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COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 

26,2 (1985) 

GROUP DISTANCES OF LATIN SQUARES 
Aleš DRAPAL and Tomál ҜEPKA 

Abstracts Some results concerning the distanoes between 
the tables of finite groups and latin squares are proTed., 

Key worda: Group, latin square. 

Classifications 05B15 

For an integer nZ*2
t
 let gdist(n) denote the least noa-soro 

number of changes in the Cayley table of an n-element group to 

obtain another latin square. These numbers play an important ro

le in the problem concerning the largest possible number of ae-

sociatiTe triples of elements in finite non-assooiatiTe quaeJb-

groups (see L23). The purpose of this short note Is to develop 

a technique which might be useful in finding some lower bounds 

for the numbers gdist(n). 

1- Preliminaries. Throughout this note, the terminology* 

notation, etc., of 13] is used* 

Recall that & denotes the category of reduced partial grou-

polds and (T the full subcategory of ft consisting of reduced 

balanced cancellatiTe partial groupoids. 

A homomorphism f of a partial groupoid K Into a partial 

groupold L is called complete if for all (xfy) « M(L) suoh that 

x fy fxyef(K) there exists a pair (afb) « M(K) with f(a) - x and 
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f (b) - y (then f(ab) - xy ) . ObTiOumly, orory strong homomorphiom 

10 eomplete. 

A par t ia l groupoid L l a ca l l ed a (complete, strong) part ia l 

oubgroupold of a part ia l groupoid K i f L£K and t h i s inc lus ion 

I0 a (oomplote9 strong) homomorphiora. 

Lot K c & .Wo ohall amy that K i s t r iT ia l i f card B(K) « 

- card C(K) * card D(K) * 1. In th i s case, 1 ^ card K.43 and 

card K - 3 , proridod K i s balanced. A homomorphism f of K into 

1 a & i s ca l led t r iT ia l i f f CK3 i s a t r iT ia l part ia l groupoid. 

In th ia ease, f[K] i s a strong part ia l subgroupoid of L, proTid-

•d L 10 balanced. 

Lot K c f t and dcK. Put r(d) • r(K,d) « card -J(a,b,c) 9 

a , b , o c K , ab « c , d 6 { a 9 b 9 e H . Since K i s reduced, r (d )2 :1 . 

Lot K,L € 01 . W e sha l l aay that K l a an immediate (strong

ly ) open extenoion of L i f L lo a (otrong) complete part ia l sub~ 

groupoid of K and r(K,d) • 1 for OTory de K - L. .Further, wo ohall 

may that K i s an (strongly) opon extension of L i f there ex io t s a 

f i n i t e ooouottoo K0.*K.j£ • • • S E & ouch that n2*1, KQ « L, Kn - K 

aad K i + 1 l a an immediate (strongly) opon extension of K± for each 

0 £ i < n . 

• part ia l groupoid K % (T i o o a l l ed (strongly) open i f i t i o 

non-triTial and i t l a a (strongly) opon extension of a tr iTia l 

part ia l subgroupoid L a (T. 

*•*• Lemma. Let K c (f and l o t a ,b ,o€K be eueh that ab « c. 

Then L - Aa,b,o$ la a three-element strong part ia l subgroupoid 

of K and L i o a t r iT ia l part ia l groupoid. 

ProoJt- ObTious. 

1.2. Lemma, Lot K 0 (T bo such that m(K)43. Then: 

( i ) r(a) • 1 for at l eas t one a€A(K). 
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(ii) K ia atrongly open, proTided it ie non-tri-rial. 

Proof* Easy. 

!• 3» Lemma, Let K £ (T be such that m(K) - 4* Than exaot-

ly ome of the following three oases take* plaoet 

(i) r(a) » 1 for at leaet ome aeA(K) and K ia strongly open, 

(ii) r(a)£2 for OTery a€A(K)9 r(d) * 1 for at l«st erne deD(|0, 

K is open and K ia not strongly open* 

(ili) r(a)2*2 for OTery a€A(K)9 r(d)?2 for OTery dcB(K), K 

ia not open and H(K) ia a oyolie group of order 2* 

Proof. Easy. 

1*4* Lemma. Let K9L c <T he suoh that K ia an open extern-

sion of L and let f be a homomorphiam of L into a diTi0.Lon grou-

pold G. Then f oan be extemded to a homemorphiem of K into G, 

Proof, We can assume that K is an immediate open exteneiom 

of L. HoweTer9 then the result is clear. 

1.5. Lemma, Let K c (f be open and let a be a non-triTial 

diTision groupoid. Then there exiota at leaat one non-triTial he-

momorpnism of K into G. 

Proof, If m(K) - 2 then the result is obTioua. Suppoee that 

m(K) Z 3* Then there la a strong partial aubgroupoid L of I earns, 

that m(L) * 2 and K is an open extension of L, low, the revolt 

follows from 1,4* 

*•*• Semma, Let f be a homomorphism of a partial groupoid 

K into a group 0 and let (a9b)€ M(K), Then there exists a aome-

morphiam g of K into 0 0uch that g(a) « g(b) * g(ab) » t, mere-

•Ter9 g is non-triTial9 proTided f la 00, 
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Proof. **t g(e) • f ( a ) ~ 1 f ( e ) t g(d) - f (d ) f (b)~ 1 and g(e) -

- f (a )" 1 f ( e ) f (h )" 1 for a l l e€B(K) 9 d€C(K) and eeB(K) . 

1»^» 2&SSS* **•* * »• •> s o n - t r i v i a l homomorphi0m of a par

t i a l groupoid K € $ into a group G and l e t H he a normal sub

group of G. Then there e x i s t s e i ther a non-tr iv ia l hoaoraorphiem 

of K Into H or a non-tr iv ia l homomorphism of K into G/H. 

Proof. With respect to 1.$ , we oan assume that 1 i s con

tained in a l l the eete f(B(K))9 f(C(K))9 f(D(K)). Denote by g 

the natural homomorphism of G onto G/H. If gf i s a t r i v i a l homo

morphism then f (K)£H. 

1*&« i&SSfi* L f t t K e (T and G be a group. Then there e x i s t s 

a non-tr iv ial homomorphism of K into G i f f there ex is t0 a non-

t r i v i a l homomorphism of H(K) into G. 

Proof. Choose x • (a9b) e M(K) and consider the congruence 

0 • m by t3» Lemma 2 .23 , the natural hoaoraorphiem q of K onto 

L • K/s, the isomorphism h of G(L) onto H(K) by [3 , Lemma 5 .2] 

and the raodiflcatlve homomorphism g of L Into G(L) by T39 Propo

s i t i o n 3*13* How9 l e t f be a non- tr iv ia l hoaoraorphiem of K into 

G. With regard to 1 .6 , we can assume that f(a) • f(b) • 1. Then 

s £ k e r f9 and hence f • kq9 k being a non-tr iv ia l homomorphism 

of L Into G. We have k • pg for a hoaomorphiem p of G(L) into G 

and ph" l e a non-tr iv ia l homomorphism of H(K) into G. Converse

ly 9 l e t k be a non- tr iv ia l homomorphism of H(K) into G. Put f • 

• khgq. Then f i s a homomorphism of K into G and f (a) « f (b) • 

• f(ab) • 1. On the other hand, the group k(H(K)) l e generated 

by f(K) and i t l e non- tr iv ia l . Consequently, f i s non- tr iv ia l . 

1«?» Lemma. Let K c <F be non- t r iv ia l , ab « c for some 

a 9 b 9 c€K and l e t G be a non- tr iv ia l d iv i s ion groupoid. Suppose 
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that e i ther r(a) • r(b) « 1 or r(a) • r(c) • 1 or r(b) • r(o) • 

» 1. Then there e x i s t s at l eas t one non- tr ir ia l homomorphism of 

K into G. 

Proof. I t i s diTided into several parts, 

( i ) r(a) » *(b) » r(o) « 1. Let x f y e G be ouch that x4=y. .Defi

ne a mapping f of K into G by f(u) « f(T) « x f f(w) » xx f f (a) • 

» f(b) - y and f (o ) - yy for a l l U E B ( K ) , T€C(K) f weD(K) f *4-a f 

T^b and w% d. Then f i s a non-triTial homomorphism of K into G. 

( i i ) r(a) • r(b) • 1 and r(c)2: 2 . Let x f y c G be ouch that x ^ y . 

There e x i s t s z e G ouch that yz • xx. Now, define f by f (u) • f(T)« 

« x f f(w) « xx, f (a) • y f f (b) • z for a l l ucB(K) f TeC(K) and 

weD(K) f u=|-af T4*b. 

( i i i ) r(a) « r ( c ) « 1 and r ( b ) r 2 . Let x f y c G f x4-y . Defiae f 

by f(u) • f(T) « x f f(w) • xx, f (a) • y and f (o) « yx for a l l 

ueB(K) f TeC(K) and wcD(K) f u * a f w-fcc. 

( I T ) r(b) • r(o) • 1 and r ( a ) ^ 2 . In th i s case, we can proceed 

s imilarly as i n ( i i i ) . 

2 . Homomorphiomo into groups. Let G be a non-tr iTial group* 

i. part ia l groupoid K i s ©aid to be G-flat (or only f l a t ) i f ererj 

homomorphism of K into G l a t r l T i a l . 

Let n ? 2 be an integer , f e denote by z(n) • z(Gfn) the mi

nimum of a l l m(K) where K e f i s f l a t and there e x i e t s a non-

tr iT ia l homomorphism of K into an n-element group. 

2*1* kwama* Let K c CT be f l a t , 

( i ) I f f i s a homomorphism of K into L & T then ffKJ i e f la t* 

(11) K i s not open, 

( i l l ) I f K i s an open extension of L € T then L i s f l a t . 

Proof. Dae 1.4 and 1.5« 
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2*2* £«g-B-a. Suppose that G i s a torsionfree group and l e t 

K s (J* he sueh that H(K) i s a torsion group. Then K i s f l a t . 

Proof. This follows immediately from 1.8. 

2*3* Lemma. Let K €. <T he non-tr iv ia l and f l a t and l e t 

a , b , c e K be such that ah * o. Then either r ( a ) > 2 f r (b)> 2 or 

r ( a ) > 2 f rto)2T2 or r ( b ) > 2 f r ( o ) £ 2 . 

Proof. This follows immediately from 1.9. 

2.4. Proposition. Let n^2 he an integer and let K € J.T he 

a partial groupoid such that m(K) » z(n). Suppose that there ex

ists a non-trivial homomorphism f of K into an n-element group H. 

Then r(a)> 2 for every aeK. 

Proof. Assume, on the contrary, that r(a) » 1 for some aeK. 

There are three different elements i,y,z€K such that xy » z and 

ae-ixfyfz^. Now, with respect to 2.3f the following cases can ari

se: 

(i) r(x) - 1f r(y)>2 and r(z)>2. Put L - K - ix}. Then L c <T, 

L is a strong partial subgroupoid of K, m(L) » m(K) - 1, K is an 

open extension of L and L is flat. According to 1.7f we can assu

me that 1c f(B(L))nf(C(L))nf(D(L)). Since f|L is trivial, f(L)« 

-. 1. Then f(x) - f(x)1 - f(x)f(y) - f(xy) - f(z) - 1 and f is tri

vial, a contradiction. 

(ii) r(x).> 2f r(y) • 1 and r(z)*>2. We can proceed similarly as 

in (i). 

(iii) r(x)2r 2, r(y)>2 and r(z) » 1. Again, we can proceed simi

larly as in (1) (in this case, L » K - { z^ is a complete partial 

subgroupoid of K). 

2.5. Lemma. Suppose that 6 is a torsionfree group. Then 

4* z(n)-£.2n for every n£2* 
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Proof. By 2 . 1 ( i i ) aad 1 .2(11) , *(*).> 4 for aTary a o a - t r i -

Tial f l a t par t ia l groupoid K 6 (T . Haaoa 4 ^ s ( a ) . furthtr , oon-

0idor tht part ia l groupoid Z - Z(af o ) daflaed i a C4, $ 7J. Than 

m(Z) m 2a and H(Z) i s a oyolio group of ardor a. Constqutntly, 

Z i s f l a t by 2.2 and s ( a ) ^ 2 a . 

2 .6 . Proposition* Supptst that 0 l a a tors ionfrt t group. 

Then for tTtry n£*2 t s (a) * 4 i f f a i s tTtn. 

Proof, .first, l o t s(a) * 4* Than thara art K e T aad a 

group H suoh that K I s f l a t , m(K) » 4 , H contains just a tlamtntt 

aad thert t x i t t s a non-triTial htaomorphlom of K into H. Tht par

t i a l groupoid K i s not tptn , aad 00 H(K) i s a two-alamtnt group 

by 1.3(111). By 1 .8 , thtr t i s a non-triTial homomorphism of H(K) 

into H. Xa part icular, a I0 tTtn. How, l o t a bt tTtn. Than wa oaa 

procttd oonrtrst ly . 

2*7* Propoaitioa. Lot aZ"3 bo odd. Than s(a) i s soual to 

tht minimum of a l l s(p) 9 p baiag a prima dlTldlag a* 

Proof. Tht r t s u l t fol lows from 1.7 aad tht faot that a l a 

prima, proTidtd thtr t i s a simplt group af ordtr n. 

3 . Homomorphian 0 into ordtrtd par t ia l groupoids. Ia t h i s 

s t c t i o n , l o t Q bt a cancel lat iTt raduead part ia l groupoid l i a a -

arly ordarod by aa ordtring «£ , i . a . a* i s a l inear ordtring da-

fined oa Qt aad ab~&o& whtntrtr ( a , b ) , (o,d)€M(G), aire aad b£&» 

3*1« Lemma. Lot I - (K( o ) ,K (# )) bt a couple of f i n i t t 

simple companions. Then tTtry homomorphism of K(o ) into G I0 

t r l T i a l . 

Proof. Lot f ba a homomorphism of K • K( o ) into G. Thara 

I s aa element x%f(B(K)) suoh that y * x for a w y e f ( D ( K ) ) . Put 
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H • {(afb)c M(K)| f(aob) • x$ and define a relation r on H by 

((afb)f(ofd))c r iff f(a) - f(o) and f(b) - f(d). Sinoe G io 

oanoellatiTe, each of the two equalities implies the other. Ob-

Tiou0lyf r ii in equivalence and we denote by H-jf#..fHk the bloeko 

of r. Without IO00 of generality, we can assume that f (a*j) < f (ag)< 

<:...< f(a-t)f (a1,b1)eHi. Now, we are going to prove that H-j is 

an admissible subset of M(K) in the sense of U , $ 5-*L Let 

( M ) U r Pttt P - ̂ (ttfT)€M(K)^ f(tt*T) - Xf f(tt) - f(*Hf Q « 

« 4(U,T)C M(K)| f(tt*T) « xf f(T) « f(b)?. fhe root of the proof 

is divided into seTeral parte. 

(i) If (nfT)c P and U * T • ttow then f(now) • xf (ufw)€H-j. 

Conversely, if (ufw)e H.j and ttow * U * T then (u,v) 6 P, Henoe we 

have infective mappings of P into H-j and of H.j into P, 00 that 

card P • card H.|« 

(ii) Similarly as in (i) we can ehow that card Q « card H.j. 

(iii) Let (ufT)eQ» We haTe u * T « t o t » u c n , f(a)f(b) « x • 

• f(tt*T) • f(uoz) » f(u)f(z)f 00 that (ufz)eH and f ( a ) . ^ f ( n ) . 

On the other handf x - *(a)f(b)*f (tt)f(T)f eince f(b) - f(T)f hen

oe x • f(tt)f(T) » f(ttoT)f f(tt) • f(a) and (ttfT)eH-j. We haTe pro-

Ted that Q&H.J. Now, it is easy to see that Q£P. 

(IT) By (i),(ii) and (iii), we haTe P « Q « H-j. Consequently, ^ 

ie an admissible subset of Ift(K). Since the couple I is simple, 

H1 • M(K) and f ie trivial. 

3*2. Corollary. Let K 6 T be a primary groupoid and let G 

be a linearly ordered non-trivial group* Then K is G-flat. 

4» fhe main result 

^•1» Proposition. Let G be a linearly ordered non-triTial 

group* Then, for erery n2 2, z(Gfn)£gdist(n). 
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Proof. The result is an immediate consequence of 3*2 and 

C3, Proposition 7.5J. 

4*2* Proposition. Let G he a linearly ordered non-trivial 

group and n ? 2 and integer. Then there is a prime p dividing a 

such that z ( G , p ) ^ gdist(n). 

Proof. The result follows from 4v1 and 2.7* 
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