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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
28,1 (1987)

LINEAR FUNCTIONALS IN SLM-SPACES
J. MICHALEK

Abstract: This article deals with linear functionals
defined on statistical linear spaces in Menger 's sense (SLM-spa-
ces). The main aim is to describe all continuous linear functio-
nals defined on a SLM-space (5,7%,T) as a SLM-space, too. For the-
se purposes we shall define a statistical norm of a linear func-
tional which in a simple way characterizes continuous linear
functionals.

Key words: Statistical metric space, statistical linear
space, €-7 -topology, t-norm. '

Classification: 60B99

Let a SLM-space (S,},T) be given. Let S* be a vector space
of all linear functionals defined on (5,},T), let S° be a linear
subset S'c $¥ of all linear functionals continuous in the e-7 -
topology. The besic properties of the g€-7 -topology are given in
(11, £2). A special case of the dual space to a SLM-space is stu-
died in [3].

Definition 1. Let a SLM-space (5,%,T) be given, let feS*,
f£0. A function Ff(-) defined by

Ff(U)=£;.s‘§l(’g*éFx( -E&l‘-)-l +wa(l-£-l(75-)-L)} for u>0

Ff(u)=0 for u< 0,

(wF (u) is the jump of F _(.) at u), will be called a statistical
norm of the functional f. For f == 0 on S we put F (u) H(u) where
H(u)=0 for u&€0 and H(u)=1 otherwise.

Properties af the statistical ‘ncrm:

1. let 0<u;<u, then -Lf—(-"—)-'- M for every x€S. It implies

that for every x with f(x)+0 "2 \

JELER)! £(x) f £(x)
1- {F, (LA )+ wf & Lt <1- {FX(L_S.;M),MX(J—‘TL)}
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and hence Fo(u;)£F,(u,). The statistical norm of feS*is a non-
decreasing function in reals. Further, it is evident that OéFf(u)é
41 for every u e Rl.

2. The function Ff(-) has at most a countable number of disconti-
nuity points and at every point the limits at the left and at the
right exist.

3. In general, it is not true that lim Ff(u)=1. In every case,
of course, lim F.(u) exists and lim F_ (u)£1.
w0 I w00 L

4. If Ff(u)=H(u) for every u e.ﬂ.l, then £(x)=0 for every xe€S.

5. In case of such a 'SLM-space (S5,%,T) where wFX(0)=0 for eve-
ry x+0 the statistical norm Ff can be expressed in the form

Fe(u)=1- 31230&’(( lfl(jx)|)+ wF ( Ifl(j)() | %, too.

Definition 2. A functional fe $* is said to be bounded with
respect to the statistical norm if

lim Ff(u)> 0.
DR

Theorem 1. A functional fe S* is bounded with respect to the
statistical norm if and only if f is continuous in the €- % -topo-
logy.

Proof. Let fe S* and let f be bounded with respect to the
statistical norm. As f is linear it is sufficient to prove its
continuity at the null vector in S. Assuming iigw Ff(u)= e0>-0
then

lim s%x”éfx(-‘%ﬁ—x—u% wa(l—f—S—x-z-l-)} =1- ¢, and hence for

oo {x:

every x,1t001>0, 1in_ §F, (L. wr AL 1o o et

{xn}T;:l be any sequence in 5, x #+0 for every n e N and X, —> 0
in the ¢-m -topology. It is clear that for every n.e M

' (x| 1£(x )|
h‘fa,”xn( - )+wan(-—J—-)} =“’Fxn(°)"1“ €

Let us suppose that If(xn)lv‘" 0. Then there exist such an

-4 o0
€,>0 and such a su\bsequence ixnk} k=1€ h‘n‘n:l that

|£(x_ )| =z &, for every ke M.
N 1

Hence
lf(xnk)l If(xnk)| ) ¢,
F"n (—5 )+wan (———)2 F"n I+ @F, (5D
K K k Mk
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also for every k € 7l and it implies that for every u>0
If(xnk)‘ lf(xnk)l
‘lcl_;nw{F . (——)+ wank(-——u——-—)} =1 because xnk-—> 0
in the €¢-7 - topology.
But as follows from the properties of the supremum

IF(x, )| [f(x, )|
sup  4F AL wr 2Oyt p Ky er,

ix £ 0040 Ny ne O

for every k e L and therefore
2 ;&3*0}{FX(JL(_:'2'L)+ QFX(JL(—S—)L)}:l for every u>0.

This last equality is contrary to the assumption that
[£(x) [£(x) 1.
LLim {xs‘;l(g)w}{Fx( U Yrwf (L2220 =1- ¢ < 1.
This result implies that fe S* must be continuous in the e-7n -to-
pology.
Let us suppose, on the contrary, that fe S is not bounded
with respect to the statistical norm, i.e. for every u>0
[£(x)] [0 yq -
g0 X @F (0T =L
As f is a linear functional, Definition 1 implies that for
arbitrarily chosen k>0

-1- k k
"7 o @ OF @ too

Further, £ is continuous and hence |[f(x)|%£ kD in an g¢-7n -neigh-
borhood 0°(e,, m,). Now, let u +oo, £ N 0. Then for every n eN
there exists y_eS where lf(yn)|=k and therefore y_ -0 in the

€-7-topology but

i ey l£GOl 10y
S RIS e e S A
[£Cy )1
+wF «(____'3,_ +E £¢g +F (——-)+ FooX) <
Yo Yn, )y En "y, g Yo U

Kk
& 5n+Fyn(U: + d7) where dJ NO.

. : k k
It implies that 1-(t=,+£n)<Fyn(u—n + d'n), i.e. yneO’(e+en,U;+ d';‘)

(for every neM) and we have proved that y,—> 0 in the £-%-topo-
logy. This result, of course, is in contradiction to the continuity
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of the functional f at the null vector in S. Q.E.D.

Let a SLM-space (S,},T) be given. Let a€<0,1) and let us de-
fine n (x)=inf{A > 0:F (A )>at. If x=0 then n_(0)=0 for every |
ae<0,1). On the contrary, if na(x)=0 for every a e<0,1) then
x=0 in S because x=0 if and only if Fx(u)=H(u) for every u e :Rl.
At the first sight it is clear that na(o\x)=|alna(x) for every
Ae .’Rl and xe€S. Unfortunately, it is not true that na(x+y) £
éna(x)ma(y) for every pair x,ye S in (S,%},7) besides the stron-
gest t-norm T(a,b)=min(a,b). Nevertheless, we can define for eve-
ry f€ S* and every a e<0,1)

NN, =sup -{If(x)l:na(x)éll-

Let us denote 0'a= {xes:n (x)£ 1. From the definition of ng(e)
it follows that when a£b, then na(x)énb(x) for every x €S and
hence 0O, 30’b. Further, we immediately obtain that Ilfllazi\fllb
if a£b. We also see that for every real A

H.J\flla=|3\| "fﬂa for every ae<0,1) and

every fe s*. We can prove, in an easy way, the triangular inequ-
ality
||f+gﬂa < ILf!la+ llg\la
for every f,ge S* and every a ¢<0,1) because we know that
sup {1f(x)+g(x) |3 < syp 11£(x) )} +sup {lo(x)|¥. If Oe S* is the

null functional in S (O’(x)=0 for every xe€S), then surely
I!Ulla=0 for every a e<0,1). On_the contrary, let us suppose that
Ilfl|a=0 for every a €<0,1). This assumption implies that f(x)=0
for every x & O’°= {xe S.:no(x)é 13. Since for every xe& S there
exists such a vector y e O’a, y=Ax, we obtain that f(x)=0 for
every x € S. We can prove a stronger statement even that \\fl\a=0
implies f(x)=0 for every xeS. The assumption l\f\la=0 gives that
f(x)=0 for every x ¢ 0’8= {xeS:na(x)éI}. Let x €5, na(xo)z 1.

x
So, yfﬁ:('?(';T € 0, and hence f(y )=0. It implies that also f(x )=

=0 and it yields together that f£(x)=0 for every x€ S. The proved
results lead us to the formulation of the following definition.

Definition 3. Let a SLM-space (5,%,T) be given. Let f be a
linear functional in (S5,%,7), let ae<0,1). Then the number
llﬂ\axsup {If(x)l:na(x)él}
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where na(x)=inf{A>O:Fx(A )>a} will be called a conjugate norm
to n (+).

The conjugate norm l\fla can assign the infinite value, too.
Iiflta is defined in <0,1), is nonincreasing and we put ||fl11=
=inf &I\fl\a:a< 1}. As for every x& S the corresponding probability
distribution function Fx is left continuous, then for every x eS$§
na(x) as a function in the argument a in <0,1) is right continu-
ous.

Theorem 2. Let f be a linear functional defined in a SLM-
space (S,#,T). f is continuous in the €-7 -topology if and only
if there exists aoe(O, 1) such that

i, < o0
3

Proof. Let us suppose that “f\\a < +0o for aoe<0,1). As

Ilflla is nonincreasing in {0,1), then llf\\a< + oo for every
a e(ao,l) , \\f\\1=infa<ll\flla. From the definition of the conjuga-
te norm |if|\a it follows that for every x € 0’a = {x:na (x)£1%
) )

[£OO £l . Since n, (x)<1 iff F (1)>a_, we see that the
o o

functional f(e) is bounded in the €-7 -neighborhood O'(ao,l) and
hence f is continuous in the €-7 -topology.

On the contrary, let us suppose that f is a continuous line-
ar functional in the €-7 -topology. Let us suppose that \\fNa=+OO
for every a €<0,1). This assumption implies that for every ne N
there exists x €S such that |f(xn)|>n and x_e 0, anf'l. If

(x| ;

X
we put y = —p—;, then |£(y )|= =

1 -
>1 for every n and y & & O’an—

21 . - . 1 i
== ixe S.nan(x)!:l?, = {xeS:n, (x) n} and hence y —> 0 in the

n
¢-n-topology although [f(yn)|>1. It is impossible because we as-
sumed continuity of the functional f at the null vector in S. Q.E.D.

At the beginning of our considerations we defined the statis-
tical norm of a linear functional defined in a SLM-space (S,},T).
At this situation .a natural question arises about the relation
between the statistical norm F, and the conjugate norm lf\\a in
case of a continuous linear functional defined in S.

For this purpose let us put a =inf {a:_l\ﬂla< + o0} in case of a con-

tinuous functional f and I\ﬂl1=inf “f“a‘ By these relations we

a<l
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defined a nonincreasing function Ifll_ in the interval (ao,l) with

finite values in (ao,l> . It is clear that lii£l " (B4}

a e(O,l-ao) is a nondecreasing function in <0,1—ao> .
Now, let A2z 0 and let us define

Fo(a)=int £a>0: WEl 2 A3 if {a>0: WEW zAt+ ¢
Fe(an=1 if £a>0: WEN 2 AY= 0.

1-a’

In this way we obtain a nondecreasing function defined in <{0,+o)
: s : ~ - - = . ~
which is left continuous, }Lﬂn‘n Ff(J\ )=1 a,. Let us put ¢ lllﬂmw Ff(/\).

Theorem 3. For every continuous linear functional f defined in
a SLM-space (S ids T) the function Ff defined above is a nondecrea-
sing left contlnuous real valued function in <0, ) with
lim F (A) la <1 and F, (0)0
A>00

Proof. As Ulfl\\ = \\f“l _g in <o, l—ao) is a nondecreasing func-
tion then {a>0: lllfm 2 A }3{a>0 lllfmaz 3\2} for every pair
2159\2 and hence F (?\ )_F (Ay). Let A > 0 be fixed and let
us consider A /?\ surely sup ?’ ( ?\ )‘F (A). From the defini-
tion of F (?\) we know that for every e> 0 there exists a >0
such that F (J\n)+ ¢>a_  and Wem anz ﬁn' for every n € L . Since

Q‘n < ?\n+1 for every n e 7l we can choose a, in the same way, a_<«

n%

€3 .1, and hence lﬂtm a =a, exists. Surely }Lia’mw ?f( )\n)z a,-¢.

The function lllfll\ is nondecreasing, hence lim mfma £ Hl'fllla,
n

then lllf“l 2 A which _implies that T (A)<a, In this way we

have proved that lxmw F.(a ) F (J\) and hence F ( ) is left con-
tin uous in (0,+w) at those p01nts Ae<0,+m) where

{a: lllfl\\a- AY#+@. It lasts to prove the left continuity at that
Ae (0,+c0) where {a: Wfill 32.7\§=ﬂ. Let A /’/\ and {a: WIifhl >9\}=ﬂ.
If, at least for one noe’n{a: leIlla § is empty, too, then by

the definition of ?f(-) Ff( ?\n)=1 and hence F. ( ) is left con-.
tinuous at A . Let us suppose that for every n e 'Yl {a: \Ilf\\\a>?\ni
is nonempty, i.e. for every A there exists a e(O,l—ao) such

that lllf\“ z A . Since Iﬂfll\ is nondecreasing in (0,1-a ) we
3

can choose {a § as a nondecreasmg sequence, too; ll_gnw a.=a,.

Hence lim Ulfm £ Wit l“ and Hlfl\| z A but it means that the
my o

a,
set da: WE£WN >-.7\} is nonempty which is contrary to the assumpti-

on. So, a number n,e M must exist such that {a: UIfNa zZA 3 =0
o
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