A martingale central limit theorem

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 2, 371--375

Persistent URL: http://dml.cz/dmlcz/106458

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
A MARTINGALE CENTRAL LIMIT THEOREM
Petr LACHOUT

Abstract: The paper presents a martingale central limit theorem which connects the well-known result by McLeish (1974) with that one by Hall and Heyde (1980) and continues the research starting in [2].

Key words and phrases: A zero-mean martingale array, the central limit theorem, a uniform integrability.

Classification: Primary 60F05
Secondary 60G42

Let us formulate main results.

Theorem: Let \((S_{nk}, A_{nk}, k=1, \ldots, k_n, n \in \mathbb{N})\) be a zero-mean martingale array with differences \(X_{nk}\). Suppose that

(i) \(E \max \{|X_{nk}|; k=1, \ldots, k_n\} \rightarrow 0\)

(ii) \(U_n = \frac{k_{nv}}{k_{rv}} \chi_{nk}^2 \xrightarrow{d} \eta_2\), where \(\eta_2\) is an a.s. finite random variable,

(iii) \(\lim \limsup_{k \rightarrow +\infty} E[\exp(-tU_n) - E[\exp(-tU_n)/A_{nk}]] = 0\)

for every positive number \(t\).

Then \(S_{nk} \xrightarrow{d} S\), where the r.v. \(S\) has the characteristic function \(E \exp(-\frac{1}{2} t^2 \eta_2^2)\).

Proof: The proof has the same framework as the proof of 1) \(\xrightarrow{d}\) means the usual convergence in distribution.

- 371 -
the theorem (2.3) in [3] and as the proof of the theorem 3.2 in [1], chapter 3, p. 58.

Put $M_n = \max \{|X_{nk}| \mid k=1,...,k_n\}$ and fix a real number t and positive number ε. According to (iii) there are a natural number j and a real number D such that

1. $P(\gamma^2 \geq D) < \varepsilon$,

2. $\limsup_{t \to +\infty} E[\exp(-\frac{t^2}{2} U_n) - E[\exp(-\frac{t^2}{2} U_n)/A_n^j]] < \varepsilon \exp(-\frac{t^2}{2} D)$.

Define the following transformation

$$Y_{nk} = X_{nk} I \left(\sum_{k=1}^{k} x_n^2 \leq D \right),$$

$$J_n = \begin{cases} \max k |Y_{nk}^2 | \neq 0 & \text{if there is a natural number } k \text{ such that } Y_{nk}^2 \neq 0, \\ j & \text{if } Y_{nk}^2 = 0 \text{ for every } k=1,...,k_n. \end{cases}$$

$(Y_{nk}, A_{nk}, k=1,...,k_n, n \in \mathbb{N})$ is obviously an array of martingale differences.

Denote $I_{nk} = \mathbb{P}(tY_{nk}^2 \leq D, 1 + \sqrt{t}Y_{nk}^2), I_n = \sum_{k=1}^{k_n} I_{nk},$

$$W_n = \sum_{s=3}^{\infty} \frac{(-it)^{s-2}}{s-2} \mathbb{E}[Y_{nk}^s],$$

$$B_n = \left[M_n \leq \frac{1}{2|\varepsilon|} \right], F_n = \left[U_n \leq D \right], \mathbb{C}_n = B_n \cap F_n.$$

Now we can calculate

$$|W_n| \leq t^2 \sum_{s=3}^{\infty} \mathbb{E}[tM_n^{s-2}(Y_{nk}^s + \sum_{k=1}^{k_n} Y_{nk}^s \leq t^2(M_n^2 \leq D) \sum_{s=3}^{\infty} \mathbb{P}(tM_n \leq \frac{1}{2|\varepsilon|})^s).$$

Hence by (1)

3. $W_n I(\mathbb{C}_n)$ are uniformly bounded r.v's and $W_n I(\mathbb{C}_n) \to 0$.

We may derive an inequality for I_{nk}

$$|I_{nk}| \leq (1 + |t||Y_{nk}|^2) \sum_{k=1}^{k_n} (1 - t^2 Y_{nk}^2)^{j-1}.$$ (4.1)

$$\frac{1}{2} |tM_n| \exp \left(\frac{1}{2} t^2 D \right).$$
We shall use the following property.

Lemma: Let f_n be complex functions which are A_∞-measurable and uniformly bounded. Then $E(T_n-1)f_n \longrightarrow 0$.

Proof: $E(T_n f_n) = E(T_n f_n - E(T_n f_n | A_n)) + E(T_n f_n | A_n)$

Then $E(T_n-1)f_n \longrightarrow 0$ since $T_n \to 1$. □

Notice that

$$E[T_n \exp(- \frac{1}{2} U_n) I(F_n)] - E \exp(- \frac{1}{2} U_n) =$$

$$= E[T_n \exp(- \frac{1}{2} U_n) - \exp(- \frac{1}{2} U_n)/A_n)] +$$

$$+ E(T_n-1)E[\exp(- \frac{1}{2} U_n/A_n)] - E[T_n \exp(- \frac{1}{2} U_n) I(U_n > D)].$$

Using (1), (2), (4) and the previous lemma we obtain

$$\limsup_{n \to +\infty} E|T_n \exp(- \frac{1}{2} U_n) I(F_n) - \exp(- \frac{1}{2} U_n)| \leq$$

$$\leq 2 \varepsilon + \frac{1}{2} t \exp(\frac{1}{2} D) \limsup_{n \to +\infty} E M = 2 \varepsilon.$$

Now we rewrite

$$E \exp(it \sum_{k=1}^{A_n} \chi_{nk}) - \exp(- \frac{1}{2} \gamma^2) = E[\exp(it \sum_{k=1}^{A_n} \chi_{nk}) (1 - I(C_n))] +$$

$$+ E \exp(it \sum_{k=1}^{A_n} \chi_{nk}) - T_n \exp(- \frac{1}{2} U_n + W_n)] I(C_n)] +$$

$$+ E[T_n \exp(- \frac{1}{2} U_n) \exp W_n) I(C_n)] + E[T_n \exp(- \frac{1}{2} U_n) (I(C_n) - I(F_n))] +$$

$$+ [E[T_n \exp(- \frac{1}{2} U_n) I(F_n)] - E \exp(- \frac{1}{2} U_n) I(F_n)] +$$

$$+ |E \exp(- \frac{1}{2} U_n) - \exp(- \frac{1}{2} \gamma^2)|.$$

Noting that the second term of the right hand side of the equality is vanishing, we can see

$$|E \exp(it \chi_{nk}) - \exp(- \frac{1}{2} \gamma^2) - P M_n - \frac{1}{2 \pi |1|} + P(U_n > 0) +$$

$$+ E|T_n| |\exp W_n - 1| I(B_n)] + E |T_n| I(M_n > \frac{1}{2 \pi |1|}) +$$

- 573
\[+ |E[T_n \exp\left(-\frac{t^2}{2} U_n\right) I(F_n)] - E \exp\left(-\frac{t^2}{2} U_n\right)| + \\
+ |E \exp\left(-\frac{1}{2} t^2 U_n\right) - E \exp\left(-\frac{1}{2} t^2 \eta^2\right)|. \]

Using (i), (ii), (1), (3), (4) and (5) we obtain that

\[\limsup_{n \to +\infty} |E \exp\left(it \sum_{k=1}^{n} X_{nk}\right) - E \exp\left(-\frac{1}{2} t^2 \eta^2\right)| \leq 3 \epsilon. \]

Now, it is clear that \(S_{nk} \xrightarrow{d} S \), where the r.v. \(S \) has the characteristic function \(E \exp\left(-\frac{1}{2} t^2 \eta^2\right) \). □ □

Finally, let us remark that each of the following conditions implies the condition (iii).

(6) For every positive numbers \(\epsilon, t \) there are a natural number \(j \) and functions \(f_n \) that are \(A_{nj} \)-measurable, \(n \in \mathbb{N} \), such that

\[\limsup_{n \to +\infty} E |\exp(-tU_n) - f_n| < \epsilon. \]

(7) Let \(\epsilon \) be a positive number and \(B_n \in \sigma(U_n), n \in \mathbb{N} \). Then there are a natural number \(j \) and sets \(C_n \in A_{nj}, n \in \mathbb{N} \), such that

\[P(B_n \Delta C_n) < \epsilon \quad \text{for any} \quad n \in \mathbb{N}. \]

(8) \(\eta^2 \) is a nonnegative constant a.s.

(9) The martingale array is defined on a common probability space, \(U_n \xrightarrow{p} \eta^2 \) and the \(\sigma \)-fields \(A_{nk} \) are nested (i.e. \(A_{nk} \subset A_{n+1,k} \) for \(k=1, \ldots, k_n, n \in \mathbb{N} \)).

Note that (8) is the assumption (c) of the theorem (2.3) in [3] and (9) are the assumptions (3.19) and (3.21) of the theorem 3.2 in [1].

References

- 374 -

Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 186 00 Praha 8, Czechoslovakia

(Oblatum 7.11. 1985)