Commentationes Mathematicae Universitatis Caroline

Aleš Drápal; Tomáš Kepka
Group distances of Latin squares

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 2, 275--283

Persistent URL: http://dml.cz/dmlcz/106367

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE

26,2 (1985)

GROUP DISTANCES OF LATIN SQUARES

Aleš DRAPAL and Tomáš KEPKA

Abstract

Some results concerning the distances between the tables of finite groups and latin squares are proved.

Key words: Group, latin square. Classification: 05B15

For an integer $n \geq 2$, let gdist(n) denote the leant nom-sero number of changes in the Cayley table of an n-element group to obtain another latin square. These numbers play an important rôle in the problem concerning the largest possible number of associative triples of elements in finite non-associative quagigroups (see [2]). The purpose of this short note is to develop a technique which might be useful in finding some lower bounde for the numbers gdist(n).

1. Preliminaries. Throughout this note, the terminology, notation, etc., of [3] is used.

Recall that \mathbb{R} denotes the category of reduced partial cronpoids and \mathcal{T} the full subcategory of R consisting of reduced balanced cancellative partial groupoids.

A homomorphism f of a partial groupoid K into partial groupoid L is called complete if for all $(x, y) \in M(L)$ ach that $x, J, X \in f(K)$ there exists a pair $(a, b) \in M(K)$ with $f(a)=x$ ad

$f(b)=j$ (thon $f(a b)=x y)$. Obvighility, every strong homomorphism is eomplete.

A partial groupoid L is called a (complete, strong) partial mubcroupoid of a partial groupoid I if LEX and this inclusion is a (complete, strong) homomorphim.

Let $K \in \mathbb{R}$. We ahall say that K is trivial if card $B(K)=$ $=$ card $C(K)=$ card $D(K)=1$. In this case, $1 \leqslant \operatorname{card} K \leqslant 3$ and card $K=3$, provided K is balanced. A homomorphism f of K into I $\in \mathbb{R}$ is called trifial if $\mathrm{I}[\mathrm{I}]$ is a trivial partial groupoid. In this case, $f[x]$ is a strong partial subgroupoid of L, provided L is balanced.

Let $I \in R$ and $d \in E$. Put $r(d)=r(X, d)=\operatorname{card} f(a, b, c)$; $a, b, c \in K, a b=c, d \in\{a, b, c\}\}$. Since K is reduced, $r(d) \geq 1$.

Let $K, I \in R$. We ahall aay that K is an immediate (strong15) open extension of L if I is a (strong) complete partial subcroupoid of K and $r(K, d)=1$ for every $d \in K-L$. Purther, we shell any that K is an (strongly) open extension of L if there exists a finite aequerce $K_{0} \leq X_{1} \subseteq \ldots s K_{n}$ suah that $n \geq 1, K_{0}=I, K_{n}=K$ and K_{i+1} is an ismediate (atrongly) open extension of K_{i} for each $0 \leqslant i<n$.

A partial groupoid $\mathbb{X} \in \mathbb{T}$ is called (strongly) open if it is non-trifial and it is a (strongly) open extension of a trivial partial subgroupoid L $\in \mathcal{J}^{\prime}$.
1.1. Lemma. Let $K \in \mathcal{T}$ and let $a, b, c \in K$ be such that $a b=c$. Then $I=\{a, b, c\}$ is a three-element strong partial subgroupoid of K and L is a trivial partial groupoid.

Proof. Obvious.
1.2. Lempa. Let $K \in T$ be such that $m(K)<3$. Then:
(i) $r(a)=1$ for at least one $a \in \Lambda(K)$.
(ii) K is atrongly open, provided it is non-taivial.

Proof. Basy.
1.3. Lemas. Let $K \in \mathcal{J}$ be such that $m(X)=4$. Then exactIJ one of the following three cases taken place:
(i) $r(a)=1$ for at least one a $\in A(K)$ and K is strongly open.
(ii) $r(a) \geq 2$ for every $a \in A(K), r(d)=1$ for at leat one $d \in D(F)$, K is open and K is not strongly open.
(iii) $r(a) \geq 2$ for every $a \in \Lambda(K), r(d) \geq 2$ for every $d \in B(K), K$ is not open and $H(K)$ is a cyclic group of order 2 .

Proof. Easy.
1.4. Lemma. Let $K, I \in T$ be much that K is an open exteraion of L and let f be a homomorphiam of L into a divimion grover poid G. Then f can be extended to a homomorphim of K into $G_{\text {. }}$

Proof. We can assume that K is an immediate open extemsion of I. However, then the remult is clear.
1.5. Lemma Let $K \in J^{\prime}$ be open and let G be non-trivial difision groupoid. Then there exista at least one mon-trivial homomorphism of K into G.

Proof. If $m(K)=2$ then the result is obvious. Suppese that $m(X) \geq 3$. Then there is a strong partial mbgroupoid I of I maik that $m(I)=2$ and K is an open extension of I. How, the rearalt follows from 1.4.
1.6. Lemma. Let F be homomorphism of a partial groupeid K into a group G and let $(a, b) \in M(K)$. Then there oxists a home morphiam g of K into G ach that $g(a)=g(b)=g(a b)=1$. Ioreover, g is non-trifial, profided f is mo.

Proof. Pat $g(0)=f(a)^{-1} f(0), g(d)=f(d) f(b)^{-1}$ and $g(0)=$ $=f(a)^{-1} f(0) f(b)^{-1}$ for all $\bullet \in B(K), d \in C(K)$ and $\bullet \in D(K)$.
1.7. Leame. Let f be a non-trivial homomorphism of a partial groupoid $\mathbb{X} \in \mathcal{T}^{\prime}$ into a group G and let H be a normal subgroup of G. Then there exists either a non-trivial homomorphism of X into H or a non-trivial homomorphiam of X into G / H.
proof. With respect to 1.6 , we cen assume that 1 is contained in all the sets $f(B(K)), f(C(K)), f(D(K))$. Denote by g the natural homomorphism of G onto G / H. If gi is a trivial homomorphism then $\mathrm{f}(\mathrm{K}) \propto \mathrm{H}$.
1.8. Lemma. Let $K \in \mathcal{T}$ and G be a group. Then the re axists a non-trivial homomorphism of K into G iff there exists a nontrivial homomorphism of $H(K)$ into G.

Proof. Choose $x=(a, b) \in M(K)$ and consider the congruenoe $s=x^{\prime}$ by [3, Lemma 2.2], the natural homomorphiem q of K onto $L=K / \mathrm{s}$, the isomorphiem h of $G(L)$ onto $H(K)$ by [3, Lemma 5.2] and the modificative homomorphism g of L into $G(I)$ by [3, Proposition 3.1]. How, let f be non-trivial homomorphism of K into G. With regard to 1.6 , we can assume that $f(a)=f(b)=1$. Then s ©ker f, and hence $f=k q, k$ being a non-trivial homomorphism of I into G. We have $k=p g$ for a homomorphism p of $G(L)$ into G and ph^{-1} is a non-trivial homomorphism of $\mathrm{H}(\mathrm{K})$ into G. Conversoly, let k be a non-trivial homomorphism of $H(K)$ into G. Put $f=$ $=$ khgq. Then f is a homomorphism of K into G and $f(a)=f(b)=$ $=f(a b)=1$. On the other hand, the group $k(H(K))$ is generated by $f(k)$ and it is non-trivial. Consequently, f is non-trifial.
1.9. Lempa. Let $K \in \mathcal{T}$ be non-trivial, $a b=c$ for some $a, b, c \in \mathbb{K}$ and let G be a non-trivial division groupoid. Suppose
that aither $r(a)=r(b)=1$ or $r(a)=r(c)=1$ or $r(b)=r(c)=$ $=$ 1. Then there exists at least one non-trivial homomorphism of K into G.

Proof. It is divided into several parts.
(i) $r(a)=r(b)=r(c)=1$. Let $x, y \in G$ be auch that $x \neq y$. Define a mapping f of K into G by $f(u)=f(v)=x, f(w)=2 x, f(a)=$ $=f(b)=J$ and $f(c)=y y$ for all $u \in B(K), v \in C(K), v \in D(K), u \neq a$, $\nabla \neq b$ and $w \neq d$. Then f is a non-trivial homomorphism of K into G. (ii) $r(a)=r(b)=1$ and $r(c) \geq 2$. Let $x, y \in G$ be such that $x \neq J$.
 $=x, f(w)=x, f(a)=y, f(b)=z$ for all $u \in B(K), v \in C(K)$ and $\nabla \in D(K), u \neq a, \quad \nabla \neq b$. (iii) $r(a)=r(c)=1$ and $r(b) \geq$ 2. Let $x, y \in G, x \neq y$. Deifne f by $f(u)=f(v)=x, f(w)=x x, f(a)=y$ and $f(c)=y \times$ for all $u \in B(K), \nabla \in C(K)$ and $w \in D(K), u \neq a, w \neq c$. (iv) $r(b)=r(c)=1$ and $r(a) \geq 2$. In this case, we can proceed similarly as in (iii).
2. Homomorphisms into groups. Let G be a non-trivial group. A partial groupoid K is said to be G-flat (or only flat) if every homomorphism of K into G is trivial.

Let $n \geq 2$ be an integer. We denote by $z(n)=z(G, n)$ the minimum of all $m(K)$ where $K \in T^{r}$ is flat and there exista a nomtrifial homomorphism of K into an n-element group.
2.1. Lemma. Let $K \in \mathcal{J}$ be plat.
(i) If f is a homomorphism of K into $L \in T$ then $f[K]$ is flat.
(ii) K is not open.
(iii) If K is an open extension of $L \in \mathfrak{T}$ then I is flat.

Proof. Use 1.4 and 1.5.
2.2. Lemme. Suppose that G is a torsioniree group and let $K \in \mathcal{J}$ be such that $H(K)$ is a torsion group. Then K is flat.

Proof. This follows immediately from 1.8.
2.3. Lemma. Let $K \in \mathcal{T}$ be non-trivial and flat and let $a, b, c \in K$ be such that $a b=c$. Then either $r(a) \geq 2, r(b) \geq 2$ or $r(a) \geq 2, r(c) \geq 2$ or $r(b) \geq 2, r(c) \geq 2$ 。

Proof. This follows immediately from 1.9.
2.4. Proposition. Let $n \geq 2$ be an integer and let $K \in \mathcal{J}$ be a partial groupoid such that $m(K)=Z(n)$. Suppose that there exists a non-trivial homomorphism f of K into an n-element group H. Then $r(a) \geq 2$ for every $a \in K$.

Proof. Assume, on the contrary, that $r(a)=1$ for some aEK. There are three different elements $x, y, z \in K$ such that $x y=z$ and $a \in\{x, y, z\}$. Now, with respect to 2.3, the following cases can arise:
(i) $r(x)=1, r(y) \geq 2$ and $r(z) \geq 2$. Put $L=K-\{x\}$. Then $L \in \mathcal{J}$, L is a strong partial subgroupoid of $K, m(L)=m(K)-1, K$ is an open extension of I and L is flat. According to 1.7, we can essume that $1 \in f(B(L)) \cap f(C(L)) \cap f(D(L))$. Since $f \mid I$ is trivial, $f(L)=$ =1. Then $f(x)=f(x) 1=f(x) f(y)=f(x y)=f(z)=1$ and f is trivial, a contradiction.
(ii) $r(x) \geq 2, r(y)=1$ and $r(z) \geq 2$. We can proceed similarly as in (1).
(iii) $r(x) \geq 2, r(y) \geq 2$ and $r(z)=1$. Again, we can proceed similarly as in (i) (in this case, $L=K-\{z\}$ is a complete partial subgroupoid of K).
2.5. Lemma. Suppose that G 1s a torsionfree group. Then $4 \leqslant z(n) \leqslant 2 n$ for every $n \geq 2$.

Proof. By 2.1(ii) and 1.2(ii), $m(K) \geq 4$ for every non-trivial flat partial groupoid $K \in \mathcal{T}$. Hence $4 \leq g(n)$. Further, onn sider the partial groupoid $Z=Z(n, 0)$ defined in $[4,87]$. Then $m(Z)=2 n$ and $H(Z)$ is a cyclic group of order n. Consequently, Z is flat by 2.2 and $z(n) \leqslant 2 n$.
2.6. Proposition. Suppese that is a torsionfree group. Then for every $n \geq 2, z(n)=4$ iff n if even.

Proof. Pirst, let $g(n)=4$. Then there are $K \in T$ and a group H auch that K is flat, $m(X)=4$, H contains just n eleacata and there exiate a nom-trivial homomorphism of X into H. The partial groupoid K is not open, and so $H(X)$ is a two-elenent group by 1.3(ii1). By 1.8, there is nom-trivial homomorphism of $H(X)$ into H. In partioular, n is even. How, let n be even. Thon we ama proceed comversely.
2.7. Proposition. Let $n \geq 3$ be odd. Then $z(n)$ is equal to the miniman of all $g(p), p$ being a prine dividing n.

Proof. The result followis from 1.7 and the fact that n is prime, provided there is a simple group of order no
3. Homomorphime into ordered partial groupoids. In this aection, let G be cancellative reduced partial groupoid linearly ordered by an ordering \leq, i.e. \leq is a limear ordering defined on G and $a b \leqslant a d$ whenever $(a, b),(c, d) \in M(G), a \leq c$ and $b \leq d$.
3.1. Lemas. Let $I=(K(0), K(*))$ be couple of finite simple companions. Then every homomorphism of $K(O)$ into G is trivial.

Proof. Let f be a homomorphiam of $K=K(0)$ into G. There is an element $x \in f(B(K))$ asoh that $J \leqslant x$ for ant $J \in f(D(X))$. Put
$I=\{(a, b) \in M(K) ; f(a \circ b)=x\}$ and define a relation r on I by $((a, b),(c, d)) \in r$ iff $f(a)=f(c)$ and $f(b)=f(d)$. Since G is oancellative, each of the two equalities implies the other. Obviously, x is an equivelence and we denote by H_{1}, \ldots, H_{k} the bloaks of x. Without loss of generality, we can assume that $f\left(a_{1}\right)<f\left(a_{2}\right)<$ $<\ldots<f\left(a_{1}\right),\left(a_{1}, b_{1}\right) \in H_{1}$. Now, we are going to prove that H_{1} is an admisaible aubset of $M(K)$ in the sonse of [4, 85.1. Let
$(a, b) \in \mathbb{H}_{1}$. Put $P=\{(u, v) \in M(K) ; f(u * v)=x, f(u)=f(a)\}, Q=$ $=\{(u, v) \in M(X) ; f(u * \nabla)=x, f(\nabla)=f(b)\}$. The rest of the proof 1s divided into sereral parts.
(i) If $(u, v) \in P$ and $u * v=u 0 w$ then $f(u \circ w)=x,(u, w) \in \mathbb{N}_{1}$. Conversely, if $(u, w) \in H_{1}$ and $u \circ w=u * v$ then $(u, v) \in P_{0}$. Hence we have injective mappings of P into H_{1} and of N_{1} into P, so that card $P=\operatorname{card} H_{1}$.
(ii) Similarly as in (i) we can show that card $Q=$ card H_{1}.
(iii) Let $(u, v) \in Q$. We have $u * V=w \circ v=u \circ z, f(a) f(b)=x=$ $=f(u * v)=f(u \circ z)=f(u) f(z)$, so that $(u, z) \in N$ and $f(a) \leq f(u)$. On the other hand, $x=f(a) f(b) \leqslant f(u) f(\nabla)$, since $f(b)=f(v)$, hence $x=f(u) f(v)=f(u \circ v), f(u)=f(a)$ and $(u, v) \in H_{1}$. We have prored that $Q \subseteq F_{1}$. Now, it is easy to see that $Q \subseteq P$.
(iv) By (i), (ii) and (iii), we have $P=Q=H_{1}$. Consequentiy, H_{1} is on admisaible subset of $M(K)$. Since the couple I is simple, $H_{1}=M(K)$ and f is trivial.
3.2. Corollamy. Let $K \in \mathcal{T}$ be a primary groupoid and let G be a linearly ordered non-trifial group. Then K is G-ilat.

4. The main result

4.1. Proposition. Let G be a linearly ordered non-trivial group. Then, for every $n \geq 2, z(G, n) \leq g d i s t(n)$.

Proof. The result is an immediate consequence of 3.2 and [3, Proposition 7.5].
4.2. Proposition. Let G be a linearly ordered non-tritial group and $n \geq 2$ and integer. Then there is a prime p dividing n such that $z(G, p) \leq g d i s t(n)$.

Proof. The result follows from 4.1 and 2.7 .

Referenoes
[1] J. DENES and A.D. KEEDWELL: Latin Squares and Their Applicationø, Akadémiai Kiadó, Budapest, 1974.
[2] A. DRípAL: On quasigroups rich in associative triples, Difcrete Math. 44(1983), 251-165.
[3] A. DRÁPAL and T. KEPKA: Group modifications of some partial groupoids, Annals of Diser. Math. 18(1983), 319-332.
[4] A. DRÍPAL and T. KEPKA: Exchangeable partial groupoids I. Acta Univ. Carolinae 24(1983), 57-72.

Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovaká 83. 18600 Praha 8, Gzechoslovakia

