Ivan Korec
Results on disjoint covering systems on the ring of integers

Persistent URL: http://dml.cz/dmlcz/106311

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
SHORT BRANCHES IN RUDIN-FROLÍK ORDER

Eva Butkovičová (MF SAV, Jesenná 5, 04154 Košice, Československo), oblatum 27. 4. 1984.

Rudin-Frolík order of types of ultrafilters in βω has the following properties:
1. each type of ultrafilters has at most 2^ω0 predecessors,
2. the cardinality of each branch is at least 2^ω0.

Thus, in Rudin-Frolík order the cardinality of branches can be only 2^ω0 or (2^ω0)^+. It was shown in [1] that there exists a chain order - isomorphic to (2^ω0)^+. Hence, the existence of a branch of cardinality (2^ω0)^+ is proved.

The following result solves the problem of the existence of a branch having smaller cardinality.

Theorem. In Rudin-Frolík order there exists an unbounded chain order-isomorphic to ω_1.

By the properties (1) and (2) the branch containing this chain has cardinality 2^ω_0.

References:

RESULTS ON DISJOINT COVERING SYSTEMS ON THE RING OF INTEGERS

Ivan Korec, Department of Algebra, Faculty of Mathematics and Physics of Comenius University, 84215 Bratislava, Czechoslovakia, oblatum 12. 4. 1984.

A system of congruence classes
(1) a_1(mod n_1), a_2(mod n_2), ..., a_k(mod n_k)
will be called a disjoint covering system (DCS) if for every integer x there is exactly one i ∈ {1, 2, ..., k} such that x \equiv a_i(mod n_i). The integers n_1, n_2, ..., n_k will be called moduli of (1) and their least common multiple will be called the common modulus of (1).

If k > 1 then no two moduli of (1) are relatively prime. This condition can be expressed in the form
(2) \bigwedge_{i=1}^{k} \bigwedge_{j=1}^{k} \forall(n_1, n_j)
where \exists(x, y) is the formula
\exists z \exists u \exists v (z \neq 1 \land z \cdot u = x \land z \cdot v = y)
Consider more generally the formulae of the form
- 365 -
(3) \[\psi(n_1, \ldots, n_r) \]

which are true for all DCS (1) with \(k > 1 \), where \(\psi(x_1, \ldots, x_r) \) is a first-order formula with the only non-logical symbol \(\psi \) for multiplying. The main result of [1] is that every such formula (3) is a consequence of (2). Hence the condition (2) is the strongest among all conditions of the form (3) which hold for all non-trivial DCS (i.e., DCS different from \(\{2\} \)). The proof uses product-invariant relations, i.e., the relations which are invariant with respect to all automorphism of the semigroup \((N, \cdot)\).

For every prime \(p \) the DCS
\[\{0 \text{ (mod } p), 1 \text{ (mod } p), \ldots, p-1 \text{ (mod } p)\} \]
has the following property:

The union of any subset \(A \) of (4), \(1 < \text{card}(A) < k \)

is a congruence class (by any modulus).

All DCS (except \(\{2\} \)) with this property will be called irreducible DCS. There are IDCS which are not of the form (4). For example, the congruence classes
\[0, 4 \text{ (mod } 6), 1, 3, 5, 9 \text{ (mod } 10), 2 \text{ (mod } 15), 7, 8, 14, 20, 26, 27 \text{ (mod } 30) \]
form an IDCS with the common modulus 30 (it is Porubsky's example of a nonnatural DCS in essential). In [2] many IDCS are constructed and it is proved that an IDCS with the common modulus \(n \) exists if and only if \(n \) is a prime (then only (4) can be obtained) or \(n \) is divisible by at least three different primes. Further, an operation of splitting is defined which allows to obtain all DCS from the degenerated DCS \(\{Z\} = \{0 \text{ (mod } 1)\} \) and the IDCS. If only IDCS of the form (4) are used then so called natural DCS are exactly obtained.

For every prime \(p \) denote \(\mathcal{F}(p) = p - 1 \), and extend the function \(\mathcal{F} \) to the set \(\mathbb{N} \) by the formula \(\mathcal{F}(x,y) = \mathcal{F}(x) + \mathcal{F}(y) \).

The Mycielski's conjecture stated \(k \geq 1 + \mathcal{F}(n_1) \) for every DCS (1) and every \(i \in \{1, 2, \ldots, k\} \). The main result of 3 is that for all DCS (which are not natural (hence e.g. for all IDCS which are not of the form (4)) it holds
\[k \geq 6 + \mathcal{F}(n_1) \].

The proof is rather complicated but elementary. The constant 6 in (5) is the best possible. We stated the hypothesis that the modulus \(n_1 \) in (5) can be replaced by the common modulus of (1).

The IDCS with the common modul pq\(r \) (where \(p, q, r \) are distinct primes) are completely described, and the number of them is determined, in [4].

References:
The aim of this, and the subsequent note, is to announce a selection of results presented at the Colloquium on Topology held in Eger in August 1983, and at the Semester of Topology in Banach Center in April 1984. I feel that it is time to prove deeper results about Suslin sets derived from Borel sets in compact spaces.

1. By a space we mean a completely regular T_2 topological space. We denote by $\mathcal{G}(\mathcal{M})$ the collection of Suslin sets derived from the collection of sets \mathcal{M}. Recall that $\mathcal{G}(\mathcal{G}(\mathcal{M})) = \mathcal{G}(\mathcal{M})_c \supseteq \mathcal{M}_c \cup \mathcal{M}_d$. We denote by $\mathcal{G}_d(\mathcal{M})$ the sets in $\mathcal{G}(\mathcal{M})$ with disjoint Suslin representation. Denote by Σ the space ω^ω with product topology where ω has the discrete topology.

Lemma 1. Let Y be a subset of a space X. Then
(a) $Y \in \mathcal{G}(\text{closed}(X))$ iff some closed set in $X \times \Sigma$ projects onto Y.
(b) $Y \in \mathcal{G}(\text{open}(X))$ iff some open set in $X \times \Sigma$ projects onto Y.
(c) $Y \in \mathcal{G}(\text{open}(X) \cup \text{closed}(X))$ (or $\mathcal{G}(\text{Borel}(X))$) iff the intersection of a closed set and a G_d set in $X \times \Sigma$ projects onto Y.

Note that (a) is classical, and (c) is essentially due to Fremlin [Frel].

Theorem 1. The following conditions on a space X are equivalent:
(a) Some Čech complete subspace of $X \times \Sigma$ projects onto X.
(b) If X is a subspace of Z then $X \in \mathcal{G}(\text{Borel}(Z))$.
(c) X is obtained by Suslin operation from locally compact sets in some Z.
(d) There exists a complete sequence of σ-relatively open covers of X.

A space X satisfying the equivalent conditions in Theorem 1 will be called Čech-analytic (following [Frel]). To be sure note that a cover \mathcal{U} of X is called σ-relatively open if $\mathcal{U} = \bigcup \{U_n | n \in \omega\}$ such that each U_n is an open cover of \mathcal{U}_n. It was proved in [Frel] that if $X \in \mathcal{G}(\text{Borel}(X))$ for some compactification of X, then it holds for any compactification of X. Fremlin [Frel] introduced implicitly (1a) and showed the equivalence with Zolkov's definition. If the space X is hereditarily Lindelöf then (1d) implies that X has a complete sequence of countable covers, and hence it is ω-analytic (or K-analytic in Choquet and Sneider terminology) by [EF]. The following result is a solution of a problem of Fremlin.

Theorem 2. A space X is ω-analytic iff it is Čech analytic and there exists an usco-compact correspondence from a separable metric space onto X.

The proof is based on the following

Lemma 2. Let f be a perfect mapping of X onto a metrizable space Y, and let $\{U_n\}$ be a sequence of families of open sets in X.

There exists a factorization $f = h \circ g$ such that $g:X \to S$, $h:S \to Y$ are perfect, S is metrizable, and for each n
Theorem 3. The following conditions on a space X are equivalent:

1. Some Čech complete subspace of X injectively projects onto X.
2a. X is a subspace of some Z then X is Borel (\mathcal{S}_1).
2b. X is obtained by the disjoint Susslin operation from locally compact subsets in some $Z \supset X$.
2c. There exists a complete sequence $\{M_n | n \in \omega \}$ of covers such that each M_n is an open cover of $M_n = \bigcup M_{m+1} | n \in \omega \}$ for each n, and if $\sigma \subseteq \Sigma$, $M_n \in \mathcal{M}_{\sigma n}$ then
 \[\cap \{ \bigcap \{ M_n | n \in \omega \} \cap M_{\sigma n} | n \in \omega \}. \]

A space satisfying the equivalent condition in Theorem 3 will be called Čech-Luzin. Any Čech-Luzin space X is absolutely bi-Suslin (Borel), and I do not know whether or not the converse holds.

The basic stability results follow easily from (1a) and the fact that any countable ($\neq 0$) power of \mathcal{E} is homeomorphic to \mathcal{E}.

DISTINGUISHED SUBCLASSES OF ČECH-ANALYTIC SPACES

Zdeněk Prošik (Zlíná 25, 11557, Praha 1, Československo), oblatum 27.5. 1984.

This is a free continuation of [Prel]. Recall that if \mathcal{F} is a set of families of subsets of X then a family $\{X_a | a \in \Lambda \}$ in X is called \mathcal{F}-decomposable if there exist families $\{X_a | a \in \Lambda \}$ in \mathcal{F}, $n \in \omega$, such that $X_a = \bigcup \{ X_{an} | n \in \omega \}$ for each a. So it is clear what is meant by discretely \mathcal{F}-decomposable. We shall call a family $\{X_a | a \in \Lambda \}$ in a topological space uniformly discrete if it is discrete in the finest uniformity inducing the topology.

A family $\{X_a | a \in \Lambda \}$ is called isolated if it is discrete in $\bigcup X_a$.

Following [Prel], if κ is an infinite cardinal then a space X is called κ-analytic (or topologically κ-analytic, abbr. $T \kappa$-analytic) if there exists an usco-compact correspondence from the metric space κ^ω onto X such that the image of each discrete family (equivalently, discretely κ-decomposable family) is uniformly discretely (or discretely, resp.) σ-decomposable. If the values are disjoint, then the space is called κ-Luzin (or topologically κ-Luzin, resp.), and if the values are singletons or empty then we speak about point-κ-analytic etc. spaces. Analytic means ω-analytic for some ω, and similarly Luzin etc. The theory of analytic and Luzin spaces was developed in [Prel]. A discussion of topologically analytic spaces appeared in [J³].