}}$. Now, let $x, y \in L_{\mathcal{A}}$. By the distributivity and by 2.6 we have
Let \(x \vdash V \cup u \vdash x \) for \(i \in J \). Then we have

\[x_i \vdash x_j \leq \bigvee u \vdash x_j \]

for all \(j \) and hence

\[x_j \leq \bigvee u \vdash x_j \leq \bigvee u \vdash x_j. \]

Theorem: A locale \(L \) is regular iff there is a system of covers \(A \) such that \(L = L_A \).

Proof: If \(L = L_A \), \(L \) is regular by 2.2. On the other hand, let \(L \) be regular. Put

\[A = \{ [x,y] \mid x,y \in L, x \leq y \}. \]

We have \([x,y] \leq [x,y] \) so that now

\[x \leq y \Rightarrow x \vdash y, \]

and hence \(L_A = L \). ☐

3. **Uniformities and uniformizability**

3.1. A non-void system \(U \subseteq (L) \) is said to be a **uniformity** on the locale \(L \) if

(i) \(A \in U \) \& \(A \leq B \Rightarrow B \in U \),

(ii) \(A \in U \) \& \(B \subseteq U \Rightarrow A \wedge B \subseteq U \),

(iii*) for each \(A \in U \) there is a \(B \in U \) such that

\[B \leq A \] (cf. [5]).

A non-void \(U \) is said to be a **weak uniformity** on \(L \) if there hold (i),(ii) and

(iii2) for each \(A \in U \) there is a \(B \in U \) such that

\[B \leq A. \]

3.2. A non-void system \(U \subseteq (L) \) is said to be a **uniformity basis** (resp. a **weak uniformity basis**; briefly, \(u \)-basis resp. \(wu \)-basis) if it satisfies (iii*) resp. (iii2).
3.3. For \(R \subseteq \mathcal{C}(L) \) put
\[
\mathcal{K} = \{ A \mid \exists A_1, \ldots, A_k \in R, A_1 \vee \ldots \vee A_k \not\prec A \}.
\]

3.4. Lemma: We have
\[
(A_1 \wedge \ldots \wedge A_n)(2) \not\prec A_1^{(2)} \wedge \ldots \wedge A_n^{(2)}\]
\[
(A_1 \wedge \ldots \wedge A_n)^* \not\prec A_1^* \wedge \ldots \wedge A_n^*.
\]
Proof: Obviously, it suffices to prove the statement for \(n=2 \).

I. Let \(a_1, b_1 \in A_1, a_2, b_2 \in A_2 \) be such that \((a_1 \wedge a_2) \wedge (b_1 \wedge b_2) \not\prec 0\). Then \(a_1 \wedge b_1 \not\prec 0 \vee a_2 \wedge b_2 \) and hence \(a_1 \vee b_1 \in A_1^{(2)} \) (\(i = 1,2 \)). We have
\[
(a_1 \wedge a_2) \vee (b_1 \wedge b_2) \leq (a_1 \vee b_1) \wedge (a_2 \vee b_2).
\]
II. Let \(C \subseteq A_1 \vee A_2 \) be such that
\[a_1 \wedge a_2, b_1 \wedge b_2 \in C \Rightarrow (a_1 \wedge a_2) \wedge (b_1 \wedge b_2) \not\prec 0. \]
Define \(C_1 (1=1,2) \) as follows:
\[C_1 = \{ a_1 \in A_1 \mid \exists a_2 \in A_2, a_1 \wedge a_2 \in C \}, \]
\[C_2 = \{ a_2 \in A_2 \mid \exists a_1 \in A_1, a_1 \wedge a_2 \in C \}. \]
Obviously, \(a_1, b_1 \in C \Rightarrow a_1 \vee b_1 \not\prec 0 \) so that
\[\vee C_1 \wedge \vee C_2 \in A_1^* \wedge A_2^* . \]
We have, however, obviously \(\vee C \leq \vee C_1 \wedge \vee C_2 \) and hence \(\vee C \leq \vee C_1 \wedge \vee C_2 \). \(\Box \)

3.5. Theorem: If \(U \) is a u-basis, \(\tilde{U} \) is a uniformity. If \(U \) is a wu-basis, \(\tilde{U} \) is a weak uniformity.

Proof: The conditions (i) and (ii) are obviously satisfied. (iii\#) resp. (iii\#2): Let \(A_1 \wedge \ldots \wedge A_k \not\prec A, A \in U \). Choose \(B_i \in U \) such that \(B_i^* \not\prec A \) resp. \(B_i^{(2)} \not\prec A \). Put \(B = B_1 \wedge \ldots \\wedge B_k \). By 3.4 we have \(B^* \not\prec A \) resp. \(B^{(2)} \not\prec A \). \(\Box \)

3.6. A locale \(L \) is said to be uniformizable (resp. weakly uniformizable) if there is a uniformity (resp. weak uniformity) on \(L \) such that \(L_{\tilde{U}} = L \) (cf. [5]).

- 96 -
3.7. **Remark:** According to 2.5 and 3.6 we see that for uniformizability (resp. weak uniformizability) it suffices to have a u-basis (resp. a wu-basis) \(\mathcal{U} \) on \(L \) such that \(L \mathcal{U} = L \).

3.8. For a complemented \(x \in L \) and an \(A \in \mathcal{O}(L) \) put

\[
A \circ x = \{ a \wedge x \mid a \in A \} \cup \{ a \wedge \neg x \mid a \in A \}.
\]

If \(\mathcal{U} \subset \mathcal{O}(L) \), define \(\mathcal{U}^0 \) as

\[
\{ A \circ x \mid A \in \mathcal{U}, x \text{ complemented} \}.
\]

3.9. **Proposition:** If \(\mathcal{U} \) is a u-basis (resp. wu-basis), \(\mathcal{U}^0 \) is a u-basis (resp. wu-basis).

Proof: It suffices to realize that if \(B^* \triangleleft A \) resp. \(B^{(2)} \triangleleft A \), we have also \((A \circ x)^* \triangleleft A \circ x \) resp. \((A \circ x)^{(2)} \triangleleft A \circ x \).

4. **Diameter functions and separation**

4.1. As usual, \(\mathbb{R}_+ \) is the set of non-negative real numbers. A mapping

\[
d:L \to \mathbb{R}_+
\]

is said to be a **weak diameter** on \(L \) if it satisfies the following three conditions:

(1) \(d \) is non-decreasing and \(d(0) = 0 \),

(II) for each \(\varepsilon > 0 \), \(\{ a \mid d(a) < \varepsilon \} \) is a cover,

(W) if \(d(a), d(b) \leq \infty \) and \(a \wedge b \neq 0 \) then \(d(a \vee b) \leq 2 \infty \).

A mapping \(d:L \to \mathbb{R}_+ \) is said to be a **metric diameter** if it satisfies (I),(II),

(A) if \(a \wedge b \neq 0 \) then \(d(a \vee b) \leq d(a) + d(b) \), and

(M) for every \(a \neq 0 \) and each \(\varepsilon > 0 \) there are \(x, y \) such that \(d(x), d(y) \leq \varepsilon \), \(x \wedge a \neq 0 \) \(\wedge y \wedge a \) and \(d(x \vee y) > d(a) - \varepsilon \).

4.2. **Remark:** The role of the diameters in general locales is to simulate the distance functions in the spatial ones. In
our context the two definitions are, roughly speaking, the weakest and the strongest among the suitable ones (in the spatial case, the metric diameters are already exactly those given by \(d(a) = \sup \{\varphi(x,y) | x, y \in a\}\) with \(\varphi\) a pseudometric). In the literature one encounters diameter functions defined for other purposes and hence subjected to other kind of conditions (see, e.g., [4]).

4.3. **Construction**: Let \(D\) be a dense subset of the unit interval \(I\), let it contain 0 and 1. Let us have a family \((u_\alpha | \alpha \in D)\) of elements of \(L\) such that

\[
0 = v, \quad \beta < 1 \implies u_\beta \leq u, \quad u_1 = e
\]

and

\[
\alpha < \beta \implies u_\alpha \leq u_\beta.
\]

For \(x \in L\) put

\[
d_+(x) = \inf \{\alpha | x \leq u_\alpha\},
\]

\[
d_-(x) = \sup \{\alpha | x \wedge u_\alpha = 0\}.
\]

Finally define

\[
d(0) = 0, \quad \text{and}
\]

\[
d(x) = d_+(x) - d_-(x) \quad \text{for} \quad x \neq 0.
\]

4.4. **Lemma**: If \(x \neq 0\), we have \(d_-(x) \leq d_+(x)\).

Proof: Let \(d_+(x) < d_-(x)\). Then there is an \(\alpha \in D\) such that \(d_+(x) < \alpha < d_-(x)\) and such that \(x \leq u_\alpha\). Since \(\alpha < d_-(x)\), we have a \(\beta\) with \(\alpha < \beta < d_-(x)\) such that \(x \wedge u_\beta = 0\). Thus,

\[
x = x \wedge u_\alpha \leq x \wedge u_\beta = 0.
\]

4.5. **Lemma**: \(d_+(a \vee b) = \max (d_+(a), d_+(b))\),

\[
d_-(a \vee b) = \min (d_-(a), d_-(b)).
\]

Proof: Obviously \(\alpha = \max (d_+(a), d_+(b)) \geq d_+(a \vee b)\). Now let \(\beta \in D\) be such that \(\beta > \alpha\). Then \(a \leq u_\beta, \quad b \leq u_\beta\) and hence \(a \vee b \leq u_\beta\). Hence, \(d_+(a \vee b) \leq \beta\).

Obviously \(\alpha = \min (d_-(a), d_-(b)) \geq d_-(a \vee b)\). Let \(\beta \in D\) be
such that $\beta < \alpha$. Then $a \land u_\beta = 0$ and $b \land u_\beta = 0$ and hence $(a \lor b) \land u_\beta = 0$ so that $d_-(a \lor b) \geq \beta$. □

4.6. Theorem: The function d is a metric diameter.

Proof: (I) is obvious.

(II): Let $\varepsilon > 0$ be given. Choose $\alpha_1 \in D$ so that $0 = \alpha_0 < \alpha_1 < \ldots < \alpha_k = 1$ and $\alpha_{i+2} - \alpha_i < \varepsilon$ for all i.

Since $u_{\alpha_1} < u_{\alpha_{i+1}}$, we have $z_i \in L$ such that

$$u_{\alpha_i} \land z_i = 0 \text{ and } u_{\alpha_{i+1}} \lor z_i = \varepsilon.$$

Put $b_0 = v = u_0$ and, for $i > 0$, $b_i = u_{\alpha_{i+1}} \land z_{i-1}$. We have

$$\bigvee_{i=0}^{k+1} b_i = \varepsilon.$$

(Indeed, let us prove by induction that $\bigvee_{j=0}^k b_j = u_{\alpha_j}$. This is obvious for $j = 1$. Now, $\bigvee_{i=0}^k b_i = \bigvee_{i=0}^k b_{i+1} \lor b_j = u_{\alpha_j} \lor (u_{\alpha_{j+1}} \land z_{j-1}) = (u_{\alpha_{j+1}} \lor (u_{\alpha_j} \land z_{j-1}) = u_{\alpha_j \lor z_{j-1}} = u_{\alpha_j}^*$.

Obviously, $d_+(v) = 0$ and hence $d(b_0) = d(v) = 0$. Further,

$b_i \land u_{\alpha_i-1} \leq z_{i-1} \land u_{\alpha_i-1} = 0$ so that $d_-(b_i) \geq \alpha_{i-1}$.

$b_i \leq u_{\alpha_i+1}$ so that $d_+(b_i) \leq \alpha_{i+1}$ and hence $d(b_i) \leq \alpha_{i+1} - \alpha_{i-1} < \varepsilon$.

(A): If $a \land b \neq 0$ we have, by 4.4,

$$d_-(a) \leq d_-(a \land b) \leq d_+(a \land b) \leq d_+(b) \leq d_+(a)$$

(1)

and similarly $d_-(b) \leq d_+(a)$.

Using 4.5 we obtain

$$d(a) + d(b) = d_+(a) - d_-(a) + d_+(b) - d_-(b) = \max(d_+(a), d_+(b)) -
\min(d_-(a), d_-(b)) + \min(d_+(a), d_+(b)) - \max(d_-(a), d_-(b)) =
\max(d_+(a \lor b) + (d_+(x) - d_-(y)))$$

and the second summand is non-negative by (1).

- 99 -
(M) : We can assume \(d_+(a) > 0 \) and \(d_-(a) < 1 \) since otherwise we could put \(x = y \cdot a \).

Choose \(\alpha_1, \alpha_2, \alpha \in D \) so that
\[
d_+(a) - \frac{1}{2} \epsilon < \alpha_1 < \alpha_2 < d_+(a) \leq \alpha < d_+(a) + \frac{1}{2} \epsilon
\]
and \(a \leq u_\alpha \).

Since \(u_{\alpha_1} \leq u_{\alpha_2} \) there is a \(z \) such that \(u_{\alpha_1} \land z = 0 \) and \(u_{\alpha_2} \lor z = e \). Put \(x = u_\infty \land z \).

If we had \(a \land z = 0 \) we would have \(a = a \land (u_{\alpha_2} \lor z) = a \land u_{\alpha_2} \), i.e. \(a \leq u_{\alpha_2} \) contradicting the choice of \(\alpha_2 \). Thus, \(a \land z \neq 0 \) and hence
\[
a \land x = (a \land u_\infty) \land z = a \land z \neq 0.
\]
Since \(x \land u_{\alpha_1} = 0 \) and \(x \leq u_\infty \), we have
\[
\alpha_1 \leq d_-(x) \leq d_+(x) \leq \alpha
\]
and hence
\[
d(x) \leq \alpha - \alpha_1 < \epsilon.
\]

Now choose a \(\beta \in D \) such that
\[
d_-(a) \leq \beta < d_-(a) + \frac{1}{2} \epsilon.
\]
If \(d_-(a) > 0 \), choose, moreover, \(\beta_1, \beta_2 \in D \) such that
\[
d_-(a) - \frac{1}{2} \epsilon < \beta_1 < \beta_2 < d_-(a)
\]
and a \(w \in L \) such that \(w \land u_{\beta_1} = 0 \) and \(w \lor u_{\beta_2} = e \). Put
\[
y = \begin{cases} u_\beta & \text{if } d_-(a) = 0, \\ u_\beta \land w & \text{otherwise.} \end{cases}
\]
In the first case we have obviously \(y \land a \neq 0 \). In the second one, \(w \land a = (w \land a) \lor (u_\beta \land a) = (w \lor u_\beta) \land a = a \) so that also here
\[
y \land a = u_\beta \land w \land a = u_\beta \land a \neq 0.
\]
In the first case obviously
\[
d_-(y) = 0, \ d_+(y) \leq \beta;
\]
in the second one we have \(y \land u_{\beta_1} = 0 \) and \(y \leq u_{\beta_2} \) so that
\[\beta_1 \leq d_-(y) \leq d_+(y) \leq \beta \]

and hence
\[d(y) \leq \beta - \beta_1 < \varepsilon. \]

Finally, by 4.5,
\[d(x \lor y) = \max(d_+(x), d_+(y)) - \min(d_-(x), d_-(y)) \geq \alpha_1 - \beta > d_+(a) - \frac{1}{2} \varepsilon - (d_-(a) + \frac{1}{2} \varepsilon) = d_+(a) - \varepsilon. \]

4.7. We say that a function \(d: \mathcal{L} \to \mathbb{R}_+ \) separates \(v \) from \(u \) if

(a) \(d(v) = 0 \) and
(b) whenever \(x \lor v \neq 0 \) and \(d(x) < 1 \) then \(x \not\leq u \).

4.8. Proposition: If \(v \not\leq u \) in \(\mathcal{L} \) there exists a metric diameter separating \(v \) from \(u \).

Proof: Consider a system \(X_1, \ldots \) from the definition of \(\not\leq \) and put
\[u \lor 2^{-i} = x_{i+} \text{ with the exception of } u_1 = e. \]

The function \(d \) from 4.3 separates \(v \) from \(u \). \(\square \)

4.9. Proposition: Let \(\mathcal{U} \) be a \(\wp \)-basis. If \(x \not\leq y \), there is a \(z \) such that \(x \not\leq y \).

Proof: Take an \(A \in \mathcal{U} \) such that \(Ax \not\leq y \) and choose a \(B \in \mathcal{U} \) such that \(B(2) \not\leq A \). Put \(z = Bx \). Thus, \(x \not\leq z \). Now \(Bz = B(Bx) \not\leq B(2)x \leq Ax \) by 1.7 so that also \(z \not\leq y \). \(\square \)

4.10. Propositions 4.9, 2.2 and 1.5 immediately yield

Corollary: If \(\mathcal{U} \) is a \(\wp \)-basis then
\[x \not\leq y \Rightarrow x \not\leq y. \]

4.11. Theorem: The following statements are equivalent:

(i) \(v \) is separated from \(u \) by a metric diameter,
(ii) \(v \) is separated from \(u \) by a weak diameter,
(iii) \(v \not\subseteq u \) for some \(u \)-basis \(U \),
(iv) \(v \ll u \).

Proof: Trivially, (i) \(\implies \) (ii).

(ii) \(\implies \) (iii): Let \(d \) be a weak diameter function separating \(v \) from \(u \). Put \(U = \{ a \mid d(a) < \varepsilon \} \mid \varepsilon > 0 \). It is a \(u \)-basis since \(\{ a \mid d(a) < \varepsilon \} \subseteq \{ a \mid d(a) < 1 \} \). Consider the \(A = \{ a \mid d(a) < 1 \} \). For \(a \in A \) and \(a \land \forall \neq 0 \) we have \(a \ll u \) so that \(A \ll u \) and hence \(v \ll u \).

(iii) \(\implies \) (iv) is contained in 4.10 and (iv) \(\implies \) (i) in 4.8. \(\square \)

5. **Characterizations of complete regularity**

5.1. **Lemma:** A metric diameter function \(d \) has the following property:

If \(S \subseteq L \) is such that \(a, b \in S \implies a \land b \neq 0 \), then
\[
d(\bigvee S) \leq 2 \sup \{ d(a) \mid a \in S \}.
\]

Proof: Let \(d(\bigvee S) > 2 \sup d(a) + 3 \varepsilon \). Consider some \(x, y \) such that \(x \land \bigvee S \neq 0 \land y \land \bigvee S \), \(d(x), d(y) < \varepsilon \) and
\[
d(x \land y) > d(\bigvee S) - \varepsilon.
\]
Choose \(a, b \in S \) so that \(a \land x \neq 0 \land b \land y \). Thus,
\[
(2) \quad d(x \land y) > d(a) + d(b) + 2 \varepsilon.
\]
On the other hand,
\[
(3) \quad d(x \land y) \leq d(a \lor b \lor x \lor y) \leq d(a \lor b \lor x) + \varepsilon \leq d(a \lor b) + 2 \varepsilon.
\]
From (2) and (3) we obtain
\[
d(a \lor b) > d(a) + d(b)
\]
and hence \(a \land b = 0 \). \(\square \)

5.2. **Proposition:** Put
\[
U = \{ a \mid d(a) < \varepsilon \} \mid \varepsilon > 0, \quad d \text{ a metric diameter on } L.
\]
Then \(U \) is a \(u \)-basis and
\[v \Leftrightarrow u \text{ iff } v \not\leq u. \]

Proof: Take an \(A = \{a | d(a) < \varepsilon \} \) and put \(B = \{a | d(a) < \frac{1}{2} \varepsilon \} \). By 5.1, \(B^c \subset A \). Hence \(\mathcal{U} \) is a \(u \)-basis and, by 4.10,

\[\forall \tau \not\leq u \Rightarrow v \not\leq u. \]

Now, let \(v \notleq u \). By 4.8 there is a metric diameter \(d \) separating \(v \) from \(u \). Take \(A = \{a | d(a) < \frac{1}{2} \varepsilon \} \). If \(a \wedge v \neq 0 \) and \(d(a) < 1 \) we have \(a \leq u \) so that \(Av \leq u \). Thus, \(v \not\leq u \). \(\square \)

5.3. **Theorem:** Let \(L \) be a locale. Then the following statements are equivalent:

- (i) \(L \) is completely regular,
- (ii) each \(x \in L \) is covered by the elements \(y \leq x \) separated from \(x \) by weak diameters,
- (iii) each \(x \in L \) is covered by the elements \(y \leq x \) separated from \(x \) by metric diameters,
- (iv) there is a \(u \)-basis \(\mathcal{U} \) such that \(L_{\mathcal{U}} = L \),
- (v) \(L \) is uniformizable,
- (vi) there is a \(wu \)-basis \(\mathcal{U} \) such that \(L_{\mathcal{U}} = L \),
- (vii) \(L \) is weakly uniformizable.

Proof: (i) \(\Rightarrow \) (ii) \(\Rightarrow \) (iii) by 4.11.

(iii) \(\Rightarrow \) (iv): Take the \(u \)-basis \(\mathcal{U} \) from 5.2.

(iv) \(\Leftrightarrow \) (v) by 3.5 and 2.5.

(iv) \(\Rightarrow \) (vi) trivially.

(v)-(vi) \(\Leftrightarrow \) by 3.5 and 2.5.

(vii) \(\Rightarrow \) (i): Let \(u \in L \). We have a uniformity \(\mathcal{U} \) such that \(L_{\mathcal{U}} = L \). Thus, for an arbitrary \(u \in L \), by 4.10,

\[u = \forall v \forall v \not\leq u \cup u \leq \forall v \not\leq u \cup u \leq u. \]
References

Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 18600 Praha 8, Československá

(Oblatum 17.1. 1984)