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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
28,3 (1987)

UNIFORMLY NORMAL STRUCTURE AND FIXED POINTS
OF UNIFORMLY LIPSCHITZIAN MAPPINGS

Jarosfaw GORNICKI

~ Abstract: Every Banach space E with the uniformly normal structure,
i.e. N(E)<T, has the following property: if C is a nonempty, bounded, closed
and convex subset of E, ACN is a subset withiﬂanach measure @(A)=1, and if
T:C—>C has the property that its iterates T~ for ie A are Liptschitzian

with the Lipschitz constant k< [N(E)) ™12, then T has a fixed point in C.
This result generalizes fixed point theorems proved by E. Casini and '
E. Maluta [4] and the result proved by M. Kruppel and the present author [91.

Key words and phrases: Chebyshev center, uniformly normal structure,
Banach measure, g -uniformly k-Lipschitzian mappings, w-center of {xn’;with
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1. Introduction. Our aim is to study an open problem on normal type
structures and the fixed point theory which follows from the known results by
K. Goebel:, W.A. Kirk and R.L. Thele [71,18]). The question is whether, in
a Banach space E, reflexivity and normal structure are sufficient to assure,
for suitable k >1, the fixed point property (F.P.P. for short) for ‘«.—unif-
ormly k-Lipschitzian self-mapping, i.e. to assure that for every nonempty,
bounded, closed, convex subset C of E and every map T:C —>C, such that
I"%-T" § & k.« hx-y} for any x,ycC and neA for some AcN with w(A)=1, T
has a fixed point in C.

2. Notation. In this paper, E will always denote an infinite dimensio-
nal real or complex Banach space. For a subset C of E, we write diam(C) for
the diameter of C, cl(C) for the closure of C and co(C) for the convex hull.
of C. To simplify the notation we state the following rules: {xnl will always
denote a bounded sequence in E, and {xnlf will denote the set of elements of

{xn'i with i€ n&j. Finally we denote by 13 the n-dimensional space with p-norm.

3. Uniformly normal structure. We recall the concept of a Chebyshev
center. Let B and C be subsets of a Banach space E and let B be bounded.
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For each x&C define r(x)=sup {ix-yl:yeB} and put r,(C,B)=inf {r(x):xeC3.
Then the possibly empty set {x eC:r(x)=r°(C,B)§is called the Chebyshev cen-
ter of B with respect to C and ro(C,B) the radius of B with respect to C.
It is well known that if C is weakly compact and convex then Chebyshev cen-
ters with respect to C are nonempty, weakly compact and convex.

We now recall that a normed space (or a convex subset) E is said to have
the normal structure if for every nonempty, bounded, convex, non-singleton
subset C of E, the Chebyshev radius of C relative to C, ro(C,C), is strictly
smaller than the diameter of C, i.e. there exists at least one point xeC
with sup {lix-yl:y¢ C}< diam(C). Such a point x is called non-diametral. This
concept was introduced by M.S. Brodskij and D.P. Mil ‘man (1948).

Let € be a Banach space and C a (nonempty) weakly compact, convex subset
of E. A mapping T:C —-C is said to be nonexpansive if

NTx-Ty | £8x-y W for all x,yeC.

It is now known (see D.E. Alspach, A fixed point free nonexpansive map, Proc.
Amer. Math. Soc. 82(1981), 423-424) that, in the absence of further assump-
tions, such a mapping need not have a fixed point. On the other hand, the
classical result of W.A. Kirk (1965) say the following: let C be a nonempty,
weakly compact, convex subset of a Banach space E, and suppose also that C
has the normal structure. Then every nonexpansive mapping T:C —C has a fix-
ed point. (For normal type structures and their applications to the fixed
point theory, we refer to the exhaustive survey of W.A. Kirk [10] and S. Swa-
minathan (15].)

The concept of uniformly normal structure is due to A.A. Gillespie and
B.B. Williams [6]. A Banach space E is said to have the uniformly normal
structure if there exists he (0,1) such that every bounded, closed, convex
subset C of E contains a point z such that sup {lz-xl:xeC¥ & hediam(C). It
is known that every uniformly convex space has the uniformly normal structu-
re, and it was shown in (6] fhat if C is a nonempty, bounded, closed and con-
vex subset of a Banach space with the uniformly normal structure, then every
nonexpansive self-mapping of C has a fixed point. This result is noteworthy
in that it does not require any weak compactness assumption. E. Maluta in
114) showed that the uniformly normal structure implies reflexivity and de-
fined the constant of the uniformity of normal structure in the following
way:

Definition 3.1. We set

ro(C,C) C a nonempty, bounded, non-singleton, convex

~
N(E):= sup diam(C) ' subset of E }
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Hence N(E)<1 characterizes the uniformly normal structure. Of course N(E )£l
and N(E)= 7 if E= (R y heil), but NeE) > -2- if the dimension of E is greater
In any Hilbert space and in any two-dimensional Banach space NE)= Y-J(E)
where J(E) is the Jung constant of E. As a consequence we obtain’ N(l")-

(m\ for Euclidean spaces 12, and N(lz) 2'1/2

We now define a class of James spaces which has recently been the object
of a very intensive study.

Definition 3.2. Let f>1 and let Eﬁ be the real Hilbert space 1 re-
normed according to |x|q =max {“xll2 B- ixll, % where I« I, denotes the 12-
norm and ke B, the sup-norm of 1% space.

Since ||x024|x|Fa £ (1+8) - Ixll,, the space Eg is not only reflexive but
also superreflexive, and moreover it is known that for Bz? , Ep fails to
have a normal structure (EF has a normal structure iff g< 21/ 2y, Indeed,
consider the set

C= €x=(x1,x2,...)e E{;:szo for all je and lezéli.

For pz 21/2, diam(C)=3 . Now let e, be the n-th unit vector in L2. Since
lim Ix—en|(s =8 for each x in C, we see that all points of C are diametral.

J.B. Baillon and R. Schoneberg (2] proved that James spaces Eg for B<2
have the F.P.P. for nonexpansive self-mapping. For [3 > 2, this problem is
still open. E. Casini and E. Maluta [4] proved

1/2

Theorem 3.3. For 1£ [5 < 21/2, ﬁ(Eﬂ)= B2 and, as a consequence,

for ﬁ< 2 the James space Eﬁ has the uniformly normal structure.

4. Short history of uniformly Lipschitz mappings

Example 4.1. Let B={xc1%: x| £1% and k>1. The mapping T:B —B de-
fined by T(x},x,,...)=(t(1 - 1xW,x;,%9,...), where t is a constant such that
t<1 and 0<té(k2 i 12 , satisfies ATx-Tyl £ k+ ix-yl for all x,yeB, but
it is fixed point free.

This example shows that the Kirk s theorem may fail to hold for the class
of mappings T having a Lipschitz constant k> 1, no matter how near to 1 we
choose k. A class intermediate between these and the nonexpansive mappings.
is provided by the following. A mapping 7:C —C, CcE, is said to be unif-
ormly k-Lipschitz (k>1) if for each x,y eC

M%-T" h £ ke lix-yll, n=1,2,... .

In (8], there is proved
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Theorem 4.2. (Goebel, Kirk, Thale, 1974.) Let E be a Banach space with
the characteristic of convexity of E, ¢ (E)=sup {&eL[0,2]: di(e)=0}<1.
Then there exists a constant 7> 1 such that the uniformly, k-Lipschitz ma-
ppings have the F.P.P. if k < .

The constant -y is derived from the modulus of convexity of E, that is,
the function o:[0,2] —-10,2) defined as follows:

d}_(e)=1nr {1- }2" Ixeyh s Ax <1, Nylh<l, Ix-yll = &}.

It was shown in [8] that Theorem 4.2 holds if 7 is taken to be the solution
of the equation x«(1- d'é(x'l))=l. In a Hilbert space H this yields 7=
='%.51/ 2 and in LP, p22, ’a'p=(1+2‘p)1/ P. Recently, T.C. Lim [13) has defined

the extended constant ?fp in-LP spaces for p>2. Let o¢ be the unique soluti-
on of the equation

(P-2)xPLe(p-1)xP"2-1=0, 04x£1,
p-1 \1/p
then the extended constant "f'"p in LP is ?p= (1+(—_Ti+:)p' ) » P>2. For ex-
+
ample, for p=3 and 4, we have d.}=21/2-1 and y= ,12. and

Fy=-2H13 > g3,

74=( %)1/4 > 74=(1’2-4)1/4_
In a subsequent development, E.A. Lifschitz [12]) initiated a more. topological
approach and considexed uniformly Lipschitz mappings in metric spaces. Inste-

ad of using the modulus of convexity Lifschitz associated, with each metric
space (M,d), a constant 2¢(M) defined as follows:

2(M)=sup { b>0:“_\;{' ~x,QM }/;0 [dix,y)>r =>

’éz}/MB(x,br)n B(y,ar)c B)z,r)}%,
where B(x,r) denotes the closed ball of radius r centered at x.
In general, 2¢(M)z1. If E is a Banach space, then
u.o(E)=1nf $9(C):CcE is nonempty, bounded, closed, convex > 1
itf e (E)<1 [5). In any Hilbert space 3 (H)22"/2, Lifschitz proved that:
if (M,d) is a bounded, complete metric space and if T:M—>M is uniformly

k-Lipschitz with k <a¢(M), then T has a fixed point in M. Lifschitz theorem
combined with Theorem 4.2 implies

Theorem a4.3. (Lifschitz, 1975.) Every Hilbert space has the F.P.P. for
unifornly k-Lipschitz mappings with k<21/2.
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The first example of a fixed point free uniformly Lipschitz mapping in 12
(with k=2) was given in [8]. Lifschitz gave an example of a uniformly g -
Lipschitz self-mapping of the unit ball of 12 which is fixed point free
(ct. [1)).

Example 4.4. (Lifschitz, 1975.) Let £=12 with the usual norm lixll =
00
=(,Z, Ix;1? and 8= {xe1%: kx| £ 13. Define T:B—> B by

; '{ (cos ﬂ'zh(-l) e+ (1&“ sin %M) oPx, x40,
X =

el , %=0,

where P is the right shift: P(x),xp,...)=(0,x},Xp,...).

For any two points x$y in B, consider the curve p(t)=T((1-t)y+tx),
04£t41. A computation shows that Ip (t)l < ’.}. Ix-y!l for all t. Therefore
Nx-Ty N & f;\\p'(t)lldt< g Ix-yll. Since P is an isometry and Tn'=p“'1° T

is uniformly Lipschitz with Lipschitz constant ’7' But it is fixed point free:
if x=Tx, then llx\ =1 and x=Px, which is im possible.

5. A Banach measure and further results. Let AcN. A number of elem-

entsls of the set A will be denoted by |A| and Ny:= {1,2,...,n%, 8=
AnN
n

1= ——— for n=1,2,... . The sequence 4sn§ is bounded.

Definition 5.1 [11). A Banach measure of a set ACN is a number

(A(A):: L’l;y Sp-
This measure has the following properties [9]:
1) 0 cu(M £1,
2) w(N=1,

3) (AnB=g) => (u(AUB)=w(A)+ B),
4) (@(A)=1) => ((AnB)=(B)),
5)  @(A+1)= @A), where A+l:= {x+1:x €A%,

6) wlsh)= % - @(A), where sA:= {sx:xeAl}, seN,
7 (= foy,cy,.. b NALm '3‘; = r)=> (@(C)=r), where A,BCN.,
Definition 5.2. Let AcN and a Banach measure @(A)=1. We shall say

that T:C—>C is w-uniformly k-Lipschitz if there exists a constant k>1
such that for all n€A we have

B1T™%-T" N £ k- ixzy Il for each x,yeC.

Recently M. Kriippel and the present author proved {91:
- 485 -



Theorem 5.3. Let E be a uniformly convex Banach space. Then there ex-
ists a constant ~ > 1 satisfying y (1- JE('J'_l))=1 such that w~-uniformly
k-Lipschitz mappings have the F.P.P. if k < o«

If H is a Hilb ert space then Theorem 5.3 is true for k <'XH=21/2 (1.

6. Main result on fixed point theory. Let -i.xnl be a bounded sequence in
a Banach space (E, I+ i) and let C be a closed, convex subset of E. Consider
the functional r, :E~—>[0,+00) defined by '

r(w(x,ixn‘i,)dnf {SeR:e/>\o (u.[n:lxn-x < s+sl=13

and call it the w-radius of {x } in x. Let
r&(C,{xn§)=inf{ry_(x,-ixnl):xeC},
‘C(\,,(C,ixnl,)’—{x eC:rH(x,{xn’ﬁ):tm(C,{xnl)

and call them: @-radius of {x } with respect to C, ¢ -center of {xn( with
respect to C, respectively.

Lemma 6.1. Let E be a Banach space with NE)<1. Then, for every bound-
ed sequence %xn‘;, there exists a point z € clco {xnl, such that

(1) re(z,4x ) £NE)dix3),
(ii) %é\g Nz-yl & re(y,dx3),
where d({xn’s)=121(sup hx -x f:n,m2 k).
Proof. For each p>1, set Ap:clco -Exni‘: and set A= 1:64 Ap. Since each

A_is weakly compact (because E is reflexive) then the set ‘CM(AD,{x n}),

A,%“(A,anl) is nonempty. For each p, choose z_ in ‘€M(A ,{xnﬁ) and consi-

der a weakly convergent subsequence of izpk, say {zp }. Call z its weak lim-
n

it. Taking into account the monotonicity of the sequence {Ap’x, we obtain

that zeA. To prove that (i) holds for z, we observe that r‘u,(zp,{xng) is a

monotone decreasing sequence which has rt.,,(A,{xn}) as an upper bound. Moreo-

ver, since Tw is weakly lower semicontinuous, we have

11;3 rc‘,(zp,«ixn’s)ﬂ%'m rc,(zpj.ixnk)z ra(z, 50 zr, (A dx ).

Hence
1}{? r“(zp,’an’s)=r‘w(z,-fxn1)=r@,(A,-£xn’s).

Since, for any p,

LRGSR Q,,(zp,&x,,lx";;) () .a({xn&‘;," )=N(E).d(ix,3),

we obtain rc&(z,{xn’s)éﬁ(f)’d({"n})'
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Observe that any point z€ A satisfies (ii). In fact z belongs to Ap for each
p, hence

\\z-y\iéliﬂv(sup Lhx-y h:x eAp'ﬁ)é.r“(y,-ixn';). Q.E.D.

Theorem 6.2. Every Banach space E which has the uniformly normal struc-
ture has the F.P.P. for w-uniformly k-Lipschitz mappings with k<[N(EX™1/2,

Proof. Let C be a nonempty, closed, convex, bounded subset of E. Let T:
:C—> C be u-uniformly k-Lipschitz with k<[ﬁ(£)]'1/2. For any xeC, consi-
der the sequence $T"x} and let z(x) be the point z of Lemma 6.1 corresponding

to the sequence {T"x}. Set p(x)=r“(x,{Tnx'§). By the condition (i) of the
Lemma 6.1 we have

(1) re‘_(z,{Tnxl)é'ﬁ(E)-d({Tnxi)é NCE)esup 40T"x-T"xk:n,m>0F &
£ NE)-k-sup §0Tix-xN:1> 0% &
£ N(E)k-p(x).

Moreover, for N>1 we have

(2) rM(TNZ,“TnX P=inf {Sc R: £/>\7 @ln: llT"x-LNz l<s+el=1% <
£ksinf§{Se R:e/>\o(.¢[n: W Nz l<s+ed =13 =

=ker g (z 5T,
Condition (ii) of Lemma 6.1 yields, by (1) and (2),

() p@£kEREpOO= - p() with § < 1.

Define a sequence {xnl in the following way: X1 is any point of C, xml:z(xn).
Then {xn§ is a Cauchy sequence. In fact, we have
m
I oy B e lx - Tix N+ BT ox 0 2
m J Z
£l =T X Lap(x ) £ 1 (x g AT D40(x ) £

£ kN(ED+p(x,))+p(x)=(1+kN(ED)+p(x,,) -
Hence, by (3),

U7X & 1k RCED) p(x, ) & (1k-REED) + § Mopxy).
Let y=13‘|'n X Then Ty=y, because
NTy-yi 2 ly-xn“ + 4 X~ Tx L+ NTx -Ty | £
£ly-xo N+ Mx-Tx W kelx -y Bed1+k) \\xn—yl +(x) £
& (1+k) . “xn-y N+ gn-p(xl)v» 0asn-—>c. Q.E.D.

7. Remarks and conseguences.

I. It was proved in [31 that N(E) 1- dg(D), thus g,(E)<1 implies
- 487 -




the uniformly normal structure, therefore Theorem 6.2 generalizes Theorem 5.3
and Theorem 4.2.
II. Combining Theorems 3.3 and 6.2, we have

Corollary 7.1. For f< 21/2, E(, has the F.P.P. for w-uniformly k-Lip-
schitz mappings with k< 21/4 p~1/2,

III. Lemma 7.2. Let E be a Banach space with the uniformly normal struc-
ture, t.e. N(E)<1, and let ~ > 1 satisfy 7 (1- dp(y ™1 0)=1. It NR) < ¢
then ¥< o= [TJ'(E)]'I/Z.

Proof. Since f£(x)=x.(1- d"E(x'l)) is an increasing function in [1,2], it

is enough to show that f([ﬁ(E)]'1/2)>1 for N(E) < % From the Nordlander ine-
quality dp(e)&l1-(1- %--52)1/2 we obtain

t(AREN VD2 (@) - HY2>1 tor Fie) < . Q.ED.

Corollary 7.3. For 14 3 <4242, the condition k<[R(E))™V/2 is weaker
than k <, where -y is the unique solution of x(1- E(x°1))=1.

8. _Open problems
1. Is the Lifschitz theorem true for 21724k < g

2. Do James spaces E‘3 have the F.P.P, for 3>27?
N(LP) = 2
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