Commentationes Mathematicae Universitatis Carolinae

Pavel Drábek
 Remarks on nonlinear noncoercive problems with jumping nonlinearities

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 3, 373--399
Persistent URL: http://dml.cz/dmlcz/106315

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

REMARKS ON NONLINEAR NONCOERCIVE PROBLEMS WITH JUMPING NONLINEARITIES Pavel DRABEK

Dedicated to the memory of Svatopluk FUCIK

Abstract: We are interested in the investigation of the equations of the type
(0.1) $J(x)-\mu S\left(x^{+}\right)+\nu S\left(x^{-}\right)+G(x)=P$
which were intensively studied in the principal Fưík papers. The purpose of this paper is to give a short survey of the results in this field which have been published during last five years and also to formulate some open problems the solutions of which, in the euthor opinion, would lead to the better understanding of the equations in question.

Key words: Boundary value problems for ordinary differential equations, spectral theory of nonlinear operatorm.

Clasaification: $34 \mathrm{~B} 15,34 \mathrm{~B} 25,34 \mathrm{C} 10,47 \mathrm{H} 12$

1. Introduction. In his paper [9], Fučik emphasized the concept of "jumping nonlinearity" and in this framework he studied the solvability of the Dirichlet problem for second order ordinary differential equations

$$
\left\{\begin{array}{l}
\left.-u^{\prime \prime}(t)+g(u(t))=f(t), t \in\right] 0, \pi[\tag{1.1}\\
u(0)=u(\pi)=0,
\end{array}\right.
$$

With nonlinearity $g: \mathbb{R} \rightarrow \mathbb{R}$ satisfying
(1.2) $\lim _{s \rightarrow-\infty} \frac{g(s)}{s}=\nu, \lim _{s \rightarrow+\infty} \frac{g(s)}{s}=\mu$, where $\mu \neq \nu$ are real numbers. These results were afterwards generalized by Fucík himself and by meny other authors
in various directions (i.e. μ and ν acquire values $+\infty$ or $-\infty$, or the partial differential operator of elliptic type is considered instead of $-u^{\prime \prime}$, e.t.c.). An exhaustive list of references up to 1980 is given in the monography [11]. In the last two years many papers have appeared which deal with the multiplicity of the solutions of the problem (1.1). For the most recent results in this direction and also for an other bibliography see [16],[20].

In this paper we shall concentrate on the case of finite limits (1.2) and on existence results. The following parts of the paper are organized as follows. In Section 2 the abstract formulation of the problems in question is given and there is shown the connection between the problems with jumping nonlinearities and the nonlinear Fredholm alternative developed independently by Nečas [17] and Pochožajev [18] (see also [7]). Section 3 contains some applications of abstract results to Dirichlet and periodic boundary value problems for ordinary differential equations of second and fourth order. We mention also some local results for partial differential equations. Finally, in Section 4 we formulate some open problems which are mostly motivated by the known resulta in some particular cases.
2. Operator equation with Jumping nonlinearity. Let us suppose that X, Y, Z are Banach spaces with zero elements O_{X}, O_{Y}, O_{Z} and with norms $\|x\|_{X},\|y\|_{Y},\|z\|_{Z}$, respectively. A subset C of Z is called a cone if it is closed, convex, invariant under multiplication by nonnegative real numbers and if $C \cap(-C)=\left\{O_{Z}\right\}$. We shall suppose that the following assumptions are fulfilled.
(81) C induces the semiordering $x \leqslant y$ (i.e. ($y-x) \in C$) mah that $\Sigma^{+}=\max \left\{z, O_{Z}\right\} \in C, z^{-}=\max \left\{-z, O_{Z}\right\} \in C$ exdets for - very zeZ.
(z2) The mapping $z \mapsto \Sigma^{+}$is continuous.
(23) $I \subset Z$ and the identity mapping $X G Z$ is continuous. Let us appose that $a>0$ is a fixed real number and $J: X \rightarrow$
$\rightarrow Y$ is the mapping which satisfies the following properties:
(JI) J is poeitively a-homogeneous, i.e. $J(t x)=t^{a} J(x)$ for all $x \in X, t>0$.
(J2) J is a homeomorphiam X onto Y.
(J3) J is odd, i.e. $x \in X \Rightarrow J(-x)=-J(x)$.
Let $S: Z \rightarrow Y$ be the operator defined on Z and aatiafying
(si) S is positirely a-homogeneous.
(s2) S is continuous. $x \longmapsto S\left(x^{+}\right), x \longmapsto S\left(x^{-}\right)$are completely continuous mappinge from X onto Y.

Suppose that $G: X \rightarrow Y$ is a completely continuous operator. dccording to the works of Dancer [2, 3] and Fučik [9, 10, 11] we shall denote

$$
\begin{aligned}
& R(G)=\left\{f \in Y_{i} \exists x_{0} \in I: J\left(x_{0}\right)-\mu S\left(x_{0}^{+}\right)+\nu S\left(x_{0}^{-}\right)+G\left(x_{0}\right)=f\right\}_{0} \\
& R(0) \text { is written in case } G \equiv 0 ; \\
& A_{-1}=\left\{(\mu, \nu) \in \mathbb{R}^{2}, \exists x_{0} \neq 0_{x^{2}} J\left(x_{0}\right)-\mu S\left(x_{0}^{+}\right)+\nu S\left(x_{0}^{-}\right)=0_{1}\right\} s \\
& \Lambda_{0}=\mathbb{R}^{2} \backslash_{-18} \\
& \Lambda_{1}=\left\{(\mu , \nu) \in \Lambda _ { 0 } \operatorname { d e g } \left[J-\mu S\left(J^{-1}(J)\right)^{+}+\nu S\left(J^{-1}(y)\right)^{-} ;\right.\right. \\
& \left.\left.B_{I}(1), O_{I}\right] \neq 0\right\} ; \\
& \Lambda_{2}=\left\{(\mu, \nu) \in \Lambda_{0} \quad R(0) \neq Y\right\}, \\
& \Delta_{3}=\left\{(\mu, \nu) \in \mathbb{R}^{2}\{(0)=I\}_{0}\right. \\
& \text { We refer to }[4],[11] \text { whore the basic properties of the }
\end{aligned}
$$

sete $\Lambda_{1}, 1=-1, \ldots, 8$, are proved. In the mequel we mall show how the nonlinear Fredholm alternative for quasihomegencous operators (gee [8]) may be generalized uaing the clasaifieation of paraneters μ and ν in the sense of the sets $\Lambda_{1}, 1=$ $=-1, \ldots, 3$.

Definition 2.1. The mapping $T: X \rightarrow Y$ is ald to be recalarly surfective inom X onto Y if $T(X)=I$ and for and $R>0$ there exiats $r>0$ auch that $\|x\|_{X} \leq r$ for all $x G X$ with $\|T(x)\|_{Y} \leq R^{\circ}$

The following is proved in [8, Chapt. II].
Theoren 2.1. The operator J - $\boldsymbol{\lambda} 8$ is regularly anrjectiTe from X onto Y if and only if λ is not an eigenvalue of $J-\lambda s, i_{0} e J(x)-\lambda S(x)=O_{Y}$ implies $x=O_{X}$

Using the properties of $A_{1}, 1=1, \ldots, 3$ (see [4],[11]) it is easy to see that the following generalization of the previem theorem is true.

Theorem 2.2. (i) The operator
(2.1) $\quad x \mapsto J(x)-\mu S\left(x^{+}\right)+\nu S\left(x^{-}\right)$
is regularly surjective from X onto I if and only if $(\mu, \nu) \in$ $\in \mathcal{A}_{0} \cap \mathcal{A}_{3}{ }^{\circ}$
(ii) If $(\mu, \nu) \in I_{\lambda}$, where I_{λ} is the component of A_{0} containing the diagonal point (λ, λ) then the operator (2.1) is regularly surjective.

Investigation of homogeneous equation
(2.2) $J(x)-\mu S\left(x^{+}\right)+\nu S\left(x^{-}\right)=0_{I}$
is also useful for proving existence rexults for the equations containing operators which are asymptotically close to J and S.

Definition 2.2. The mapping $T: X \rightarrow Y$ is aaid to be a
(K, L, Ω) -homeomorphifm of X onto Y if
(1) I is a homeomorphim of X onto Y_{i}
(2) there exist real numbere $K>0, L>0$ such that

$$
I\|x\|_{X}^{a} \leqslant\|P(x)\|_{Y} \leqslant I\|x\|_{X}^{a},
$$

for each $\mathbf{x} \in \mathbf{X}$.
Definition 2.3. Let $T_{0}: I \rightarrow Y$ be an amomogeneous operam tor.
(i) Is said to be ampasihomogeneous with reapect to T_{0} if $t_{n}>0, x_{n} \rightarrow x_{0}, t_{n}^{a} T\left(\frac{X_{n}}{t_{n}}\right) \rightarrow J_{0} \in Y$ imply $I_{0}\left(x_{0}\right)=J_{0^{\circ}}$
(ii) T is said to be angtrongly quasihomogeneous with respeot to T_{0} if
$t_{n}>0, x_{n} \rightarrow x_{0}$ imply $t_{n}^{a} T\left(\frac{x_{n}}{t_{n}}\right) \rightarrow T_{0}\left(x_{0}\right)$.
Note that the mybol: $n \longrightarrow m$ and $n \longrightarrow{ }^{n}$ denote as unual the weak and the strong convergence, reapectively.

Using the homotopy invariance property of the Leray-Schauder degree it is possible to prove the following assertion.

Theorem 2.3. Let X be a reflexive Banach space and 1 an odd (K, I, a)-homeoworphism of X onto Y which is a-quasihomogeneous with respect to J. Let F be a completely continuous operator from X into Y which is embtrongly quasihomogeneous with respect to the operator $x \longmapsto \mu S\left(x^{+}\right)-\nu S\left(x^{-}\right)$. Then if $(\mu, \nu) \epsilon$ $\in T_{\lambda} \subset \Lambda_{0}$, where T_{λ} is eome omponent containing the point (λ, λ), the equation
(2.3) $\quad A(x)-P(x)=1$
a at least one solution for arbitrary Mght hand side $\mathrm{P} \in \mathrm{Y}$.
Proof. We shall prove at firgt that there exists a sufficiently large ball $B_{X}(r) C X$ auch that
$\mathscr{H}(x, \tau) \neq 0_{1}$
for all $x \in \partial B_{x}(p), \tau \in[0,1]$, where
$\mathscr{H}(x, \tau)=A(x)-(1-\tau) P(x)-\tau \mu S\left(x^{+}\right)+\tau \nu S\left(x^{-}\right)-$

- (1- $-\tau)$.

Let us mappese by contradiotion that there are $\tau_{n} \in[0,1]$,
$\left\|x_{A}\right\|_{x} \rightarrow \infty$ much that

$$
\begin{equation*}
\operatorname{se}\left(x_{n}, \tau_{n}\right)=0_{x} \tag{2.5}
\end{equation*}
$$

Then at leact for mome mbsequences, $\tau_{m} \rightarrow \tau_{0} \in[0,1]_{0}$
 $\rightarrow \mu s\left(\nabla_{0}^{+}\right)-\nu S\left(\nabla_{0}^{-}\right), s\left(\nabla_{n}^{+}\right) \rightarrow s\left(\nabla_{0}^{+}\right), S\left(\nabla_{n}^{-}\right) \rightarrow s\left(\nabla_{0}^{-}\right)$.

Hence dividing (2.5) by $H_{x_{1}} \|_{\mathrm{I}}$ we obtain
$\left(A\left(\left\|x_{n}\right\| \nabla_{n}\right) /\left\|x_{n}\right\| \frac{a}{x}\right) \rightarrow \mu S\left(\nabla_{0}^{+}\right)-\nu S\left(\nabla_{0}^{-}\right)$, 1.e. Ietting $n \rightarrow \infty$,
(2.6) $J\left(\tau_{0}\right)-\mu S\left(\tau_{0}^{+}\right)+\nu S\left(\nabla_{0}^{-}\right)=o_{Y}$

Since 1 is (K, I, a)-homeomorphimm, we have

$$
\frac{\left\|\left(\left\|x_{n}\right\|_{x} v_{n}\right)\right\|_{x}}{\left\|x_{n}\right\| x} \geq I
$$

for all $n \in N$ and hence $\nabla_{0} \neq O_{X}$, which tegether with (2.6) contradicte the amsumption $(\mu, \nu) \in \Lambda_{0}$. This proves (2.4).

Let us denote, now, by $\eta(\tau)=\left(\eta_{1}(\tau), \eta_{2}(\tau)\right)$, τ $\in[1,2]$, the mooth curve which lies in T_{λ} and such that $\eta(2)=(\lambda, \lambda), \eta(1)=(\mu, \nu)$. Let ue consider $\mathscr{H}(x, \tau)=\Lambda(x)-\eta_{1}(\tau) S\left(x^{+}\right)+\eta_{2}(\tau) S\left(x^{-}\right)-\tau t, \tau \in[1,2]_{0}$ $x \in \partial B_{2}(y)$. By contradiction we shall whow that for $x>0$ large enough it is

$$
\begin{equation*}
\mathscr{H}(x, \tau) \neq 0_{y} \tag{2.7}
\end{equation*}
$$

for all $x \in \partial \mathrm{~B}_{\mathrm{X}}(\mathrm{r}), \tau \in[1,2]$. Let us appose that for the
mitable aubsequence: $\tau_{n} \rightarrow \tau_{0} \in[1,2], x_{n} /\left\|x_{n}\right\|_{I}=v_{n} \rightarrow$ $\rightarrow \nabla_{0} \in X_{,} \nabla_{0} \neq O_{X}$,
$A\left(\left\|x_{n}\right\|_{x} \tau_{n}\right) /\left\|x_{n}\right\| \frac{a}{x} \rightarrow \eta_{1}\left(\tau_{0}\right) s\left(\tau_{0}^{+}\right)-\eta_{2}\left(\tau_{0}\right) s\left(\tau_{0}^{-}\right)$, i.e. $J\left(\tau_{0}\right)-\eta_{1}\left(\tau_{0}\right) s\left(\tau_{0}^{+}\right)+\eta_{2}\left(\tau_{0}\right) s\left(\tau_{0}^{-}\right)=o_{Y}$

This contradicts $\left(\eta_{1}(\tau), \eta_{2}(\tau)\right) \in \Lambda_{0}$, for all $\in \in[1,2]$, and hence (2.7) is proved. Using (2.4),(2.7), homotopy invariance property of the Leray-Soheuder degree and the fact thet A is (K, I, a)-homeomorphism we obtain that there is some $R>0$ and a ball $B_{Y}(R) C Y$ such that

$$
\begin{aligned}
& \text { (2.8) } \operatorname{deg}\left[y-P\left(\Lambda^{-1}(y)\right): B_{Y}(R), O_{Y}\right]=\operatorname{deg}\left[y-\lambda S\left(A^{-1}(y)\right)^{+}+\right. \\
& \left.\quad+\lambda S\left(\Lambda^{-1}(y)\right)^{-} B_{Y}(R), O_{Y}\right] .
\end{aligned}
$$

Bormak theorem and oddness of A and S imply that
(2.9) $\operatorname{deg}\left[y-\lambda S\left(\Lambda^{-1}(y)\right)^{+}+\lambda S\left(A^{-1}(y)\right)^{-} B_{Y}(R), O_{Y}\right] \neq 0$.

Then (2.8), (2.9) and the basic property of the Leray-Scheuder degree imply that (2.3) has at least one solution for arbitrary $P \in Y$. Q.E.D.

Remart 2.1. The previous Theorem 2.3 may be understood as a completion of the results contained in [8] concerning the solvability of operator equations with quasihomogeneous and atrongif quasibomogeneous operators.
3. Some applications. Let us suppose that $p \geq 2, q=$ $=p /(p-1)$ are real numbers, Let a and b be real functions defined on $[0, \pi]$. Suppose that $a(t)>0$, for all $t \in[0, \pi]$, $a \in C^{1}([0, \pi]), b(t)>0$, for all $t \in[0, \pi], b \in C([0, \pi])$. Put $X=Z=\|_{0}^{1}, p(0, \pi), Y=X^{*}=W^{-1, q}(0, \pi)$
and denote
（3．1）$\left\{\begin{array}{l}\langle J(u), v\rangle=\int_{0}^{g r} a(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t) v^{\prime}(t) d t, \\ \langle s(u), v\rangle=\int_{0}^{x} b(t)|u(t)|^{p-2} u(t) v(t) d t, \\ \langle f, v\rangle=\int_{0}^{\pi} h(t) v(t) d t,\end{array}\right.$
$h \in I_{1}(0, \pi)$ ，for all $v \in X$ ，where 〈．．．〉〉 is used for the duality between I and Y ．

Remark 3．1．See［15］for the uaval function apecen uned in this eection．

Remark 3．2．It is possible to verify that the operatorn J and S defined by（3．1）atisfy the conditions（J1）－（J3），（31）－（33） from Section 2 （see［4］）and the equation
（3．2）$J(u)-\mu S\left(u^{+}\right)+\nu S\left(u^{-}\right)=1$
is the operator representation of the boundary value problem
（3．3）$\left\{\begin{array}{l}-\left(a(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)\right)^{0}-b(t)|u(t)|^{p-2}\left(\mu u^{+}(t)-\right. \\ \left.-\nu u^{-}(t)\right)=h(t), t \in[0, r], \\ u(0)=u(r)=0 .\end{array}\right.$
Definition 3．1．The solution of the operator equation
（3．2）is called the weak molution of BVP（3．3）．
Remark 3．3．It is possible to prove that the weak eolution of（3．3）has more regularity than $u \in I$ ．In fact we have $u \in C^{1}([0, \pi])$ and if $h \in C([0, x])$ then $\left(a(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)\right) \in$ $\in C^{1}([0, \pi])$（for the proof see［4，The 3．3］）．

The following assertion is proved in［81．
Theorem 3．1．The real numbers λ for which there exista a nontrivial solution of $J(u)-\lambda S(u)=O_{Y}$ form a sequence $\sigma=$ $=\left\{\lambda_{n}\right\}_{n=1}^{\infty}, 0<\lambda_{1}<\lambda_{2}<\ldots .,{ }_{n \rightarrow \infty}^{11_{\rightarrow}} \lambda_{n}=\infty$ ．

Remark 3．4．Hote that $\lambda \in \sigma$ is equivalent to $(\lambda, \lambda) \in \Lambda_{-1}$ ．

Then neing the basic propertien of the aete $\Lambda_{1}, 1=-1, \ldots, 3$ (see [11]) we cam prove

Theorem 3.2. Iet $\lambda \boldsymbol{\lambda} \boldsymbol{\sigma}$. Then there cists a poaitive real number $0(\lambda)>0$ (depending on the diatance λ from σ) meh that BVP (3.3) has at leant one weak molution for arbitrary Hight hand aide $h \in I_{1}(0, \pi)$ if $|\mu-\lambda|+|\nu-\lambda|<c(\lambda)$.

We shall muppose now that gz $[0, J] \times \mathbb{R} \rightarrow \mathbb{R}$ matiafies the Caratheodory s conditions, i.e. $g(t, s)$ is meaqurable in t
 let us consider perturbed BVP:
(3.4) $\left\{\begin{array}{l}-\left(a(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)\right)^{\prime}-b(t)|u(t)|^{p-2}\left(\mu u^{+}(t)-\right. \\ \left.\left.-\nu u^{-}(t)\right)+g(t, u(t))=h(t), t \in\right] 0, \pi[, \\ u(0)=u(\pi)=0 .\end{array}\right.$

Theorea 3.3. Let (μ, ν) c. Λ_{1}. Then there exiate real positive $0_{1}(\mu, \nu)>0$ with the following propertys the BVP (3.4) has at least one weak solution for arbitrary mght hand aide $h \in I_{1}(0, \pi)$ if there is some function $r(t) \in I_{1}(0, \pi)$ woh that

$$
|g(t, z)| \leqslant r(t)+c_{1}(\mu, \nu)|\varepsilon|^{p-1} .
$$

for a.a. $t \in[0, \pi]$ and all $E \in \mathbb{R}$.
Remark 3.5. The proof of this assertion follows again from the basic properties of the set Λ_{1}. On the other hand if $(\mu, \nu) \in \mathcal{A}_{2}$ (i.e. there axiets auch $h \in I_{1}(0, \pi)$ that BVP (3.3) has no weak solution) then there is $c_{2}(\mu, \nu)>0$ such that BVP (3.4) has no solution for some right hand sides provided

$$
|g(t, z)| \leqslant r(t)+c_{2}(\mu, \nu)|z|^{p-1}
$$

for $a_{0} a_{0} t \in[0, \pi]$ and all $=\in \mathbb{R}$.
Let us mppose that $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous functi-

on which ha: fiaite linite

(3.5) $\mu=\lim _{s \rightarrow+\infty} \frac{\rho(s)}{|=|^{p-2}}$ and $\nu=\lim _{s \rightarrow-\infty} \frac{\operatorname{se}(s)}{|=|^{p-2}}$.

Define the operator $F: X \rightarrow Y$ by
(3.6) $\langle P(u), v\rangle=\int_{0}^{\pi} \varphi(u(t)) v(t) d t, u, v \in I$,
and the operator $A_{i} X \rightarrow I$ by

$$
\begin{array}{r}
\langle A(u), \nabla\rangle=\int_{0}^{\pi}\left(1+a(t)\left|u^{\prime}(t)\right|^{p-2}\right) u^{\prime}(t) v^{\prime}(t) d t, \tag{3.7}\\
u, \nabla \in X .
\end{array}
$$

Then the solution of the operator equation

$$
\begin{equation*}
A(u)-P(u)=P \tag{3.8}
\end{equation*}
$$

is the weak solution of BVP
(3.9) $\left\{\begin{array}{l}-\left[\left(1+a(t)\left|u^{\prime}(t)\right|^{p-2}\right) u^{\prime}(t)\right]^{\prime}=\varphi(u(t))+h(t), \\ u(0)=u(\pi)=0 .\end{array}\right.$

It is not difficuit to see that 1 is odd, ($K, I, p-1$)-homeomorphism X onto I which is ($p-1$)-quasihomegeneous with reapect to J and F is completely continuous operator from X into Y which 1s ($p-1$)-atrongly quasihomogeneous with respect to the operator

$$
u \longmapsto \mu s\left(u^{+}\right)-\nu S\left(u^{-}\right)
$$

Uaing the properties of A_{1} and applying Theorem 2.3 we obtain the following existence result.

Theorem 3.4. Let $\boldsymbol{\lambda} \notin \boldsymbol{\sigma}$. Then there exists $\boldsymbol{\gamma}(\boldsymbol{\lambda})>0$ such that BVP (3.9) has at least one weak solution for arbitrary right hand side $h \in I_{1}(0, r)$ provided $|\mu-\lambda|+|\nu-\lambda|<\gamma(\lambda)$.

Let us suppose that the functions a, bare the same as at the beginning of this section and put $X=w_{0}^{2}, P(0, \pi), Y=$ $=\operatorname{m}^{-2, q}(0, \pi), Z=L_{p}(0, \pi)$. Let us define operator $S: X \rightarrow Y$ and an element $f \in Y$ by the same way as in (3.1) and an operator
$J: X \longrightarrow Y$ by the relation
(3.10) $\langle J(u), v\rangle=\int_{0}^{\pi} a(t)\left|u^{\cdots}(t)\right|^{p-2} u^{\prime \prime}(t) v^{\cdots}(t) d t, u, v \in X_{0}$

Remark 3.6. It is possible to verify that the operatora J and S satigey again the conditions (J1)-(J3), (S1)-(S3) from Section 2 and the solution of (3.2) is the weak solution of BTP
(3.11) $\left\{\begin{array}{l}\left(a(t)\left|u^{\prime \prime}(t)\right|^{p-2} u^{\prime \prime}(t)\right)^{\cdots}-b(t)|u(t)|^{p-2}\left(\mu u^{+}(t)-\right. \\ \left.-\nu u^{-}(t)\right)=h(t), t \in[0, \pi], \\ u(0)=u^{\prime}(0)=u(\pi)=u^{\prime}(\pi)=0 .\end{array}\right.$

Remark 3.7. Also in this case the assertion of Theoren 3.1 is still valid (see [8]). That is why analogous results to that formulated in Theorems 3.2-3.4 may be proved also for the weak solvability of BVP (3.11).

Remark 3.8. Let us remark that all the results formuláted above have the local character in the senge that we obtain the solvability of BVP (3.3), resp. (3.11), when ($\mu, \nu)$ is near" to some diagonal point (λ, λ), $\lambda \sigma^{6}$. In order to obtain more global results we need some information about the atructure of the set A_{-1} which plays the key role in the classification of real parameters μ and ν.

It is possible to prove such global results for BVP (3.3) under the assumption of constant coefficients, i.e. $a(t)=$ $=b(t)=1$ for all $t \in[0, \pi]$.

Theorem 3.5. BVP

(3.12)

$$
\left\{\begin{array}{l}
-\left(\left|u^{\prime}\right| p-2 u^{\prime}\right)^{\prime}-|u|^{p-2}\left(\mu u^{+}-\nu u^{-}\right)=0 \\
u(0)=u(\pi)=0
\end{array}\right.
$$

has a nontrivial weak solution if and only if one of the following conditions holds:
(i) $\mu=\lambda_{1}, \nu$ is arbitrary,
(ii) μ is arbitrary, $\nu=\lambda_{1}$,
(iii) $\mu>\lambda_{1}, \nu>\lambda_{1}$,
$\frac{(\mu)^{\frac{1}{n}}(\nu)^{\frac{1}{r^{2}}}}{\left((\mu)^{\frac{1}{12}}+(\nu)^{\frac{1}{T_{2}}}\right)\left(\lambda_{1}\right)^{\frac{1}{1}}}=k$,
$\frac{\left((\mu)^{\frac{1}{r^{2}}}-\left(\lambda_{1}\right)^{\frac{1}{\pi_{2}}}\right)(\nu)^{\frac{1}{\pi}}}{\left((\mu)^{\frac{1}{1}}+(\nu)^{\frac{1}{T_{1}}}\right)\left(\lambda_{1}\right)^{\frac{1}{\pi}}}=k$,
$\frac{\left((\nu)^{\frac{1}{12}}-\left(\lambda_{1}\right)^{\frac{1}{2}}\right)(\mu)^{\frac{1}{12}}}{\left((\mu)^{\frac{1}{12}}+(\nu)^{\frac{1}{r^{2}}}\right)\left(\lambda_{1}\right)^{\frac{1}{12}}}=k$,
$k=1,2,3, \ldots$.
Remark 3.2. The previous assertion gives the precise description of the set A_{-1} for BVP (3.12). The proof of this theorem with the sketch of the figure of A_{-1} may be found in [4].

Using the description of A_{-1} we may formulate the global analog of Theorems 3.2-3.4.

Let us suppose that continuous function φ satisfies (3.5) and consider BVP
(3.13) $\left\{\begin{array}{l}-\left[\left(1+\left|u^{\prime}\right|^{p-2}\right) u^{\prime}\right]^{\prime}=\varphi(u(t))+h, \text { in }[0, \pi], \\ u(0)=u(\pi)=0 .\end{array}\right.$

Theorem 3.6. Let us suppose that one of the following conditions is fulfilled:
(i) $\mu<\lambda_{1}, \quad \nu<\lambda_{1}$,
(ii) $\mu>\lambda_{1}, \nu>\lambda_{1}$ and
$\frac{\left((\mu)^{\frac{1}{2}}-\left(\lambda_{1}\right)^{\frac{1}{n}}\right)(\nu)^{\frac{1}{n}}}{\left((\mu)^{\frac{1}{n}}+(\nu)^{\frac{1}{n}}\right)\left(\lambda_{1}\right)^{\frac{1}{n}}}<1, \quad \frac{\left((\nu)^{\frac{1}{\sqrt{n}}}-\left(\lambda_{1}\right)^{\frac{1}{\sqrt{2}}}\right)(\mu)^{\frac{1}{n}}}{\left((\mu)^{\frac{1}{n}}+(\nu)^{\frac{1}{2}}\right)\left(\lambda_{1}\right)^{\frac{1}{1 / 2}}}<1$,
or $k-1<\frac{\left((\mu)^{\frac{1}{n}}-\left(\lambda_{1}\right)^{\frac{1}{n}}\right)(\nu)^{\frac{1}{n}}}{\left((\mu)^{\frac{1}{n}}+(\nu)^{\frac{1}{n}}\right)\left(\lambda_{1}\right)^{\frac{1}{n}}}<k, k-1<$

$$
<\frac{\left((\nu)^{\frac{1}{n}}-\left(\lambda_{1}\right)^{\frac{1}{n}}\right)(\mu)^{\frac{1}{n}}}{\left((\mu)^{\frac{1}{n}}+(\nu)^{\frac{1}{n}}\right)\left(\lambda_{1}\right)^{\frac{1}{n}}}<k_{0}
$$

with some $k \in \mathbb{N}, k \geq 2$. Then the BVP (3.13) has at least one weak solution for arbitrary right hand side $h \in L_{1}(0, \pi)$.

The proof of this assertion follows immediately from Theorem 2.3 because the above inequalities (i),(ii) are equivalent to $(\mu, \nu) \in T_{\lambda}$, where T_{λ} is a component of A_{1} containing diagonal point $(\lambda, \lambda), \lambda \notin \sigma$.

On the other hand using the shooting method we obtain the following nonexistence result.

Theorem 3.7. Let us suppose that one of the following conditions is fulfilled:
(i) $\mu>\lambda_{1}, \nu<\lambda_{1}$;
(ii) $\mu<\lambda_{1}, \nu>\lambda_{1}$;
(iii) $\frac{\left((\mu)^{\frac{1}{2}}-\left(\lambda_{1}\right)^{\frac{1}{2}}\right)(\nu)^{\frac{1}{1_{2}}}}{\left((\mu)^{\frac{1}{1 \nu}}+(\nu)^{\frac{1}{2}}\right)\left(\lambda_{1}\right)^{\frac{1}{n_{2}}}}<k$,

$$
\frac{\left((\nu)^{\frac{1}{n}}-\left(\lambda_{1}\right)^{\frac{1}{n}}\right)(\mu)^{\frac{1}{12}}}{\left((\mu)^{\frac{1}{n}}+(\nu)^{\frac{1}{12}}\right)\left(\lambda_{1}\right)^{\frac{1}{2}}}>k ;
$$

$k=1,2,3, \ldots$. Then there exists right hand side $h \in L_{1}(0, \pi)$ such that
(3.14) $\left\{\begin{array}{l}-\left(\left|u^{0}\right| p-2 u^{\prime}\right)^{\prime}-|u|^{p-2}\left(\mu u^{+}-\nu u^{-}\right)=h \text { in }[0, \pi], \\ u(0)=u(\pi)=0\end{array}\right.$
has no weak solution.

For the proof see [4].

Remark 3.10. Note that under the assumptions of Theorem 3.6 the BVP (3.14) has the weak solution for arbitrary right hand side $h \in L_{1}(0, \pi)$. We have complete description of the set A_{-1} for BVP (3.14) which is given by conditions (i) - (iii) irom Theorem 3.5 (the system of curves in the plane (μ, ν)). Whe set A_{-1} divides the plane (μ, ν) into some open unbounded components. These components are of two different types - some of them have nonempty intersection with the diagonal (λ, λ), $\lambda \in \mathbb{R}$, and some of them have empty intersection with this diagonal. Theorem 3.6 then implies that the components of the first type belong to A_{1} (and hence al so to A_{3}) and Theorem 3.7 implies that the components of the second type belong to A_{2}.

It is possible to prove some more precise results in the case $p=2$, i.e. for the solvability of $B V P$
(3.15) $\left\{\begin{array}{l}-u^{\prime \prime}(t)-\mu u^{+}(t)+\nu u^{-}(t)=h(t), t \in[0, \pi] \text {, } \\ u(0)=u(\pi)=0 .\end{array}\right.$

Let us suppose $(\mu, \nu) \in \mathbb{A}_{-1}$, i.e. μ and ν satisfy the assumptions of Theorem 3.5 (with $p=2$), and denote $v_{\mu, \nu} 6$ $\in \mathbb{T}_{0}^{1,2}(0, \pi)$ the normed nontrivial solution of BVP

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(t)-\mu u^{+}(t)+\nu u^{-}(t)=0, t \in[0, \pi] \\
u(0)=u(\pi)=0
\end{array}\right.
$$

The standard regularity argument for $O D E$'s shows that $\nabla_{\mu, \nu} \in$ $\in W^{2}, 2(0, \pi)$.

Theorem 3.8. Let $(\mu, \nu) \in A_{-1}$. Then for given $h_{1} \in$ $\in\left[\nabla_{\mu, \nu}^{\circ \prime}\right]^{\perp}$ (an orthogonal complement in the space $I_{2}(0, J r)$) there exists an $\propto\left(h_{1}\right) \in \mathbb{R}$ such that (3.15) has at least one weak solution for $h=h_{1}+\alpha\left(h_{1}\right) v_{\mu, \nu}^{\prime \prime}$.

Theorem 3.9. Let us suppose that $(\mu, \nu) \in A_{2}$ (i.e. μ and ν satisfy the assumptions of Theorem 3.7 with $p=2$). Then there exists $w_{\mu, \nu} \in I_{2}(0, \pi)$ such that for any given $h_{1} \in$ $\in\left[\sigma_{\mu, \nu}\right]^{\perp}$ there exists a constant $T\left(h_{1}\right)$ such that (3.15) has at least two weak solutions for $h=h_{1}+t_{w_{\mu, \nu}}$ provided that $t>\boldsymbol{T}\left(h_{1}\right)$ 。

The proofs of the previous two theorems may be found in [19]. Note that $p=2$ is essential here.

Some global results (concerning the classification of parameters μ and ν) it is possible to prove also in the case of ODE of the fourth order. Let us consider the equation

$$
\begin{equation*}
u^{I V}=\mu u^{+}-\nu u^{-} \tag{3.16}
\end{equation*}
$$

with periodic boundary conditions. The regularity argument showe that the description of A_{-1} is equivalent to finding a nonconstant 2π-periodic solution $u \in C^{4}(\mathbb{R})$ solving (3.16). It is useful to put $\left.\mu=a^{4}, \nu=b^{4},(a, b) \in\right] 0,+\infty[\times] 0,+\infty[=] 0,+\infty[2$. Let us denote by $\psi \in](3 / 4) \pi, \pi[$ the mallest positive root of the equation

$$
\tan (x)+\operatorname{th}(x)=0
$$

and for $z \in] 0, Y[$

$$
g(z)=\frac{\operatorname{ch}(z) \sin (z)-\operatorname{sh}(z) \cos (z)}{\operatorname{ch}(z) \sin (z)+\operatorname{sh}(z) \cos (z)}
$$

The following localization of the set A_{-1} is proved in [14].
Theorem 3.10. The set $\tilde{A}_{-1}=\{(a, b) \in] 0,+\infty\left[2 ; \mu=a^{4}\right.$, $\left.\nu=b^{4},(\mu, \nu) \in A_{-1}\right\}$ is the system $\left\{S_{k}, k \in \mathbb{N}\right\}$ of c^{∞}-curven, where S_{1} is a curve $(a, b(a)) ; b(a)$ is decreasing C^{∞}-function defined in $] \frac{\psi}{\pi},+\infty\left[\right.$ with $\lim _{a \rightarrow \infty} b(a)=\frac{\psi}{\pi}$. The curve s_{1} is symmetrical with respect to the straight line $b w a$ and fulfils $S_{1} \subset G_{1}$, where G_{1} is the set of all pairs $\left.(a, b) 6\right] 0,+\infty\left[{ }^{2}\right.$ such that
$b \geq a,\left(\frac{b}{a}\right)^{2}-g\left(\pi a\left(1-\frac{1}{2 b}\right)\right) \geq 0 \geq\left(\frac{a}{b}\right)^{2}-g\left(\pi b\left(1-\frac{1}{2 a}\right)\right)$, or
$b \leq a,\left(\frac{a}{b}\right)^{2}-g\left(\pi b\left(1-\frac{1}{2 a}\right)\right) \geq 0 \geq\left(\frac{b}{a}\right)^{2}-g\left(\pi a\left(1-\frac{1}{2 b}\right)\right)$.
For $k \geq 2$ it is $S_{k}=\{(a, b) \in] 0,+\infty\left[2 ;(a / k, b / k) \in S_{1}\right\}$
and $S_{k} \subset G_{k}$, where $G_{k}=\{(a, b) \in] 0,+\infty\left[2 ;(a / k, b / k) \in G_{1}\right\}$.
In particular, $\tilde{A}_{-1} \subset{ }_{k} \bigcup_{=1}^{\infty} G_{k}$ and for $(a, b) \in S_{k}$ the correaponding 2π-periodic solution has exactly $2 k-$ "semi-waves" in on interval of length 2π. This solution is unique if translations and positive multiples are not considered.

Remarix 3.11. See [.14] for the picture of the nystem $\left\{G_{k}\right\}_{k=1}^{\infty}$.

Let us consider now the equation (3.16) with boundary conditions
(3.17) $u(0)=u^{\prime \prime}(0)=u(\pi)=u^{\prime \prime}(\pi)=0$.

Then the following information about the set $\tilde{\mathbb{A}}_{-1}$ (for BVP (3.16), (3.17)) may be got.

Theorem 3.11. The set \widetilde{A}_{-1} is a system of continuous curves $\left\{S_{i}^{+}, S_{i}^{-} ; i \in \mathbb{N}\right\}$ such that
(1) for $(a, b) \in S_{1}^{+}$, resp. S_{1}^{-}, the solution u satisfies $u^{\prime}(0)>0$, resp. $u^{\prime}(0)<0$. This solution is uniquely determined by the choice of $u^{\prime}(0)$ and it has exactly $i+1$ zeros in $[0, \pi]$;
(ii) S_{i}^{+}is symmetrical to S_{i}^{-}with respect to the straight Ine $a=b$. If i is even then $S_{i}^{+}=S_{i}^{-}$;
(iii) for each $1 \in \mathbb{N}$ we have $\left(S_{i}^{+} \cup S_{i}^{-}\right) \cap\left(S_{i+1}^{+} \cup S_{i+1}^{-}\right)=\varnothing$.

For the proof of this assertion see [14].
Remark 3.12. Using the assertion of Theorem 3.10 (1.e. the localization of A_{-1}) and the abstract Theorem 2.3 we may formulate the global existence results (analogous to thet from Theorem 3.6) for the periodic BVP for the equation

$$
u^{I V}=\varphi(u(t))+h(t)
$$

The situation concerming the description of the set A_{-1} in the case of PDE's seems to be much more complicated. This fact implies that investigation of the solvability of the corresponding BVP with jumping nonlinearity is very difficult. The most recent results in this direction may be found in [12],[13]. The authors study the following problem

$$
\begin{equation*}
u \in D(J), J(u)=\mu u^{+}-\nu u^{-}+\varphi(., u)+h, \tag{3.18}
\end{equation*}
$$

under the assumptions: $\Omega \subset \mathbb{R}^{N}$ is an open set, $h \in I_{2}(\Omega), \mathcal{J}$ is a linear selfadjoint operator with compact resolvent, the domain of J is $D(J) \subset L_{2}(\Omega)$ and J maps $D(J)$ into $J_{2}(\Omega), \varphi: \Omega<$ $\times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory's function,

$$
\lim _{|s| \rightarrow \infty} \frac{\mathscr{P}(., s)}{s}=0, \sup _{s \in \mathbb{R}}\left|\frac{\mathscr{L}(., s)}{s}\right| \in L_{\infty}(\Omega) .
$$

There is proved in [12] that if $\mu \neq \nu$ and interval $[\mu, \nu]$ (resp. $[\nu, \mu]$ if $\mu>\nu$) does not contain any eigenvalue of J then (3.18) has at least one solution for every $h \in L_{2}(\Omega)$.

Also in the case $\mu=\nu=\lambda$ and λ is not an eigenvalue of J the problem (3.18) has at least one solution for every $h \in L_{2}(\Omega)$. It is also proved there that the set A_{-1} associated with (3.18) $(\varphi \equiv 0, h \equiv 0)$ in the neighbourhood of the simple eigenvalue λ has the character of a continuous curve (or two continuous curves) passing through the point (λ, λ).

In the second peper [13] there is studied the case when the interval $[\mu, \nu]$ contains one simple eigenvalue λ of the 0 perator J and $(\mu, \nu) \in \mathbb{A}_{-1},(\mu, \nu)$ lies "near" to (λ, λ). The authors have obtained sufficient conditions of Landesman-Lazer type for the solvability of (3.18).

At the end of this section let us mention two results concerning the solvability of $\mathrm{BVP}^{\prime} \mathrm{s}$ for ODE 's containing nonlinearities introduced by Fučík [9] (see (1.2)).

Let us auppose that $\varphi(t, s):[0, \pi] \times \mathbb{R} \rightarrow \mathbb{R}$ is a Caratheodory 's function, there is some constant $c>0$ and a function $m \in I_{d}(0, \pi)(d>1)$ such that
(3.19) $|g(t, s)| \leq m(t)+c|s|^{p-1}$
for all $\in \in \mathbb{R}$ and a.a. $t \in[0, \pi]$. We shall suppose that there exist functions $x^{+\infty}, x^{-\infty}, \lambda_{+\infty}, x_{-\infty} \in I_{\infty}(0, \pi)$ such that
(3.20) $\left\{\begin{array}{l}s \xrightarrow{\lim _{\sup } \frac{\operatorname{se}(t, s)}{|s|^{p-2} s}=x^{ \pm \infty}(t),} \\ s \lim _{s \rightarrow \infty} \inf \frac{\operatorname{se}(t, s)}{|s|^{p-2} s}=x_{ \pm \infty}(t),\end{array}\right.$
for a. as $t \in[0, t]$. Then using the description of the set \mathbb{A}_{1} for the BVP (3.12) (see Theorem 3.5) we obtain the following existence result for BVP
(3.21) $\left\{\begin{array}{l}-\left(\left|u^{0}(t)\right|^{p-2} u^{\prime}(t)\right)^{\prime}=\varphi(t, u(t))+h(t), t \in[0, \pi], \\ u(0)=u(\pi)=0 .\end{array}\right.$

Theorem 3.12. Let us suppose that either
(i) there exists some $\sigma^{\gamma}>0$ such that

$$
x_{ \pm \infty}(t), \quad x^{ \pm \infty}(t) \leq \lambda_{1}-\sigma^{\sigma},
$$

for a.a. $t \in] 0, \pi[$, or
(ii) there are two couples (μ_{1}, ν_{1}) and (μ_{2}, ν_{2}) lying In the same component of A_{1} and

$$
\begin{aligned}
& \mu_{1} \leq x_{+\infty}(t) \leq x^{+\infty}(t) \leq \mu_{2}, \\
& \nu_{1} \leq x_{-\infty}(t) \leq x^{-\infty}(t) \leq \nu_{2},
\end{aligned}
$$

holds for a.a. $t \in] 0, \pi[$.
Then BVP (3.21) has at least one weak solution for arbitrary right hand side $h \in L_{1}(0, \pi)$.

Remark 3.13. The proof of this assertion may be found in [1], the sketch of the proof of this assertion is given also in [51. Note that the method of the proof is topological in nature (it is based on the homotopy invariance property of the LeraySchauder degree) and therefore it is possible to consider more general differential operator of second order than that considered in (3.21) (in the sense of Definition 2.2 and Definition 2.3(1)), i.e. the assertion of Theorem 3.12 remains also valid in the case of BVP:

Let us consider now the periodic BVP for forced Duffing equation
(3.22) $\left\{\begin{array}{l}\left.u^{n}+\widetilde{c} u^{\prime}+\varphi(t, u)=h(t) \text { in }\right] 0, \pi[, \\ u(\pi)-u(0)=u^{\prime}(\pi)-u^{\prime}(0)=0,\end{array}\right.$
$\boldsymbol{\mathcal { E }} \in \mathbb{R}, h \in \mathrm{~L}_{1}(0, \pi), \varphi$ is again the Carathéodory's function satisfying (3.19) with $m \in L_{1}(0, \pi), p=2$ and (3.20) (also with $\mathrm{p}=2$) 。

Theorem 3.13. Let us suppose that either
(i) there exists some $\delta^{N}>0$ such that

$$
x_{ \pm \infty}(t)-\frac{\tilde{c}^{2}}{4}, \quad x^{ \pm \infty}(t)-\frac{\tilde{c}^{2}}{4} \leq-\sigma^{2}
$$

for a.a. $t \in] 0, \pi[$, or
(ii) there are two couples $\left(\mu_{1}, \nu_{1}\right)$ and $\left(\mu_{2}, \nu_{2}\right)$ lying in the same component of $\widetilde{\mathbb{A}}_{1}$ and

$$
\begin{aligned}
& \mu_{1} \leqslant x_{+\infty}(t)-\frac{\tilde{c}^{2}}{4} \leqslant x^{+\infty}(t)-\frac{\tilde{c}^{2}}{4} \leqslant \mu_{2} \\
& \nu_{1} \leqslant x_{-\infty}(t)-\frac{\tilde{c}^{2}}{4} \leqslant x^{-\infty}(t)-\frac{\tilde{c}^{2}}{4} \leqslant \nu_{2} \\
& (0,0) \notin\left[\mu_{1}, \mu_{2}\right] \times\left[\nu_{1}, \nu_{2}\right],
\end{aligned}
$$

for a.a. $t \in] 0, r[$. Then periodic $B V P$ (3.22) has at least one solution for arbitrary $h \in L_{1}(0, \pi)$.

Remark 3.14. $\widetilde{\mathbb{A}}_{1}=\left\{(\mu, \nu) \in \mathbb{R}^{2} ; \mu, \nu>0,(\mu, \nu) \notin \bigcup_{k=1}^{\infty} c_{k}\right\}$, where

$$
\begin{aligned}
& C_{k}=\left\{(\mu, \nu) \in \mathbb{R}^{2} ; \mu>0, \nu>0, \frac{\sqrt{\mu} \cdot \sqrt{\nu}}{\sqrt{\mu}+\sqrt{\nu}}=k\right\}, \\
& k=1,2,3, \ldots \text {. See }[6] \text { for the picture of }{\widetilde{A_{1}}}^{\text {and }}{ }_{k=1}^{\infty} c_{k} .
\end{aligned}
$$

Remark 3.15. The method of the proof of Theorem 3.23 is based on the homotopy invariance property of the Leray-Schauder degree and the shooting argument. In the first step, proceeding via contradiction, we obtain the limit equation

$$
v^{\cdots}+\widetilde{c} v^{\cdot}+\gamma_{+}(t) v^{+}-\gamma_{-}(t) v^{-}=0 \text { a. e. on }[0, r]
$$

with $\nabla(0)=\nabla(\pi)=0, \nabla^{\prime}(0)=\nabla^{\circ}(\pi)=1$ and with γ_{+}, γ_{-} verifying $\mu_{1} \leqslant \gamma_{+}(t) \leqslant \mu_{2}, \nu_{1} \leqslant \gamma_{-}(t) \leqslant \nu_{2}$, for a. a. $t \in[0, \pi]$. By a substitution $z(t)=\exp ((0 / 2) t) v(t)$ we trazaform this BVP to

$$
\left\{\begin{array}{l}
z^{\prime \prime}+\left(\gamma_{+}(t)-\frac{\tilde{\sigma}^{2}}{4}\right) z^{+}-\left(\gamma_{-}(t)-\frac{\gamma^{2}}{4}\right) z^{-}=0, \\
z(0)=z(\pi)=0,
\end{array}\right.
$$

which verifies also sign $z^{\prime}(\pi)=\operatorname{sign} z^{\prime}(0) \neq 0$. Here we get a contradiction using the description of Λ_{-1} for BVP (3.15) using the shooting argument (for complete proof of Theorem 3.13 see [6]).
4. Open problems. In this last section we shall formulata some open problems. Note that some open problems concerning soivability of general operator equation (0.1) are formulated in [5].

Let us consider (3.14) and the sets $A_{i}, 1=-1, \ldots, 3$, associated with this BVP. Then the following open problems concerning the solvability of (3.14) may be formulated.

Problem 4.1. (i) $A_{-1} \subset \mathbb{R}^{2} \backslash A_{3}$? (ii) To ifind sufficient conditions upon $h \in L_{1}(0, \pi)$ in order (3.14) to be solvable if the answer to (i) is positive and $(\mu, \nu) \in \Lambda_{-1}$.

Problem 4.2. Let us suppose that $(\mu, \nu) \in \mathcal{A}_{2}$. Find sufficient conditions (or necessary and sufficient conditions) upon h in order (3.14) to be solvable.

Problem 4.3. Let us suppose that $(\mu, \nu) \in \Lambda_{-1}$ and φ : $: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and bounded function with finite limits $\lim _{\rightarrow \rightarrow \infty} \varphi(s)=\varphi(\pm \infty)$. The problem is to find by means of $g(\pm \infty)$ suffiaient conditions upon $h \in L_{1}(0, \pi)$ in order
$\left\{\begin{array}{l}-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}-|u|^{p-2}\left(\mu u^{+}-\nu u^{-}\right)+\varphi(u(0))=h \text { in } \\ u(0)=u(\pi)=0,\end{array}\right.$
to be solvable.
Remark 4.1. The last problem was motivated by the remult [13] where Landesman-Lazer-type sufficient conditions are derived for solvability of semilinear problem (3.18).

Let us come back to the BVP (3.3). It would be interesting to extend the local result from Theorem 3.2 at least in the following sense.

Problem 4.4. Let $\lambda_{i}, \lambda_{i+1} \in \sigma$ be two successive eigenvalues for some $i=1,2,3, \ldots$ (see Theorem 3.1). Prove or dizprove:

BVP (3.3) has at least one weak solution for arbitrary right hand side $h \in I_{1}(0, \pi)$ provided $\lambda_{i}<\mu<\lambda_{i+1}$, $\lambda_{i}<\nu<$ $<\lambda_{i+1}$.

Remark 4.2. Note that the answer is positive in the case $p=2$ (see [12] for PDE case).

Remark 4.3. It would be interesting to solve the Problem 4.4 also for BVP (3.11).

Let us suppose that $\lambda_{n} \in \sigma$ is a simple eigenvalue of $J-\lambda S ; J, S$ are defined by the relations (3.1). Then any information about the structure of the set A_{-1} in the neighbour hood of (λ_{n}, λ_{n}) would be useful, namely we are interested in solving

Problem 4.5. Prove or disprove: the set A_{-1} in the noighbourhood of $\left(\lambda_{n}, \lambda_{n}\right)$ is a continuous curve (or two contimous curves) passing through the point $\left(\lambda_{n}, \lambda_{n}\right)$.

Also global properties of the set \mathbf{A}_{-1} associated with J and S defined by (3.1) are not known very well.

Problem 4.6. Has the set A_{-1} an empty interior (with respect to the topology of \mathbb{R}^{2}) ?

Problem 4.7. Is there some connected subset Mc A-1 such that $\left(\lambda_{1}, \lambda_{1}\right) \in M$ and $\left(\lambda_{2}, \lambda_{2}\right) \in M$, where $\lambda_{1}, \lambda_{2} \in \sigma, \lambda_{1} \neq$ $\neq \lambda_{2}$?

Let us consider the BVP
(4.1) $\left\{\begin{array}{l}-\left(a(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)\right)^{\prime}=\varphi(t, u(t))+h(t), t \in[0, r], \\ u(0)=u(\pi)=0,\end{array}\right.$
φ satisfies $(3.19),(3.20), a \in C^{1}([0, \pi]), a(t)>0, t \in[0, \pi]$ and $\lambda_{i}, \lambda_{i+1} \in \sigma$, for some arbitrary but fixed $i \in \mathbb{N}$. It would be interesting to prove the following assertion.

Problem 4.8. Let us suppose that either
(i) there exists some $\delta^{\prime}>0$ such that

$$
x_{ \pm \infty}(t), \quad x^{ \pm \infty}(t) \leqslant \lambda_{1}-\delta^{\prime},
$$

for $\left.a_{0} a_{0} t \in\right] 0, \pi[$, or
(ii) there existe mome $\sigma^{\prime}>0$ such that

$$
\begin{aligned}
& \lambda_{1}+\delta \leq x_{+\infty}(t) \leq x^{+\infty}(t) \leq \lambda_{1+1}-\delta^{\sigma}, \\
& \lambda_{1}+\delta^{\prime} \leq x_{-\infty}(t) \leq x^{-\infty}(t) \leq \lambda_{1+1}-\delta^{\sigma}
\end{aligned}
$$

for a.a. $t \in] 0$, $\pi[$.
Then BVP (4.1) has at least one weak solution for arbitrary right hand side $h \in L_{1}(0, \pi)$.

Let us suppose that $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with lipschitzian boundary $\partial \Omega, \varphi: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory's function satisfying the condition

$$
|\varphi(x, s)| \leqslant m(x)+c|s|^{p-1}
$$

for all $\quad \in \mathbb{R}$ and a. a. $x \in \Omega$ with some positive constant c and $m \in I_{q}(\Omega), q=p /(p-1)(p \geq 2)$. It is possible to define the weak solution of the BVP
$(4.2)\left\{\begin{array}{l}-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{1}}\right)=\varphi(0, u(0))+n \text { in } \Omega, \\ u=0 \text { on } \partial \Omega\end{array}\right.$ in an analogous way as in Definition 3.1. We shall call by $\tilde{\sigma}$ the set of all real numbers λ for which there exdste a nontrivial weak solution of BVP

$$
\left\{\begin{array}{l}
-i \sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right)=\lambda|u|^{p-2} u \text { in } \Omega, \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Using the variational approach it is not difficult to see that $\operatorname{lnf} \tilde{\boldsymbol{\sigma}}>0$. Any other information concerning the set $\tilde{\boldsymbol{\sigma}}$ should be very useful.

Problem 4.2. Is $\tilde{\sigma}$ a countable set, say $\tilde{\sigma}=\left\{\mu_{m}\right\}_{m=1}^{\infty}$, which is isolated and which has the property $\lim _{m \rightarrow \infty} \mu_{m}=\infty \quad$?

Problem 4.10. Is it true that every $u_{m} \in \tilde{\sigma}$ allows the I.justernik-Schnirelman characterization?

Remark 4.4. The reason why it is important to have some information about the solution of Problems 4.9 and 4.10 is the Sollowing. If the answer to the preceding two questions is poaitive then the following assertion may be proved using variational method.

Problem 4.11. Let us suppose that $\mu_{1}, \mu_{2} \in \widetilde{\sigma}$ and $-{ }^{\mu}, \mu_{2} I \cap \tilde{\sigma}=$. Let there be mowe $\delta>0$ such that

$$
\mu_{1}+\delta \leq \lim _{\Delta \rightarrow+\infty} \frac{S(x f}{} \frac{\rho(x, s)}{|s|^{p-2} s} \leq \lim _{\Delta \rightarrow+\infty} \frac{\sin (x, s)}{|s|^{p-2} s} \leq \mu_{2}-\delta,
$$

$$
\begin{equation*}
\mu_{1}+\delta \leqslant \lim _{\Delta \rightarrow-\infty} \inf \frac{\varphi(x, s)}{|s|^{p-2} s} \leq \lim _{s \rightarrow+\infty} \sup \frac{\varphi(x, s)}{|s|^{p-2} s} \leqslant \mu_{2}-\delta, \tag{4.3}
\end{equation*}
$$

for a.a. $x \in \Omega$. Then BVP (4.2) has at least one weak solution for arbitrary $h \in \Pi^{-1}, q(\Omega)$.

Remaric 4.5. Some local sufficient conditions instead of (4.3) are considered in [1] in order to prove solvability of (4.2) for an arbitrary right hand aide $h \in W^{-1}, q(\Omega)$.

References

[1] L. BOCCARDO, P. DRÁBEK, D. GIACHETTI, M. KUČERA: Generam lization of Fredholm alternative for nonlinear differential operators, to appear.
[2] E.N. DANCER: Boundary value problems for weakly nonlinear ordinary differential equations, Bull. Austr. Math. Soc. 15(1976), 321-328.
[3] E.N. DANCER: On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. R. Soc. Edinb. 75A(1977), 283-300.
[4] P. DRÁBEK: Ranges of a-homogeneous operators and their per turbations, Čas. pěst. mat. 105(1980), 167-183.
[5] P. DRÁBEK: On the Fredholm alternative for a-homogeneous operators, in: Proceedings of "Colloquium on Topological methods in BVP's for $O D E^{\prime} s^{\prime \prime}$. Trieste, May 1984.
[6] P. DRÁBEK, S. INVERKIZZI: On the periodic BVP for the forced Duffing equation with jumping nonlinearity, to appear.
[7] S. FUČfK: Note on the Fredholn Alternative for nonlinear operatorm, Comment. Math. Univ. Carolinae 12 (1971), 213-226.
[8] S. FUČfK, J. NEČAS, J. SOUČEK, V. SOUČEK: Spectral analysis of nonlinear operators, Lecture Notes in Math. 346, Springer-Verlag, 1973.
[9] S. FUČfK: Boundary value problems with jumping nonlinearities, Čas. pěst. mat. $101(1976), 69-87$.
[10] S. FUČfK: Solvability and nonsolvability of weakly nonlinear equations, in: Proc. of Summer School "Theom ry of Nonlinear Operators", Akademie der Wissenschaften DDR 1977, 57-68.
[11] S. FUČfK: Solvability of nonlinear equations and boundary value problems, D. Riedel Publishing Company, Holland, 1980.
[12] T. GALLOUËT, O. KAVIAN: Résultats dExistence et de HonExistence pour certains Problemes Demilindairen à I° infini, Ann. Fac. Sc. de Toulouse 1981.
[13] T. GALLOVE゙T, O. KAVIAN: Resonance for jumping nonlineaxities, Comm. in Part. Diff. Equations 7(3)(1982), 325-342.
[14] P. KREJČf: On solvability of equations of the 4 th order with jumping nonlinearities, Čas. pest. mat. 108 (1983), 29-39.
[15] A. KUFNER, O. JOHN, S. FUČfK: Function Spaces, Academia, Prague, 1977.
[16] A.C. LAZER, P.J. McKENIIA: On conjecture related to the manber of solutions of nonlinear Dirichlet problem, Proc. R. Soc. of Edinb. 95A(1983), 275-283,
[17] J. NEČAS: Sur 1 'alternative de Fredholm pour les opérem teurs non-linéaires avec applications sax problèmes aux limites, Ann. Scuola Norm. Sup. Pisa 23(1969), 331-345.
[18] S.I. POCHOŽAJEV: On the solvability of nonlinear equations involving odd operators (Russian), Funk. Ana1iz i Priloženija 1(1967), 66-73,
[19] B. RUF: A nonlinear Fredholm alternative for second order ordinary differential equations, to appear.
[20] B. RUF: Remarks and generalization related to recent multiplicity result of A. Lazer and P. McKenna, to appear.

Katedra matematiky VŠSE, Nejedlého sady 14, 30614 Plzeñ, Czechoslovakia
(Oblatum 9.7. 1984)

