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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27.4 (1986)

SIMULTANEOUS REPRESENTATIONS IN DISCRETE
STRUCTURES
Véra TRNKOVA

Abstract: For every sequence of monoids
MongE 22...

there exists a directed graph (X,R) such that, for every i=0,1,

2,..., M. is isomorphic to the endomorphism monoid End tl(X,R),-

where . X
£2(X,R)=(X,R), t(X,R)=(X,RuReR), ti*1(x,R)=t(t 1 (X,R)).

A more general setting of simultaneous representation is introdu-
ced and stronger and more general results are presented.

Key words: Directed graph, representation of monoids, full
embeddings of categories.

Classification: 18A22, 18B10, 20M30, 20M50, 05C20.

I. Introduction. Every group is isomorphic to the group of
all automorphisms of a graph (LF,S]), every monoid (= semigroup
with a unity) is isomorphic to the monoid of all endomorphisms of
a graph (LHP,PH]). The next generalization leads to the investi-
gation of full embeddings of small (or concrete) categories into
the category of graphs. Let us recall that a functor

O: H— ¥ !
of a category ¥ into a category ¢ is called a full embedding
iff it is faithful (i.e. one-to-one on each set of morphisms
with the same domain and codomain) and full (i.e. for every a,be
cobj ¥, & maps the set K (a,b) of all K -morphisms with the
domain a and codomain b onto the set (¢ (a), $(b)). The results
of [F,S) and [HP,PHJK mentioned above, fit into this field of
problems by putting J to be a one-object category. The full em-
beddings of categories and related field of problems are investi-
gated in the monograph [PT].

In the present paper, we investigate how some "standard con-
structions" influence the selecting of morphisms. For example,

let R be a binary relation on a set X, R its transitive hull.
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Then the monoid M of all endomorphisms of the directed graph
(X,R) is a submonoid of the monoid W of all endomorphisms of
(X,ﬁ'). Are there some other relations between M and ¥ ? Our ans-
wer is no: for arbitrary two monoids M, W such that McW¥ there g
exists (X,R) with M=/End(X,R) and M~End(X,R).

We adopt the categorical language and categorical descrip-
tion of this idea. Let us formulate the main definition of the
simultaneous representation. Denote by C¢t the category of all
small categories and all functors. Let ¢ :D — Caf be a diagram
(a functor), let & be a diagram over the same scheme D such
that, for every ¢ € obj D, & (o) is also a category (but not ne-
cessarily small) and, for each morphism me D(¢ ,0’'), P (m) is a
functor of the category & (o) into the category D(¢'). A simul-
taneou‘s representation of the diagram < in the diagram & is a
natural transformation ¢ = {d?o, | e obj D% such that each ¢,

is a full embedding of the category (¢ ) into the category
9 (o).

If you admit "the category of all categories", the formula-
tion of this general definition could be simplified. However, in
the investigated problems, the diagram & is given and its cheme
is usually rather small. It is composed from some current catego-
. ries (usually not small) and some current functors (describing
some natural construction) and we ask which diagrams % in Cat
(over the same scheme as the given 2D ) have simultaneous repre-
sentations in 9. In the abave example, & is the diagram

Graph ——'l? Graph,

where Graph is the category of all directed graphs (X,R) and all
their compatible maps (see [PT1), and h is the functor which

sends each (X,R) to its transitive hull (X,’i{) and is identical on
morphisms (clearly, h is really a functor). The investigated que-
stion: for which small categories kl' k2 and functors K:kl———> k2

does exist a simultaneous representation in N} , i.e. there exist
full embeddings 431 :k; —> Graph, ¢2zk2 —> Graph such that

h e QI = (}20 K ?
Since h is a faithful functor and’ Ql , ‘52 are required to be
faithful, K must be also faithful, obviously. Is this condition
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sufficient? The positive answer is contained in the Theorem 1 of
the present paper. This gives not only the above result about the
monoids MSﬂW (if kl and k2 are both chosen to be one-object cate-

gories) but we obtain from it e.g. the following: there exists an
arbitrarily large rigid set 2 of binary relations on the same
set X (rigid in the sense that if there exists a compatible map
f:(X,R) — (X,R") for some R,R e R, then necessarily R=R’ and

f is the identity) such that the transitive hulls of all Re R
coincide and the unique obtained (X,§3 hds its endomorphism mo-
noid isomorphic to a prescribed monoid M. (This is obtained by
the choice k2 to be a one-object category with the morphism part
formed by M and kl to be a discrete category, i.e. it has only

unit morphisms, the functor K sends them all to the unigue unit
morphism of'kz.)

The main results of the present paper are concentrated in
the last part III. We investigate there not only the transitive
hull functor h, but also single steps in its construction send-
ing (X,R) to (X,RuR oR) (this leads to the result mentioned in

the Abstract), the functor s, sending (X,R) to (X,RLJR—I) (simi-
lar problems are investigated in [N] and I[HN]), and also the ca-
tegory Bi Graph of all bigraphs (X,Rl,Rz) (both Rl,R25X><X) si-

multaneously with the forgetful functors ‘
i)
Bi Graph <___5 Graph
F
2

sending (X’Rl’Rz) to (X,Rl) and to-(X,RZ). The part II forms a

technical basis for the constructions of simultaneous representa-
tions. The Lemma proved there is used not only in the part III

of the present paper, but it is useful also in the construction
of simultaneous representations in continuous structures (which
will appear elsewhere).

FinallQ, let us mention thai the definition of simultaneous
representations can be further generalized - the categories € (o)
also need not be small. This further generalization is used in '
Part III of the present paper.
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II. Technical basis of simultaneous representafions

II.1. Let us recall that Cal denotes the category of all
small categories and all functors. A commutative square in Cat

kg kK
k = TSy
0\ / 3
K2’k2 K}
o 2

is called a subpullback if the factorizing morphism K:ko-——} h

3
k K : .
(where 1 1 is a pullback Cat
i G P in )
\skz /K? 3 -
2

is a full embedding.

I1.2. Let us denote by o the category of all directed
gfaphs (X,R) (i.e. X is an arbitrary set, Re Xx X) such that

(i) (X,R) has no loops (i.e. never (x,x)eR)

(ii) (X,R) is connected (i.e. for all x,ye X [not necessa-

rily distinct) '
there exist x0=x,xl,..'.,xn=y in X such that, for every i=1,...,n,
(xi_l,xi)eRuR°l)

and all their compatible maps (i.e. f:(X,R) —>(X ,R") is a mor-
phism of @ iff (x,y)e R =>(f(x),f(y))eR’). By IPT, 8.5 and
8.6 on p.53 and Theorem on p.104] every small category k can be
fully embedded into @ -

II.3. Let D=(D,« ) be a poset (=partially ordered set). We
consider it also a a thin category, i.e. if dlédz, then

D(dl’dz) contains precisely one morphism, let us denote it by

d
25. -
(dl)’ if _d1¥ d,, then D(d;,d,)=f.
For every poset (D,<) with a last element t and arbitrary
doe D, let us denote by GD d the following category: the ob-
’“o
jects are all pairs (X,{R;|ldeD,d zd %) such that
a) (X,Ry) is an object of @;
b) if d, <&
1 dz, then RdIE Rd ;
2
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morphisms “are all

£:(X,iRy|d&D,d zuoi)e—a(x‘,fRélden,dZdob

which are RdRé—compatible for all deD, d2d.
For every (D, £ ) with a last element t, the diagram
. ‘gD
is defined in a natural way as follows:

for every de D, ‘g (d) = GD g (hence ‘Qn(t) =G ),

d
. 2 e :
if d,£d,, then %(dl): GD,U —_ ®Dzd2 is the natural

1
forgetful functor: ite. it sends any (X,{Rd[d Zdl}) to

(X,«?Rdldzdz}) and every morphism f to f again. Let us deno-
te gn(\df) by de.

I1.4. Lemma. Let D=(D,<£) be a poset with a last element t.
Let €:0—s Cat be a diagram such that, for every d,,d,€D, d; £
édz, the functor ‘e(gi) is faithful. T.hen Y% has a simultaneous

representation in ‘@D.

Moreover, if d0=d1/\ d2 in D and the square

ke(dl) ?dy) et
d0 1 d

1
Ca) _— > €(t)

is a subpullback in Cal , then every (X,{RdIdED,dzdo"‘) repre-
senting an object of i‘“(do)‘ (i.e. being an image of an gbject of
“(d,) in the component <I>do: €(d,) —> ¢ (d,) of the construc-
ted simultaneous representation & = 4 &dldeDE) fulfils
Rdo = Rdln Rdz.
Remark. Let & : <€ —-—)‘QD be a simultaneous representation
of a diagram ¢:D —>@al . Since all the forgetful funct’érs

d
2 :
‘(jn(dl) (for all d,% d,) are faithful, and q’dl"édz are also
- 637 -



faithful, the equation

d d
§y o (G = T e Yy
2 1 1 1
: d
implies that <if’(d?) must be faithful as well. Hence the lemma gi-
1
ves a necessary and sufficient condition for a representability

of €:0—>Cal in Y.

Proof of the lemma

II.5. Let k be a small category, U'be a faithful functor of
k into the category Set of all sets and all maps. Then there ex-
ists a full embedding

Q k — G

such that

for every a¢ obj k, & (a)=(X,R) contains U(a) (i.e. U(a)&X)

for every me k(a,a’), @(m) maps U(a) into U(a’) as U(m).
This follows from 7.3 on page 52, 1.5 on page 59 and Theorem in

1.11 on page 104 of LPT]. Following LPTl, we say that ¢ is an
extension of U.

II1.6. Let a poset D=(D, £ with a last element t be given,

. : d
let ¥:0 —> (ol be a diagram such that the functors cn‘,’(dz) are
1

faithful for all dlédz. Let

M:kt~—> Set

be the Cayley-Mac Lane representation of the category k = ¥¢(t)

(i.e. M(a)= kt(b,a), M(m) sends every pe k(b,a) to mep).

U;.
ﬁ'eoﬂ;ﬁx
Let ¥:k,—> G be a full embedding, which is an extension of M.
We may suppose that no ¥ (a), asobj k4, contains a cycle (see
3.5 on p.108 of [PT)).

Denote ?(a)=(73,ﬁa). Thus M(a)_C_'f(’a.

I1.7. We may suppose that for every pair dl’ d2 of distinct
elements of D, the sets ob) ‘((dl) and obj ‘C(dz) are disjoint.
Put

L ¥ obj %(d).
Let X(XX,[r)! ¥ & M} be a collection of objects of @& , rigid
- 638 -



in the following sense: if there is a compatible map f’(YQ”Tz') RS
— (Yx,,T?,), then necessarily 7=y’ and f is the identity
(such a collection is the result of a full embedding of a disc-
rete category h with obj h = into @& ). Moreover, we may sup-
pose that no (Y. ’TT) contains a cycle (see 3.5 on p.108 of [PT]
again). For every o ¢ ", we form a graph H, = (Aa.,Sa.) as fol-
lows:
Ay Yyudy,p,atuf(p, )] i=1,...,7}uf(a, D] i=1,...,9%,
Sy = Ty vilp,@)3ui(a, V), (7,lyev, v
od(p,i).(p,i+1))] i=1,...,5% v {(p,(p,1))} 0y
udilp,(P,7)),Up,7),(p,6)),((p,6),p)3 U
ud((q,1),(q,i+1))| i=1,...,7} v aq,(g,1))}u

v4(a,(q,9)),((a,9),(q,8)), ((q,8),}.
(Informally: denote by G i3 an i-cycle and j-cycle glued toget-

her along one arrow, denote its end by K j; we form H,f from
(Ya‘"TT) by the adding of new three vertlces Yy, P, q aqd joining
p with g, g with every vertex in Y, and every vertex in Yo with
y; finally we glue a copy of 63 7 0onp identifying p with 2 3,7
and a copy of G3 9 on g 1dent1fy1ng q with 2 3,9 )
F1na11y, denote by (B,Q) the graph 63 5 (with L= 13,5), i.e.
= 42,(4£,i)| i=1,...,5%
= {(Z , (2,10} u{((e,n,u ,i#1))] i=1,2,3% v
uf( 2,02,5)),(C2,5),(2,8))X(2,8),£)%.
II1.8. Now, we define ét:kfé Yplt) = & . For every

aeobj ky, put ¢, (a) = (xa,'ﬁa), where
X, = X 0 X, % (BN £23) 0 H(a) x \ptrd < (AN iyD)
R, = R, uTluTz, with
1. f((x, r),(x,r ))|x57, (r ,T )CQ rlti#rz}b

n

u{((x r), x)IxsX (rl,E)eQ}ui(x (x, l‘z))|xex (€ ,ry)e af,

Tz {((x,(y,rl)),(x,(y,rz)))IxeM(a), yel(r,r))e S T * y*rziu
ul(x, (p,01)),x) [xe M(a) ,p e 7, () ,y) €8, 5.

(Informally: we start from Y(a)= (X R ) and glue a copy of G3 5

on each element x of X by 1dent1fy1ng x with the vertex £ of

this copy Lthis is described by Ta] ; then we glue a copy of each

Hy on each element x of M(a) by identifying x with the vertex y
- 639 -



of this copy [this is described by TEJ.)

The definition of ¢ (m): &,(a) —= & .(a"), for mek ¢(a,a’),
is obvious: it extends ’i’(m) and it maps the copy of G5 (or Hy)
glued on x onto the copy'of Gy 5 (or Hy) glued on X= [’i’(mﬂ(x)
such that it sends (x,r) (or (x 7,t)) to (X,r) (or (X,7y,r), re-
spectively).

Clearly, ét is a faithful functor of k; into & . We show that
it is full: a compatible map f: (Xa,Ra)—>(Xa, , a') has to map a
copy of G3 5 onto a copy of G3 5 again; hence it maps X into X
because ¥(a’) and Hy, ¥ € r, "contain ‘no G3 5 i; since "I is
full, there exists meky (a,a’) such that ¥ (m): X —X o s a
domain-range- restnctmn of f; since f sends every copy of 83

and Gy 9‘ on B3 ; and B3 4 again and since the collectloniHTl‘re rs
is rlgxd, necessarlly f is equal to ¢ (m).

I1.9. Let dle 0, d1< t, be given. We construct @dl.
:Y(dl),""(&ﬂ,dl' For every ae obj ‘f(dl), denote a(t):[‘f(gl)](a).
For every n e ", xeM(a(t)), denote e,y = ((x,7,p),(x,7,a)) e

R%(t)' We put

@dl(a) = (X,{Rdld eD,d zdlf),

where (X,Rt)=¢t(a(t)) (i.e. (Xa(t)‘ﬁa(t)) in the notation of

11.8) and, for every d,e0, d <d, <t,
R, = -Tv I're obj €(d) with d<d, and X= [ﬁe(d )] (<) for

some morphlsm « €(<€(d ))(Y’(dz)('a’) <€(d2)(a))§

d,

(In the definition of Rd , we use that M.kt——>Set is the Cayley-
- 2

Mac Lane repi‘esentation hence the morphism oc¢ in the category

<€(d,) Lfrom the object CL’(d )() into the object ‘C(dz)(a).l is

mapped by ‘C(t ) to an element of M(a(t)) so that the def1n1t10n
makes sense. )

II1.10. Clearly:
d; ‘ d,
Zd1<<§d1<a))= By, (€ (g)(@)) for all dj=d, and aeoby€(d)),
because the definitions of the relations Ry, d2d2; are the same

- 640. -



d
for le(a) and for @dz( l‘C(df)(a)). Define qu(m) such that

d d,
2 _ . 2
Zdl oédl_ c}dzo ce(dl) for all d)€d,<t.
ITI.11. We prove that @d :‘C’(dl) —-*GB d is really a func-
)
1
tor: For every acobj ‘f(dl), de (a) is really an object of
1
G D9,
Denote ¢>d (a):(x,{Rdldzdli), @d (a')=(x',-fR[;|azdl}). We have
1 i 1 ;
to verify that the map f=¢d (m) is RqRq-compatible, dzd;. Since
1

Let m be a morphism in cC(dl) from an object a into a’.

f maps elements of X into X  as @t(cc’(; Y(m)), it is Rth—compa-

1
tible . Let dzeD dlé d2<t be given. We have to show that f is
RdzRéz-compatible. Denote my= [‘54(;1)3 (m). Let Ve g be in Rdz
(i.e. y € obj ‘C’(d) with dén:l2 and x= cf(t )(e¢ ) for some

2

x ¢ €(d )(‘e(d Yy, ‘f(dz)(a))) Since M is the Cayley-Mac Lane
representation of k,, M(m ) sends x to x’ —mtox th(‘e( )(a N,

hence Qt(mt) sends the arrow VX’T on the arrow Vo P But
) d
x =mtox=(<e(§ Y(m)) e (€] )(w)):t%(gz)l (‘f(df)(m)ooc).

Thus, by the definition of Rdz, Vi e is in Rdz so that f is

R, R -compatible.
4y dy
II.12. We prove that Qd with d1<t is full: let a,a &
1
€obj (d;), denote @dl(a)=(X,SRd|d;dli), @dl(a ) =
=(X',{R&Id201}); let £: &y (a) — Qid (a’) be a morphism in
1 1
‘f4[-,(d1), i.e. RdRé-compatible for all d=d;. Then Z;l(f):
: ZZ (@d (a)) — Z; (Qd (a’)) is a morphism in ‘@D(t). Since
Sd ° éd @to ‘t’(d ) and  $, is full, by II.8,there exists
a (un1que) morphism g e‘t’(t)(‘t’(ct, )(a),‘(.’(t )(a“)) such that
@t(B )= Z;l(f). The arrow Vx,a with x= ct’(d )(1 )= =lg(yy is in
Rdl', hence its f-image v’ is in Rd . But £ sends it to the same
1
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