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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
25,4 (1984)

ON SYSTEMS, PERIODS AND SEMIPOSITIVE MAPPINGS
Svatopluk POLJAK, Daniel TURZIK

Abstract: We study the periodical behavicur of discrete
systems Induced by symmetric graphs which cover some models
investigated before., We introduce a class of transition map-
pings which imply restricted periods of systems.

Key words: Symmetric graph, discrete system, period.
Classification: 05C99, 90A08

Introduction. In this paper we present a particular model
of discrete systems which covers some models studied before,
We give a sufficient condition (Theorem 1.2) for the system to
have a restricted period. The formulation of Theorem 1.2 is,
in fact, a postulation of the method of the proofs of (1] and
[3]). Two properties of mappings occur to be important: adjoin-
cy and semipositivity. While the former is a known property,
the latter is introduced in the paper. It appears to be a com-
mon property of nonderecreasing real functions R—> R and 1i-
near positive semidefinite functions RE—» RE, (RX 1g the k-
dimensional Euclidean space, R-R1 real numbers.) The semiposi-
tivity is studied in Sections 2 - 4,

We conclude the Introduction with a survey of some known
results. These may be easily illustrated by a social influence

model.
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Let ¥ be a mociety of m members and (@ be the set of their
possible opinions. The opinion of the i-th member at time t is
denoted as xi(t). The members change their opinions simultane-
ously in discrete steps, and the opinion xi(t+1) depends only
on opinions of other members at time t., If the set O 1is finite,
the system must behave periodically after some finite number of
steps. We investigate possible periods of such systems. Some
special cases have been considered so far.

Model A, [11. The set (' of opinions is a finite subset
of real numbers., Every member is equipped with a nondecreasing

function f,:R —> (0" . The next opinion x;(t+1) 1s given by

m
x, (t+1) = £,( §4 inxJ(t)) where w; 6 R is the influence of the

¥

J-th member on the i-th member.

Theorem A [1], If Wiy = 'ij for all i, §, then the period
of Model A is at most 2.

Model B, {2), The set (' = {01....,ok"s is a discrete set
of possible alternatives. In time t+1 every member accepts the
majority opinion with respect to influences '13' That is

1 -
x;(t41) = o, for which the sum x,(§.o§'(i'3) attains the maxi

mum. (If the sum is maximal for more alternatives, say 011,...
0000y with 1,< L,<eee<d,, the member accepts the alternati-
T
ve O ')
ir

Theorem B {2}, If Wigom Wiy for all i, J, then the period
of Model B is at most 2,

Model C.(3). A generalization of Model B. As an addition,
there are real numbers d’l for every alternative oy which are

interpreted as attractivity of the alternative. Here xi(t+1) -
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=0, for which the expression u(.l 'Jr?'(?f-oa: ';ii is maximum,

Moreover, a permutation ™y is agsigned to each member. In ca~

se of a tie (as above), the member accepts the opinion oy for
8

which ,(1,) = max(ar (1y),..., 7y (i,

Theorem C [3]. If wig = Vg for all i, j, then the period
of Model C is at most 2.

Further examples are given in Section 5.

1. Systems and periods. A apace is a set S with two bina-
ry operations + and « where + is a mapping S<3—> 8 and + is
a mapping SxS —> R which satisfy the only axiom (u+v)e w =
=uew + vew for every u,v,wesS.

The Euclidean space Rk or, more generally, a real Hilbert
space are examples of a space if ue« v denotes the scalar prod-
uct, However, in general, we do not require either commutativi-
ty or associativity of the operations + and « . We will use the

notation

i.g'lui = (eee ((u1+n2)m3+...)+un, and uev will be abbrevia~
ted as uv,

Let m be an integer. A gystem ¥ is a triple, ¥ =
= ({3 .{nﬁ'& »if3), where S;, 1 = 1,...,m, are spaces, 8y 4t
xsi——> Sj and ‘1‘51"’ Si, i, J = 1,...,m are mappings. The
state x(t) = (xy(%),000,x (%)) of the system ¥ in time ¢t ¢
€ {0,1,...1 18 an element of Syx Syx ..0ex S, We shall refer
to x;(t)c 8; as to the state of the i-th element in time t.
The state x(t+1) = (xq(£41) ye00,x, (t41) 18 given by

L]
xi(t+1) = ti(é-‘.?‘l ﬂ:i(xj(t)). 1= 1..-0 oMo
The state xi(t) cen be interpreted as an opinion of the i-th
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member, 8y a8 the influence of the i-th member on the j-th mem-
ber, the sum »j,zq";u(‘j(t)) as the total influence on the i-th

member in time t, and fi as a mapping which creates a new opini-
on x,(%+1) from the total influence.

Ve say that a system  has the period T, T>0, for some
initial state x(0), if x(to+'1') = x(to) for some t, and T is the
smallest integer with this property.

Let S and Q be spaces. A pair of mappings g:S —> Q and h:
:Q —>8 is said to be adjoint (co-adjoint) if g(u)+ v = use h(v)
(g(u) * v = h(v) s u) for every ueS and veQ.

Clearly, if the operation " +" is commutative then g and h
are adjoint iff they are co-adjoint. Let us remark that the map-
pings u —> Au and v —>ATy are (co-)adjoint for any real metrix
A.

Let S be a space and £:S —> S be a mapping. We say that f
is semipositive (seminegative) if for every nZ2 and every g,

Py .une S
m
24 (ugtluy) = uy ,2(uy))x 0 (£0).
and the equality holds only in case f(u;) = f(uy) = ... = f(u).
(The indices are taken mod n.)

We say that a mapping f is positive (negative) if it is se-
mipositive (seminegative) and injective.

Theorem 1,1, Let ¥ = ({Sil,{a“},{tii) be a system such
that
(1) a;y and 8y, are co-adjoint for every i,j=1,00.,m
(11) £, is semipositive for all ial,...,m or
f; is seminegative for all i=l,...,m,
Then the only possible periods of the system I are 1 or 2.
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This theorem is 8 special case of Theorem 1.,2. [J

In fact, we can consider a more general system such that
the state x(t) depends not only on the state x(t-1) but also
on the states x(t-2),...,x(t-q) for some fixed q2 1. More pre-
cisely, a system ¥ is a triple & = ({S;} ,{ah&,ifi}), 1,3=
=1,...,m, 1=1,...,q, and the state of the i-th element in time
t is given by

my *

1
xi(t) = !'i(,t,z') ?324 aji(xj(t-1)))' 1'1'000 oMo

Theorem 1.2. Let < = ({3 ,{aij},{fii) be a system such
that
(1) a%j and ag;1+1 are co-adjoint,
for all i,j=1,...,m and 1=1,...,q,
(11) £, is semipositive for all iwl,...,m or
fi is seminegative for all i=1,,..,m,
then the only possible periods of the system < are divisors

of q+1,

Proof. Let all fi be semipositive and let the system have
a period T for some initial state. We can assume TO-O in the

definition of the period. Then

< %& gé 1
A =i~3§4 0 (t=‘1 aJi(xj(t-l+1))xi(t+1) -

LI
-t=1 aji(xj(t-l+1))xi(t-q) =
T E (%l
a5 Zy 4 (T, 83y (x5(4=141))x, (341) -
-2 a3z 1 (x, (4-q))x (£-141))
=1 1) 1(t-a))=x4 -

m T
2 Byt GZ, 8]y (x5 (+=141))x, (141) -

=,
e 1

< 1
= 4F4 8y (x(=141))x, (£41)) = O,
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(In the mecond equality we used that aij and agil+ are co-ad-

Jjoint, in the third one the fact that T is the period.) Put
o
1 =
vi(t) = Lé‘l ‘?2'1 = aJi(xj(t'1+1))’ Then we have for every i=1,

eee i

T % oo
2y 3 E a3y (xy(8-141)x; (641) -

Bi -t
,ET Z, el (xy (41413, (4-0)) =
= :@ (v ()2, (vy (%)) = vy (82, (v;(t=g=1)) =
- é4 (v (0)2,(v;(£)) = vy (t4qr1) 2 (v (2)) 20

nw
by the semipositivity of f,. As ‘L¥1 B; = A = O we have

=y (01 (v (£)) = vy (t4q41) 2, (vy(8)) = 0

-
-~

Using the semipositivity of f; we have x, (t+1) = £, (v;(t))=
= fi(vi(t+q+1)) = xi(t+c+2) for t=1,...,T. Thus, T is a divisor

of q+1 as it is the period. 0O

2, Properties of the class of semipositive mappings. The

aim of this section is to show some basic properties of the class

of semipositive mappings,
Let S be a space and f,g:5 —> S be mappings. The sum f+g is

the mapping S —> S defined by (f+g)(x) = f£(x) + g(x) for every
xe€ S,

It £ and g are semipositive mappings, then
a

Proposition 2.1.

f+g 18 semipositive provided " « " is commutative.

Let 5= 82 be the cartesian product of two spaces S1 and 82
with the operations + and « defined by
(u1 |u2) + ("1 'vz) = (u1+V1 ,u2+v2)
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(u1 '“2) . (v1,v2) =Ug eVt eV,

Proposition 2.2. The product S1>< 82 of two spaces is a

space. [J

The product fy> £5:54% 8,—> 54285, is defined by
(f1>< 12)(1‘1 ,\12) = (f1 (u1),f2,(u2))-

Proposition 2.3. The product fi> fa of two semipositive
meppings is semipositive. O

Let £3:S —> S be a one-one mapping. Denote f"1 its inverse.

Proposition 2.4. Let "« " be commutative. Then the mapping
t1 1s semipositive iff t 1s. [3J

Proposition 2.5. Let £:S—> T and h:T —> S be a pair of
adjacent msppings and £:5 — S be & semipositive mapping. Then
the mapping £ = gfh is semipositive as well.

Proof. Let u,veT. If we set w=£(h(v)), then u.¥(v) =
= ue+g(w) = h(u) » w = h(u) « £(h(u)). Hence
= (xi?(xi) - xi_1?(xi)) = = (h(x)f(h(xy)) - hixg_1)2(h(xy)))
for every choice of x4,...,X;. The sum is nonnegative as it cor-
responds to the choice h(x1),... ,h(xn)e S for f which is semi-~
positive, If f(h(x1)) = eee = f(h(xn)) then obviously ¥(x,) =
= «eo = T(x,). Thus ¥ is semipositive, O

Beginning from here, we will deal with Euclidean spaces on-
ly. Let us introduce some necessary notation. For xeRY let xJ
be the j-th component of x., If I:Rk——> Rk is a mepping, we wri-
te £3(x) instead of (£(x))J. We shell use the symbol = inste-
ad of &:}24 . Using the sum the subscript i-1 in x;_4 1s elways
taken mod n. The axiom of semipositivity will be used in the
form = (xy-x;_¢)f(x;)z 0,
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Proposition 2,6, Let ¢ be a positive real number and f:
:Rk-—-y RE ve (semi)positive. Then the mapping ¢f defined by
(cf)(x) = cf(x) is (semi)positive as well. [J

Proposition 2,7. Let V be a linear subspace of Rk and
pka-—b V be the orthogonal projection on V. Then the composi-
tion pf is (semi)positive on V for eny f (semi)positive on RE,

Proof. For every ye Rk there is a unique decomposition
y = p(y)+y” where y'c vi (the orthogonal complement of V).
Clearly xy=xp(y)+xy =xp(y) as xy =0 from the orthogonslity. Hen-
ce

z (11-11_1)Pf(xi) = Z (21-11_1)“!1)2 0.
Obviously pf is injective iff £ is. D

Let us remark that the mappings p:RE— V and 1d:V—» RE
are adjacent, Thus pf is semipositive elso by Proposition 2.5.

3. Linear mappings. A symmetric square matrix A is called
positive (semi)definite if xAx>0 (Z 0) for every vector x, x#0.

Theorem 3,1, Let A be a real square matrix of size k. Then
A is positive semidefinite iff the mapping x > Ax is semiposi-

tive.
Prooft. 1, Sufficienoy. Let A be positive semidefinite
and xy,...,x,6 RS, nz 2, Then
1
z (xi-xi-“)(ui) =% z (xi-x1_1 )A(xi-xi_ﬂz 0.

If = (x;-x;_4)(Ax;)=0 then (x;-x; 4)A(x;~x;_4) = O for every
i=1,2,...,n. A8 every positive semidefinite matrix A equals
B'B for some B, we have 0 = (x;-x; , )BTB(xi-xi_1) =

= (B(xi—xi_1))2. Hence B(x;-x; 1)=0 and also A(xy-x; ;) =
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= BT
B"B(x;-x;_4)=0. Thus Axy = Ax, = ... = Ax  and the mapping
X > Ax is semipositive.

2. Necessity. Let the mapping x > Ax be semipositive.
We are to prove

(a) xAx2 0 for every xe€RE,

(b) A is symmetric.
Denote o the zero vector. Then xAx = (x-0)Ax + (o0-x)A03 0 for
every Xxe€ Rk. Thus (a) holds. Let A be a nonsymmetric matrix
such that the mapping x +—> Ax is semipositive, Let us first as-
sume k=2, Then there exist a positive semidefinite matrix B and
a real ¢ >0 such that

c(A+B) ‘[1@ 0

due to Propositions 2.1, 2.6 and the first part of the proof.

] = D, The mapping x +> Dx is semipositive

Clearly € #+ O as D is nonsymmetric, Let a be a real number and
n be an integer such that

ne? + (2n=-1)n + € an®< 0.
Consider 2n vectors Xy,Xpse.. Xy € R° defined by x, = (ia,1)

for i=l,...,m, x4 = ((n-1)s,n+i) for i=1,...,n-1, and x, =

= (0,0).
im im 101 9 2m > 2 >
Then X, (x;-x; ;)Dx; = 2, (xymxy_)xg +  Z(x{-xT_q)x] +
2m 2m 2m
2 2 1 1 11 2 1 2 2 2
MR RIS S NC L IR FUIC e D
2m

+ € ~;§4 (xi—xi_1 )x?L = na® + %((211-1) + (2n=1)2) + € (a+2a+...

eeonat(n=1)a+,,.4a) = ne® + (2n=-1)n + € . an’< O.

The case k> 2 can be reduced to the case k=2, [J

Corollery 3.2. A square matrix A is positive definite iff
the mapping x +—> Ax is positive. [
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Let us say that a mapping I:Rk———> Rk has the property Pn
for some integer n if = (xq=x;_4)£(x4) 2 0 for every x4,...

cee X € Rk.
Hence, a semipositive mapping f has property P for all n.

Proposition 3.3. For every integer nZ 2 there exists a 1li-
near mapping f having property Pn which is not semipositive.

Proof. Let f be the linear mapping defined by the matrix
(? g). The mapping f is not semipositive by Theorem 3.1 as the
matrix is not symmetric. It has the property Pn by the follow-

ing lemma.

Lemms 3.4. For every integer nzZ 2 and every Xgryq € R, i=

=1,.44,n, we have

n-1 X 2 = 2
T GE, (xymxy )7+ By (yg=yy )0) +
™

+ =Z (yi"yi 1)11_ 0.

A

Proof. Let us set By=Xy=Xy 19 Ty=¥4~¥i.q for i=l1,...,n.
Then s = =(8y+s..+8, 1) and v = =(ri+...4r, ;). We can write
the expression in Lemma as

m-1 m-1
<=

2, % 2 2
8;) 2y Tyt (’,VL; ry) )+;VZ=I4 L

4, Constructions based on monotonous mappings. The next

lemma can be found in [81],

Lemma 4.1. Let u % LPE PR A and v, 4 vy £ P v, be re-

al numbers, and 9 be & permutation of the set $1,2,...,n}.

Then
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W .= 3]
D JE w28 uyvg)
(ii) The inequality (1) is sharp iff there are some 1, j

such that uy< “j and Ver(1)” v,”(j). O

Corollary 4.2, Let u, £ ...éus< us+1£ ceefu, and Vi€ oo

ces £ V< Vi £ ..0% v, be reel numbers, & a cyclic permutati-

ny
A Uy > E W)
Proof, Put I = §1,...,8} and J = fs+1,...,n}. A8 o is
the cyclic permutation there are i and j such that ieI, jeJ,

s(1)e J end x(3)eI. Thus uy< uj end Voog)> Voodye m]

Theorem 4.3. Let f:R—> R he a mapping. Then
(1) £ is positive iff f is increasing,

(ii) £ is semipositive iff f is nondecreasing.

Proof. The part =3 . Assume that f is not nondecreasing.
Then there exists a pair x,x'e R such that x<x’ and £(x) >
>2(x"). Then xf(x) + x£(x )< x£(x") + x'£(x) and hence f i8
not semipositive.

The part & . Let f be nondecreasing, end let Xq,...,X, €
¢ R. Then X (x;-x;_4)f(x;)Z O by Lemma 4,1, Assume that not
all £(x;) are equal, Then f(x/)< f(xg,q) for some s<n, and hen-

ce X < X .4 as f is nondecreasing. Thus = (xi-xi_.l)f(xi);O
by Corollary 4.2. O

The following example generalizes the fact that the pro-
duct of increasing mappings is positive,

Example 4.4. Let f:Rk—> Rk be a mapping satisfying x:"
< yj: fj(x)< fj(y) for every x,yeRk and j=1,e.0,ke Then £
is positive.
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do,
Proof. Let x;,...,x,&R" be such that %% x.° for some
Jp» T and s. By Lemma 4,1 = (xi-xi_1)£j(xi)20 for every Jj=
l1,o--,ko
Jo Jo Lo
Moreover, = (xi -xi_1)f (xi)> 0 by Corollary 4.2,
Thus X (x;-xy_4)f(x;)>0., O

Let x¢ R and ar be & permutation of i1,...,k}. Then we
denote by I (x) the vector (xﬂ(1)....,f(k)).
k

Let us assign to every vector x€ R™ a unique permutation
7, of 41,...,kl such that o (1)< ar_ () if elther x;< xy or

Xy = xJ and i< j. We shall also use the notation ¥ = ﬂx(x) and

1 7D _
t=x . (Let us remark that the vector X arises from the

vector x by ordering its components in the nondecreasing sequ-~
ence. )

It is easy to see that Lemma 4.1 gives

(1) xy &%y for every x,yeRk.

Let us denote MS = §x&R¥| x'2 x°£ ... < x5¢,

We say that a mapping g:Rk-—> Rk is the fair-extension of

a mapping tiME—s ME 1f g(x) = 11';1(I(arx(x))) for every x€ RE,
Let us remark that the mapping g satisfies
(2) st (1< x ()= @ze)

for every Xxe RE and i,i21 000 yke

k be the fair-extension of a

Theorem 4.5. Let g:Rk-——-» R

semipositive mapping f:Mk—<> Mk. Then g is semipositive as well,

Proof. Let x1,...,xnc.Rk. Denote y; = g(xi), i=1,.0.,0.
Then ¥y = f(ii). It follows from (2) that

(3) =xy4 = ;7 for i=1,...,n.
As the mapping f is semipositive, we have

(4) Z(%;-F; )3 z0.

- 608 -




Combining (1),(3) and (4) we get

(5) = (xg=x;_q)yy =z = (%-%,_1)7;Z 0.
Suppose that

(6) = (Ii-xi_1)yi = 0,
Then (5) implies that the equality holds in (4), and hence ¥3=
=-...=='3?n by the semipositivity of f. In a way of contradiction
assume that not all yy ere the same., Let s be the minimum J
such that at least two yi, i=1,...,n, are distinct, Choose &an
r such that yi: min {yi\ i=1,...,n% and y:< y;_1. Let us consi-
der the sets I, and I, defined by I, = 5 y%éy;f for t=r-1,
r. As s€I -1, ,, and I, and I, ¢ are of the same cardinelity,
there exists some t< I, 4-I, such that

t
(n y:—1>yr-1’
8 t

(8) Yp<¥ys and

(9) s<t.
Since I _jn41,...,8-1% = I_ni1,...,s-1}, the conditions (2),
(7) and (9) give

8 t

(10) =, 4> % ¢
Thus Lemma 4.1 due to (8) and (10) gives X, 1¥p< T 1F, which
contradicts (6). O

Let £1,22,...,2% be real mappings R — R such that f£'(x)e
< f2(1)£ eee £ fk(x) for every x€ R, Let us define the mapping
g:RE —> R¥ by gd(x) = £x (x3) for x< R and j=1,...,k. (This
means that 11 is applied to the smallest component of x, f2 to
the smallest component but one, etc.) Let us call this mapping
g the cross-product of f1 ,...,fk.

Corollary 4.6. (i) The cross-product g is semipositive
provided all fi are nondecreasing,
(i1) The cross-product g is positive provided all ti are
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increasing.

Proof. Let Ii "be nondecreasging for i=1,...,k. Then the
cartesian product f-f1>< ese X fk is a semipositive mapping
lk--)- lk by the Proposition 2.3 and Theorem 4.3. This yields
that g is semipositive as well., If fi are increasing the map-
ping g is injective and hence positive., O

Example 4,7. Let s be an integer, 1< s£k, Then the map-
ping g:RE— RE defined by gj(x) =1 for ', (J)>k-8s, and =0
otherwise, is semipositive as it 18 the cross-product of con-
stant meppings r‘,...,r" where rd(x)=0 for J=1,ee.,k-8, and
td(x)=1 for Juk=841,...4 ke

Example 4,8, The mapping g:Rk-> R¥ defined by gj(x) =
= m,(J) is semipositive as it is the cross-product of const-

ant mappings 11,...,Ik where fa(x)a.j for j=1,...,k.

Let £ and g be mappings Mk—-a Mk. We say that g is a tie-
modification of £ if for every xe MS and every Ici1,2,...,k}
such that J:i=-x;j for i,j6 I and 1c:"=|==x'j for ieI, j¢I we have

(1) 5?‘ xtd(x) = =, xIgd(x) ena

1 el
(1) 2, e «
44

(111) f£(x)=f(x") = g(x)=g(x”) for x,x’c MK,

Y

E‘!I xjgj(x) for every i=1,...,k.
'E

>
3

Theorem 4.9, A tie-modification g of a (semi)positive
mapping £ is (semi)positive as well.

Proof, Let £ be semipositive and Xqj,ece,Xq € Mk. Condi ti-
on (i) gives

(11) x,8(x;) = x;2(xy) for 1=1,2,...,0.
Using (ii) one can prove that
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(12) xi_1g(xi)é:xi_1f(xi) for i=1,2,...,n.
Thus

(13) = (xy-xy_4)el(xy) 2 = (xg~x;_4)(x;)z 0.
If the left-hand sum equals zero so it does the right-hand sum,
end it is f(x1)=...=f(xn) by the semipositivity of f. Using (iii)
we complete the proof of semipositivity of g. If £ is injecti-
ve, then by (13) g is injective as well, 0O

Remark 4.10. Let us consider a particular case of tie-mo-
dification. Keeping the notation from the definition, let g se-
tisfy (iv) instead of (i) and (ii).

. i 1

'(:Lv) g (x)= Tﬁ%ic-:l td(x) for every i¢ I,

Clearly (iv) implies (1) and (ii) which proves that g is a tie-

modification of f.

Example 4.11. For a vector xe.Rk set m(x)= {1 1<t -

= max {x1,...,xk§} « Then the mepping f:Rk——+ R¥ defined by

P T_ﬂ\—(“;ﬂ— for je m(x)

(o] otherwise

fj(x) =

1s semipositive as it is a tie~modification of the mapping de-
fined in Example 4.7 (for s=1).

5. Applications. In this section we show that the models
A, B and C can be interpreted in our general scheme and that

Theorems A, B and C follow from Theorem 1.1,

Model A. Let Si=R, fi be nondecreasing mappings, and
aij(x)awidx for i,j=1,...,m. The mappings f, ere semipositive
by Theorem 4.3. The mappings aij and aji are co-adjoint as

Vi3 = "ii.
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Model B. Let Sist, f; be the cross-product of 31,...
1

...,gk where g =52=...=gk°1=0, gk=1, and aij(1)='ijx for i,j=
=1,2,...,m. Here the possible opinions are vectors with all
components but one equal zero. The auxiliar component with va-
lue 1 indicates the choice of an alternative from 09090y
The mappings f; are semipositive by Example 4.7 (s=1). The map-

pings aij and aji are co-adjoint as "13‘"31'

Model C. This model differs from the previous one only in
the mappings aij‘ Here aij is the linear mapping given by the
matrix PJBP$ where B is the diagonal matrix with entries bllz
= c‘l"ij and Pi is the permutation matrix of Ty The mappings

and a.

8 ii

ij are co~adjoint by Remark 2.1,

A particular case of Theorem 2,2 when all Sist, for some
fixed integer k, can be interpreted as follows. A society of m
members is to decide about k alternatives. The possible opini-
on (xe RX) of & member is formed by thinking of the alternati-
ves with (possibly) distinct intensity (the component xJ expres-
ses the weight of j-th altermative in one’s opinion).

Clearly each of the models A, B and C is involved in this
more general one: We have k=1 and general weights in the model
A, while k> 1 and weights either O or 1 in models B and C., One
can get a lot of other examples when combining the results of
Sectioﬁs 2, 3 and 4. We mention only some of them in the form

of brief remarks.

1. The tie rule in models B and C can be replaced by an-
other one: If & member is influenced by a great number, say r,
alternatives of the seme weight, he accepts all of them with the
pame weight 1/r (see Ecample 4.11).
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2, One may consider a model where the opinions are form-

ed by the choice of the best s alternatives (see Example 4.7).

3. The members of the society need not have the same rule
for computing their new opinions. Moreover, the opinions can
consider only the best altermative, another choice of more best
ones, and other may use some tie rule. The members even may dif-

fer in the dimension of their "opinion space".

4. The opinion of a member mey be a ranking of the alter-

natives (i.e. & permutation of 41,2,...,kJ, see Example 4.8),

5. There are several possible ways of computing the new
ranking of a member:

- A member may prefer the alternatives according to the num-
ber of first places among rankings of other members. If two al-
ternatives coincide in the number of first places, the preferen-
ce is done according to the number of second places, etc.

- Another member may use some more sophisticated way based
on suitable weighting of positions in rankings, then summing the
weight of each alternative, putting in the first place the al-
ternative with the maximum sum, etc.

This paper was worked out at Technical University as a Re-
search Report 1983. In a particular cese, when considered in
connection with the scelar product, the semipositive mappings
introduced here coincide with cyclically monotonous mappings us-
ed by Rockafellar in (41 to characterize the subgradients of
convex functions, Thus, Theorem 3.1 can be derived immediately.
The connection between discrete influence systems and convex
functions is pointed out in {5). The number of necessary steps
before a system falls into a period has been studied in [6).

The limit behaviour of systems with infinite number of states
has been studied in (71,
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