Petr Simon
A closed separable subspace not being a retract of βN

Persistent URL: http://dml.cz/dmlcz/106309

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
A CLOSED SEPARABLE SUBSPACE NOT BEING A RETRACT OF βN

Petr Simon (Mathematical Institute of Charles University, Sokolovská 83, 18600 Praha, Czechoslovakia), oblatum 17.4. 1984.

D. Maharam [M] proved that the following are equivalent:

(a) For each ideal $I \subseteq \mathcal{P}(\mathbb{N})$, if there is a one-to-one homomorphism from $\mathcal{P}(\mathbb{N})/I$ to $\mathcal{P}(\mathbb{N})$, then there is a lifting from $\mathcal{P}(\mathbb{N})/I$ to $\mathcal{P}(\mathbb{N})$, too;
(b) every non-void closed separable subspace of $\beta \mathbb{N}$ is a retract of $\beta \mathbb{N}$, and has raised the question, whether (a) or (b) is a true statement.

The answer to the Maharam's problem is in negative. We can prove the two theorems below.

Theorem 1. There exists a subspace $X \subseteq \beta \mathbb{N} - \mathbb{N}$ satisfying the following:

1. $X = \bigcup_{n \in \omega} X_n$ where $|X_0| = 1$ and for each $n \in \omega$, the set X_n is countable discrete;
2. for each $n < m < \omega$, $X_n \subseteq X_m - X_m$;
3. for each $n < \omega$ and for each $x \in X_n$, x is a ϕ - OK point in $X_{n+1} - X_n$;
4. suppose $\{U_k : k \in \omega\} \subseteq \mathcal{P}(\mathbb{N})$ to be a family of sets such that for some $n_0 < \omega$, $U_k^* \cap X_n = \emptyset$ for each $k < \omega$, $U_k^* \cap X_n = \emptyset$. Then there is a family $\{V_{\alpha} : \alpha \in \omega^*\} \subseteq \mathcal{P}(\mathbb{N})$ such that for each $\alpha \in \omega^*$, $V_\alpha \cap X_n = U_k^*$ and for each $k < \omega$ and for each finite set $\alpha_0 < \alpha_1 < \cdots < \alpha_k < \omega$, $V_{\alpha_0} \cap \bigcap_{k < \omega} U_k^* \subseteq \bigcup_{k < \omega} U_k^*$;
5. for each mapping $f : \mathbb{N} \to X$ there is a set $T \subseteq \mathbb{N}$ and an integer $n_1 < \omega$ such that $T^* \cap X = \emptyset$ and for each $n > n_1$, $X_n \cap f[T] \cap X_{n+1} = \emptyset$.

Theorem 2. If a subspace $X \subseteq \beta \mathbb{N}$ satisfies (1) - (5) from Theorem 1, then X is not a retract of $\beta \mathbb{N}$.

It should be noted that the first example of a closed separable subspace of $\beta \mathbb{N}$ which is not a retract of $\beta \mathbb{N}$ was given by M. Talagrand under CH in [T] and the second one by A. Szymanski under MA in [S].

References:

- 364 -
SHORT BRANCHES IN RUDIN-FROLÍK ORDER

Eva Butkovská (MF SAV, Jesená 5, 04154 Košice, Československá), oblatum 27.4. 1984.

Rudin-Frolík order of types of ultrafilters in \(\beta \mathbb{N} \) has the following properties:

1. each type of ultrafilters has at most \(2^{\mathcal{O}} \) predecessors,
2. the cardinality of each branch is at least \(2^{\mathcal{O}} \).

Thus, in Rudin-Frolík order the cardinality of branches can be only \(2^{\mathcal{O}} \) or \((2^{\mathcal{O}})^+ \). It was shown in [1] that there exists a chain order - isomorphic to \((2^{\mathcal{O}})^+ \). Hence, the existence of a branch of cardinality \((2^{\mathcal{O}})^+ \) is proved.

The following result solves the problem of the existence of a branch having smaller cardinality.

Theorem. In Rudin-Frolík order there exists an unbounded chain order-isomorphic to \(\omega_1 \).

By the properties (1) and (2) the branch containing this chain has cardinality \(2^{\mathcal{O}} \).

References:

RESULTS ON DISJOINT COVERING SYSTEMS ON THE RING OF INT EgERS

Ivan Korec, Department of Algebra, Faculty of Mathematics and Physics of Comenius University, 84215 Bratislava, Czechoslovakia oblatum 12.4. 1984.

A system of congruence classes

\[(a_1 \pmod{n_1}, a_2 \pmod{n_2}, \ldots, a_k \pmod{n_k})\]

will be called a disjoint covering system (DCS) if for every integer \(x \) there is exactly one \(i \in \{1, 2, \ldots, k\} \) such that \(x \equiv a_i \pmod{n_i} \). The integers \(n_1, n_2, \ldots, n_k \) will be called moduli of (1) and their least common multiple will be called the common modulus of (1).

If \(k > 1 \) then no two moduli of (1) are relatively prime. This condition can be expressed in the form

\[\bigwedge_{i=1}^{k} \bigwedge_{j=1}^{k} \psi(n_i, n_j)\]

where \(\psi(x, y) \) is the formula

\[\exists z \exists u \exists v (x \neq 1 \land z \cdot u = x \land z \cdot v = y)\]

Consider more generally the formulae of the form