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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

25,1 (1984) 

CONVEX 4-VALENT POLYTOPES WITH PRESCRIBED TYPES 
OF FACES 

M. TRENKLER 

Abstract ; Let ( p . ; k = 3 ) be a sequence of nonnegative 
i n t e g e r s . A su f f i enc ient condit ion f o r ex i s t ence -f-valent 
convex poly tope with e x a c t l y p. k-gona f o r a l l k i e g iven . 

Key words: Convex polytope, k-gon, -f-valent ver tex 

C l a s s i f i c a t i o n : 52A25 

E.Jucovic" [3] proved the fo l lowing theorem: 

I f a sequence (p . ;k = 3) of nonnegative in teger* 

s a t i s f i e s the condit ions 

(i) Yl (4-k)pk = 8' and 

ki3 

( i i ) P 4 S l 3 + Y~ (3k-10)pK 

k*5 

then there e x i s t s a convex lf-valent poly tope P which con

t a i n s e x a c t l y p. k-gons f o r a l l k. (Such the sequence 

(p jkii=3) i s c a l l e d 4 - r e a l i z a b l e and the polytope P i s 

c a l l e d i t s real ianation.) 

This r e s u l t was improved by T.CI&ans [ij who showed 

that ( i i ) can be replaced by the condit ion 

P4 ~ 2-C-?k • max {k:-V*°i • 

The purpose of the present i s to prove the fo l lowing . 
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Theorem The sequence (p,;k=3) of nonnegative 

integers which satisfies the conditions (i) and 

p^ ~ max {k: p. = t (mod 2)} - 2 

i s 4 - r e e l i z a b l e . 

Our theorem i s an improvement over prev ious theorems 

which required considerably langer values of p^. I f 

) p. *k 1 our boundary i s the best p o s s i b l e , 
MS 

F i r s t we prove a lemma. 

Lemma 1 ; A planar map R with 3-odlgo-connected 

graph (without loops and mult ip le edges) containing e x a c t l y 

p k-gons and k-valont v e r t i c e s f o r a l l k e x i s t s , i f f t h e 

re e x i s t s a 3-oonnected 4-valent planar map M(R) which 

contains e x a c t l y p. k-gons f o r a l l k. 

Proof: A medial map M(R) of a planar map R i s f o r 

med i n the fo l l owing way (see 4 f p . 4 7 ] : To each edge of R 

there corresponds a ver tex of" M(R) and two v e r t i c e s of 

M(R) are Joined by an edge i f they correspond to two edges 

which are inc ident with the same face of R and have com

mon v e r t e x , ( i n f i g . 1 R i s depis ted by f u l l l i n e s and 

M(R) by dashed l i n e s . ) A medial map of any planar map i s 

4 -va len t . 

Xt i s easy to show that every 4-valent map i s a medial 

nap of a planar map because a l l f a c e s of 4-valent planar 

map are regu lar ly colourable by two co lours . 

Proof of our theorem: For every sequence (p ; k ^ 3 ) 
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which s a t i s f i e s the condit ions of the theorem we sha l l 

described the const ruct ion of a p lanar 3-connected 4-va-

lent map which contains exact ly p. k-gons. This reduc

t ion of the geometrical problem to a problem of existence 

of c en t a i n p lanar maps i s poss ib le by S t e i n i t z s theorem 

[ 2 , p . 33j : A graph i s r e a l i z a b l e as a convex polytope in 

Er i f and only i f i t i s p lanar and 3-connected. 

The condit ion ( i ) i s neccesary and follows from 

Eu le r ' s theo rem. 

Three cases and many subcases must be considered. 

1. p k s O(raod 2) fo r a l l k ^ 5 

I d . P4 5 O(raod 2) 

The s t a r t i n g map i s tha t of an octahedron containing 

configurat ion K formed by four t r i a n g l e s (f ig.2) . . Repla

cing two t r i a n g l e s by 2(k-2) t r i a n g l e s , we form two of 

the prescr ibed k-gons for k-^-K The r e s u l t i n g map again 

contains configurat ion K. This construct ion i s repeated 

u n t i l a l l the required faces a re formed. 

1.2. 3=£p4 S l(mod 2) 

Since the s t a r t i n g map (denoted by dashed l i n e s in 

f i g . 1) contains no configurat ion K, the f i r s t two k-gons 

a re formed as ind ica ted in f i g . 3 for k=6. The r e s u l t i n g 

map contains a configurat ion K which i s used to form 

( in p a i r s ) a l l remaining prescr ibed faces . 

2. Pfc^1 f o r a 1 1 lc --> 

2 . 1 . p^ = 1 and p k = 0 for a l l k ^ 6 

The s t a r t i n g map ( f i g . k) contains configuration K. 

- 173 



2.1.1. p^ 5 l(mod 2) 

All prescribed U-gons are formed in pairs as in 1.1. 

2 . 1 . 2 . p. S O(mod 2) 

Before forming the required k-gons we change one quad

rangle in to two quadrangles as in fig* 5. 

2.2. ZZpk = 1 a n d p«5 = ° 
6tk 

Figure 6 shows the starting map (full lines) consis

ting of three quadrangular regions a, b, c and six tri

angles. Except for 3-valent vertices A and B, all its 

vertices are -*-valent. 

Let p =1 | the prescribed s-gon is formed from the 

quadrangle a by adding- a path of length 2(s-4)+2 (das

hed lines) from A to B. This path is constructted in such 

a way that it divides b and c exclusively into quadrang

les and triangles. The resulting map contains, in addition 

to the one s-gon, s+!4 triangles and s-2 quadrangles. 
medial) ol &*majj) 

(Note: The map of fig. 6 is identical to the fmap fin fig. 7.) 

If p.=o(mod s), the remaining pj-(s-2) quadrangles 

are formed in pairs from configuration IOas in 1. 

If P/t,=1 (mod s), the construction step of 2.1.2. is 

used first. 

Since in a l l the remaining cases the quadrangles a r e 

formed in the same way, we sha l l omit t h e i r c rea t ion from 

a l l following desc r ip t ion . 

2.3. Z Z P k = n ~ 2 

ktf 

The s t a r t i n g map i s the same as in 2.2$ the construc

t ion i s a l so similar* (see fi«r. 8 or 9)-
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Let p = 1 and p ,= 0 for all j^s. , i=1,2,...,n. 

Moreover, let s. > s. for i<k. 

The construction is analogous to that of case 2,2, in 

that we use an additional path from vertex A to B to form 

the required faces. The first two faces (starting with maxi

mum s. ) are formed concurrently in the region a and b as 

In fig. 8. Since when the face with fewer vertices is already 

finished (e.g. in b) we overlap the finishing of the remai

ning face (in a) with the construction of the next face 

(this time in c). After all the faces (except posibly one) 

have been formed, the construction is finished as in 2,2, 

This construction which is admittedly hard to describe 

is ilustrated in fig. 8 (for Sj=20, s2=8, s„=6, s^=5) and 

in fig. 9 (for 8 . ,-sll, s2
=:8, s 3 = 7 ' 3k~6' S5~ 5* ̂  

3* 2 i p . s l(raod 2) f o r k > 5 

First wo define a new sequence 

»k = *k- 2 [ i r ] f o ra11 k * 5 > 
p ^ = max [ k > 5: P^= 1 (mod 2)J - 2 

p 3 = 8 * H (*-kK-
T h i s sequence s a t i s f i e s t h e c o n d i t i o n s of ca se 2 . I n 

t h e map c o n t a i n i n g p ' k -gons f o r a l l k forming a s i t i s 

d e s c r i b e d i n c a s e 2 . we l o i m a l l o t h e r p r e s c r i b e d k - g o n s , 

k £ 5 , i n p a i r s and P/.-P/C q u a d r a n g l e s a s i n ca se I . 

T h i s comple tes t h e p r o o f . 

Lemma 2 ; The sequence ( 8 , P K , 0 , 0 , . . . , 0 ) i s 4 - r e a l i z a b l e 

i f and o n l y i f p^ i s i n t e g e r and O I P L / 1. 

T h i s i s t r u e because from t h e un iqueness of c o n s t r u c 

t i o n t h e r e e x i s t s no !4-valent p l a n a r 3-connec ted map which 
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consists of 8 triangles and one quadrangle. 

It is easy to show that the following lemma holds: 

Lemma 3: Let R be a 3-edge-connected planar map 

having exactly one k-gon, k=5, and only triangles and 

quadranqles and every one of its vertices is of degree 3 

or 4j then R contains at least two vertices which are 

not vertices of the k-gon. 

From our theorem and lemmas 1 and 3 we have 

Lemma 4: The sequence (p«.=lf+k, p^, Pj=* -Tor k-=5, 

p .=0 for all 5 = j^k) is 4-realizable if and only if 
J 

P-.fek.-2. 
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