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COMMFNTATIONES MATHEMAT1CAE UNIVERSITATIS CAROLINAE 
28.1 (1987) 

LINEAR FUNCTIONALS lU SLM-SPACES 
J. MICHALEK 

Abstract: This article deals with linear junctionals 
define(r on statistical linear spaces in Menger's sense (SLM-spa-
ces). The main aim is to describe all continuous linear functio­
n a l defined on a SLM-space (S,/T",T) as a SLM-space, too. For the­
se purposes we shall define a statistical norm of a linear func­
tional which in a simple way characterizes continuous linear 
functionals. 

Key words: Statistical metric space, statistical linear 
space"J t- i| -topology,, t-norm. 

Classification: 60B99 

Let a SLM-space (S,^,T) be given. Let S* be a vector space 
of all linear functionals defined on (S,Jf,T), let S' be a linear 
subset S c S* of all linear functionals continuous in the 6-72,-
topology. The basic properties of the g-^ -topology are given in 
C1J, C23. A special case of the dual space to a SLM-space is stu­
died in £33. 

Definition 1 . Let a SLM-space (S,^>T) be given, let feS*, 
f4G. A function Ff(«) defined by 

Ff(u)«l-sup p ( Hi-i-ll + *>F (lliSiL)} for u > 0 
* -{*:$(*&*& x u x u 

Ff(u)*0 for u* 0, 

(o>Fx(u) is the jump of F (•) at u), will be called a statistical 
norm of the functional f. For f m 0 on S we put F (u)=H(u) where 
H(u)=G for u *G and H(u)*l otherwise. / 

Properties «f the statistical ncrm: 

1. Let 0 < u , 4 u , then \t^xn z I -f C x > | for every x c s . it implies 
A Z U * Un 

that for every x with f(x)#0 \ 
L <Fx(%iL)+ttF (!ii*2lrt 4.1- {? (il^)+«F¥(iliS-l)» 

X U | x u* x u » x u 2 
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and hence F-(u1)*6F{(u2). The statistical norm of feS*is a non-

decreasing function in reals. Further, it is evident that 0---F„(uU 

£ 1 for every u £ iB 

2. The function Ff(-) has at most a countable number of disconti­

nuity points and at every point the limits at the left and at the 

right exist. 

3. In general, it is not true that lim F*(u)=l. In every case, 
Uy^"0O I 

of course, lim F«(u) exists and lim F-(u)^ 1. 
U.-VOO I 4J,~*00 i 

4. If Ff(u)=H(u) for every u e ft, , then f(x)=0 for every xeS. 

5. In case of such a SLM-space (S,JC,T) where o>F (0) = 0 for eve­

ry x4-0 the statistical norm Ff can be expressed in the form 

Fft-)-1" ™j^<^>*^<-US^4 t0°-
Definition 2. A functional fe S* is said to be bounded with 

respect to the statistical norm if 

lim F~(u)>0. 
44,+ CO I 

Theorem 1 . A functional f e S* is bounded with respect to the 

statistical norm if and only if f is continuous in the 6-^-topo­

l o g y . 

Proof. Let f£ S* and let f be bounded with respect to the 

statistical norm. As f is linear it is sufficient to prove its 

continuity at the null vector in S. Assuming lim F~(u)= € > 0 

then 

lim . sup 4J (1 f ( x ) I)+ c>F( 1 f ( x ) I)} =1- fcn and hence for 
U->*» -v*ifl*V*Oi X U X U 0 

every x,|f(x)|>0, lim iF ( lf ( x ) I)+ a>F( lf ( x ) 1)} ̂ 1 - g. . Let 

M.-* <*> x U x U 0 

•tx !**_•, be any sequence in S, x 4- 0 for every n 6 71 and x —> 0 
in the e-% -topology. It is clear that for every n e 71 

U(x n)| |f(x )| 
lim {F (-_J2_) + wF y (

 n )} =*>Fy (0)^1- e . 
*,-**> *n u xn u xn o , 

Let us suppose that |f(x )|-/*0\ Then there exist Such an 

6->0 and such a subsequence ^x l̂ J.i c U ] * , that 

|f(xn ) ! > ; & , for every k & 71. 

Hence I-<"„)! l-<-„>l £, 
Fxn ( - - J - - ->+ w Fxn < — i r ^ ^ V ^ - ^ x <ir> 

nk nk nk n
k 
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also for every k € 71 and it implies that for every u > 0 
If(xn )| |f(xn )| 

lim 4FV ( -J-_)+c .>FY ( Tr*—)} =1 because xn -> 0 
It-* co xn^ u x ^ u nk 

in the t-^- topology. 
But as follows from the properties of the supremum 

lf(xn )| |f(xn )| 

i r ^ ( ^ , + u ^ 1 ^ ) i ^ F x ' ( ^ L • ) t o F \ ( - ^ , 

for every k e % and therefore 

sup XF (lf(x)l)-K^F (lf(x)l.)lsl for every u > 0 . 

This last equality is contrary to the assumption that 

ii»..w, „.-tF (lf(x)l)+&>Fx(-Ul
xli)} =i- e / i . 

This result implies that feS* must be continuous in the z-\ -to­
pology. 

Let us suppose, on the contrary, that f e S ' is not bounded 
with respect to the statistical norm, i.e. for every u > 0 

зup íғ (l f ( x )
l)

+ C J
F (l

f ( x )
l)} -i. 

T-Ғ&+DГ
 x u x u u3 

As f is a linear functional, Definition 1 implies that for 

arbitrarily chosen k > 0 

F
f

( u ) = 1
- , x . f

i
m > l ^

{ F x (
^

) + C 0 F x
^

) 1
'
 t00

' 
Further, f is continuous and hence |f(x)|-£k in an £-^ -neigh­
borhood &(iQ, *IQ) . Now, let u •"+€©, s \i 0. Then for every n e H 
there exists y e S where |f(yn)|-k and therefore y — / > O i n the 
e-^-topology but 

i- 6<sup 4F,<l£-£lU„F (M2iii)^F (If(yn)l)+ 
<x:fM*Ol x % > x un V un 

U<y n3| k k 

+ WF •( — ,+ t i E tF (_ii)+wF (—) =6 
V un, } &n Bn yn

 un ^ V 

* 6n + Fv (u~ + d*n ) where ̂ n ^ 0 -Jn n 

It implies that 1-U+S )<F ( r r + ^ n ^ i,e' yn e0/(t-+8n'tT+c/n) 

yn n n 
(for every n eTl) and we have proved that y — > 0 in the fc-T£-topo-
logy. This result, of course, is in contradiction to the continuity 
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of the functional f at the null vector in S. Q.E.D. 

Let a SLM-space (S,1,T) be given. Let a<£<Q,l) and let us de­

fine n (x)=-inf-ta> 0:Fx(A ) > a L If x = 0 then ng(0)=0 for every 

afe<0,l). On the contrary, if n (x) = 0 for every ae<0,l) then 

x = 0 in S because x = 0 if and only if F (u)=H(u) for every u <& dFL . 
x l 

At the first sight it is clear that n (Ax)=|^|n (x) for every 

% e Jt, and xeS. Unfortunately, it is not true that n (x+y)-=. 
-sn (x)+n (y) for every pair x,y<sS in (S,J-,T) besides the stron­

gest t-norm T(a,b)=min(a,b). Nevertheless, we can define for eve­

ry feS* and every ae<0,l) 
«ffta=sup {|f(x)|:nJx)*ll. 

Let us denote (7 = ix 6 S:n (x)£ I V From the definition of n (•) 

it follows that when a^b, then n (x)-^n.(x) for every x^S and 

hence Cr z> CT. . Further, we immediately obtain that llflLarRflL 
a b ' 3 a b 

if a-b. We also see that for every real !\ 
H^flla=|-A| ilflla for every ae<0,l) and 

every feS*. We can prove, in an easy way, the triangular inequ­

ality 

I f + g » a * ll,flla+ l lg l la 

for every f,geS* and every ae<0,l) because we know that 

sup 4|f(x)fg(x)|l.<sup A|f(x)|i +sup 4|g(x)|}. If <7e S* is the 

null functional in S ( C(x) = 0 for every xeS), then surely 

110"II =0 for every a€<0,l). On the contrary, let us suppose that 

JlflL=0 for every a6<0,l). This assumption implies that f(x) = 0 

for every x e C = { x € S:n (x) -. ll. Since for every x&S there 
exists such a vector y € C , y=^x, we obtain that f(x)=0 for 

every xeS. We can prove a stronger statement even that ftfII =0 

implies f(x)=0 for every xeS. The assumption llf.i=0 gives that 

f(x) = 0 for every x c (T = {xtS:n(x)*l}. Let x £ S, nQ(x )> 1. a a u a o 
x 

So, y =. i° x e (7 and hence f ( y _ ) = 0 . It implies that also f(x_)= 
o "«>**<-.' a o o 

=0 and it yields together that f(x)=0 for every xeS. The proved 

results lead us to the formulation of the following definition. 

Definition 3. Let a SLM-space (S,2,T) be given. Let f be a 

linear functional in (S,$,T), let ae<0,l). Then the number 

|)fHa»sup -l|f<x)|:na(x)«*l} 
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where nQ(x) = inf { ̂  > 0:Fx(^ )>a} will be called a conjugate norm 

to n a ( * ) . 

The conjugate norm Nfl can assign the infinite value, too . 

iifii is defined in <0,1), is nonincreasing and we put HfH- = 

= inf \ftfft -a<lj. As for every xeS the corresponding probability 

distribution function F is left continuous, then for every xeS 

n (x) as a function in the argument a in<0,l) is right continu­

ous. 

Theorem 2. Let f be a linear functional defined in a SLM-

space ( S , y , T ) . f is continuous in the t-\ -topology if and only 

if there exists a £<0, 1) such that 

IU1L < °o • 
ao 

Proo f . Let us suppose t ha t i i f t L < +00 f o r a e < 0 , l ) . As 
o 

HfH i s nonincreasing i n < 0 , l ) , then iifii < + 00 for every 
a € < a ,1> , iifii, =inf , iifii , From the d e f i n i t i o n of the conjuga­
te norm ilflL i t follows tha t for every x & 0>= - ix:nQ ( x ) - * l i 

a a a_̂  
o o 

|f(x)|-£ Uf IL . Since nQ (x)<l iff F(l)>a . we see that the a _ a x o o o 

functional f(») is bounded in the e - ^ -neighborhood 0*(a ,1) and 

hence f is continuous in the e-^-topology. 

On the contrary, let us suppose that f is a continuous line-

for every a & < 0 , l ) . This assumption implies that for every n e 71 

there exists x eS such that |f(x )|>n and x e C , a .** 1 . If 

xn |f(xn)|
 n , 

we put yn= — , then |f(y )|= - >1 for every n and yRe - 0"a = 
n 

= i 4xg Sm (x) £l\ = \x eS:nQ (x)£ ~\ and hence yn —* 0 i n the n a a n n n n 
e-7>-topology although |f(yn)|:>l. It is impossible because we as­

sumed continuity of the functional f at the null vector in S. Q.E.O. 

At the beginning of our considerations we defined the statis­

tical norm of a linear functional defined in a SLM-space (S,J.,T). 

At this situation ja natural question arises about the relation 
between the statistical norm Ff and the conjugate norm ttfil in 

case of a continuous linear functional defined in S. 

For this purpose let us put aQ=inf { a.Jlf ||g< + 00} in case of a con­

tinuous functional f and iifii 1 = infg<1 l\flla. By these relations we 

- 115 -



def ined a nonincreas ing f u n c t i o n ttftt i n the i n t e r v a l <a ,1> w i th 

f i n i t e values i n ( a Q , l > . I t i s c lea r t ha t l l l f l l l a = l l f l l j . g , 

a e < 0 , l - a > i s a nondecreasing f u n c t i o n i n < 0 , l - a > . 

Now, l e t h Z 0 and l e t us de f ine 

F f U ) = i n f - £a>0 : litf 111 a >M i f « {a>0 : lllf M a > A i * 0 

F f ( 3 0 = l i f { a > 0 : \Hf IHa> A? = 0. 

In t h i s way we ob ta in a nondecreasing f u n c t i o n def ined i n <0,+co ) 

which i s l e f t con t inuous , l i m F „ ( /A ) = l -a . Let us put fc~=lim 7,(A). 
A~»t» 1 0 I >->co i 

Theorem 3. For every continuous linear functional f defined in 

a SLM-space ( S , J , T ) the function Ff defined above is a nondecrea­

sing left continuous real valued function in <0,a>) with 

lim f,(* ) = l-a n6 1 and f,(0) = 0. .X̂ voo I o I 

Proof. As \||f 111 = Hflli..a --
n <0,l-a / is a nondecreasing func­

tion then 4a > 0 : lllf HI > %^ o {a > 0 : lllf 111 > ^ 21 for every pair 

7il £ ̂ 2
 and n e n c e P'fC ̂ i ^ £ ^ f ^ ^ 2 ^ ' Let ^ > ° De fixed and let 

us consider %^/ \ ; surely supR f f( - \ n ) £ Ff ( 2\ ). From the defini­
tion of F « ( A ) we know that for every e > 0 there exists a > 0 

V n 

such that Ff ( ̂ R ) + e > a
n
 antf Ulf IU r ^ for every n G U . Since 

n 
X̂ 6 ^ n +i for every n 6 71 we can choose a in the same way, a ^ 
£ a n i 1 . and hence lim a =a, exists. Surely lim ^ 4 ? ( A „ ) > a - e . n+1' rrv-*oo n + J /a-y«> f n + 
The function lllf III is nondecreasing, hence lim III f ill £ lllf 111 , 

a a' m,~f.oo aR a' 

then HI fill 2- A which implies that F * ( . / \ ) : £ a . In this way we 

have proved that lim F~( !A )=F~( vA ) and hence F „ ( » ) is left con-
rrv-voo i n I I 

t i n uous i n ( 0 , + oo) at those po in t s ^ € < 0 , + oo) where 

{ a : lllf 111 .£ M 4 = 0 - I t l a s t s to prove the l e f t c o n t i n u i t y at t h a t 

% e ( 0 , + co) where { a : l l l f 111 a > - M =0. Let ^n<*X and -fa : lllf HI a -t A} =0 . 

I f , at l e a s t f o r one n e 7 l { a : lllflll > A $ i s empty, t o o , then by 

the d e f i n i t i o n of F f ( » ) F f ( & n ) = l and hence F f ( . ) i s l e f t con-, 

t inuous at % . Let us suppose t ha t f o r every n e 71 {a: III f l\l £ % \ 

i s nonempty, i . e . f o r every A n there e x i s t s a e ( 0 , l - a ) such 

t h a t l l l f l l l 2r A . Since UJflll i s nondecreasing i n (0 ,1 -a ) we 
can choose -£a \ as a nondecreasing sequence, t o o ; l i m a =a+ . 

Hence l i m l l l f l l l *-. lllf III and l l l f l l l > A but i t means t h a t the n^eo aR a+ a+ 

set 4a : l l l f l\\ £ h\ i s nonempty which i s con t ra ry to the assumpt i ­
on . So, a number n^ e 71 must e x i s t sudh t ha t -ta: l l lf HI > ^ „ } =0 

' o a n * 
o 
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