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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
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ON THE NUMBER OF COMPACT SUBSETS 
IN TOPOLOGICAL GROUPS 

O.T. ALAS 

Abstract; Results on the number of compact subsets in topological groups 
are proved. Examples are provided. 

Key words; Pseudocharacter, boundedness number, weak Lindelof number. 

Classification; 54A25 

Notation and terminology. Let (G,t) be a nondiscrete Hausdorff group, 

e be its neutral element and CK? denote the set of all compact subsets of G. 

For any set X, |X| denotes the cardinality of X; and, for any topological 

space X, f(X)9 9f,(X), w(X), c(X), wL(X) denote the pseudocharacter, charac­

ter, weight, cellularity, weak Lindelof number of X, respectively. 

1. Number of compact subsets 

Definition (due to I. Juh^sz). The boundedness number of (G,n.O - deno­

ted by bo(G) - is the smallest infinite cardinal number oc such that for any 

open neighborhood V of e, there is a subset A of G, with |A| *£ oe- , so that 

V.A=G. 

Notice that this notion is different from total-^-boundedness introduced 

by Comfort in D L 

Theorem 1. The following inequalities hold y(G)&\G\&\ % U b o ( G ) ^ G ) . 

Proof. There is a collection of open symmetric neighborhoods of e, V , 

such that | V |= y(G) and fMV.V|V e Vi= {el. For each V c V fix a subset 

Ay of G such that V.A.,=G and |Av|nlbo(G). Now the proof follows the one which 

appears in 111, since C\ ( VJ Vx.Vx)= A , the diagonal of GxG, 
VeV xeAy 
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iGl^bo(G)1^ ' and any compact subset of G has density not bigger than *f(G). 

Remarks. 1) As a matter of fact, the proof above shows that the set of 

all closed subsets of G whose densities do not exceed if (G) has cardinality 

not bigger than bo(G)^ G ). 

2) It is easv to see that bo(G)^wt(G)-£c(G) (hence, bo(G)^G)= 

=wL(G)^G)=c(G)^G)) and w(G)=bo(G). t(G). 

3) If bo(G) is either a successor cardinal or a singular cardinal, then 

o(G) °^ ^=o(G), where o(G) denotes the number of open sets in G. 

Corollary 1. If b o ( 6 ) . 4 2 ^ G ) , then y < G > - l ^ k 2 Y ( G \ 

Learn. If K is a nonempty compact subset of G, then y(K,G)-^ y(G). 

Proof. Let V be a collection of symmetric open neighborhoods of e, clo­

sed under finite intersections. Furthermore we shall assume that \V\' \f(G) 
and fMcl(V)|V ft1/? = -Ce}. Then CKV.KJV 6 1Tl=K; indeed, let ytfK, then 
there is V c V such that Vyr>K=0 (otherwise, VynK4-0, W elf and since K 

is compact, n-Ccl(Vy)nK|V & V\mwould be nonempty, which is impossible). 

But if VynK*0, then y4V.K. 

Corollary 2. If bo(G)-- .2^ and there is a compact subset K of G such 

that y(K,G)<v(G), then |#|--2*G). 

Proof. If there is a nonempty compact subset K of G such that y(KtG) < 

< Y(6), then for each xcK, yfiGh Y(x,G) ̂ y(x,K) . if(K,G). It follows from 

Cech-PospfSil's theorem that |K|>2^ G ), hence |3C|=2^G). 

Theorem 2. (GCH) If G is pseudocompact, then \X\ °*\X\. 

Proof. S^nce G is infinite and pseudocompact, then |G|>2 °. We may as­

sume that if oo is a cardinal number such that aoZ 2 °, cf (oc-)-^.^, then 

oc * oc . 

From Theorem 1 and since bo(G)=i-;o, either |3CI*2^
G) or | G H # | s y(G). 

In the first case there is nothing to prove; let us consider that |G|=|3C|= 
* yf(G)» From van Douwen's theorem 1.1 (L43) if cf(|G|)*y( , there is a car­
dinal ^ < | G | , such that Y<G)*-w(G)£2**/. But |G|22^, hence I G H - X , - ^ 
and the proof is completed. 

Lanm. If V is an open symmetric neigjiborhood of e and 3C(cl(V)) deno­

tes the set of all compact subsets of cl(V), then |3C|=bo(G)|3C (cl(V)|. 
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Proof. It is immediate that |3C|>bo(G) ancT \X\2 |3C(cl(V))|: On the 

other hand, let B be a subset of G such that bo(G)£|B| and V.B=G. For each 

nonempty finite subset F of B let *3Cp denote the set of all compact subsets 

of G contained in V.F. The function from # F into TTi.#((cl V)y)|ye F| which 

assigns to each K c %^ the point (clVynK) p is infective. But 

% = U4^CF|04-FcB, finite} and | *K(cl Vy)| = | 3C(cl V)|, hence 

| X | - = b o ( G ) | . X ( c l V)|, which completes the proof. 

Remark. The GCH cannot be avoided in Theorem 2, since I. JuhSsz, under 

CH and using forcing arguments, obtained an HFD subgroup of {0,1] , such that 

Ittl^+IXl. 

2. Examples 

Example 1. (15] orC2l, page 1170.) Under M x=2 and $2<2 there is 

a hereditarily separable pseudocompact group G with |G|=|3C|= K 2 (which is 

not a power of 2, but .#2 °= J O " 

^1 
Example 2. Let G be the topological subgroup of 40,1} whose members 

are the ( x ^ ) ^ ^ such that 4oC£ ^i^^'1^ is courrtable- G is countably com-

1 -*n *i 
pact, *y(G> # v |G|=2 ° and |3C|=2 \ (Notice that the set i(x<3C)oC£4> e 

eG|x =1 for at most one oc e OJ is compact and has just one accumulation 

point.) 

Exanple 3. Let us consider -{0,11 with the 6^--topology (each factor 

with the discrete topology). For each f3 e co^, let y^ be the point ( x ^ ^ ^ 

such that x^-4, Voc •< ft and xoC=0, otherwise. Denote by (5 the topological 

subgroup generated by the y^ . Then bo(G)= .tfQ and wL(G)= -K^. (Notice that 

no countable subcollection of 4 pr^WOl)] § * ^ J , where pr^ denotes the 

projection for each ££<*>,, has its union dense in G.) 

Exanple 4. Let oc be an infinite cardinal such that oC = oc . Comfort 

proved that there is a dense countably compact subgroup G^ of {0,1$ such 

that |G# |= 06 . Denoting by G the topological product group J x G ^ , where 

£L denotes the subgroup of -10,1} such that its elements have at most coun­

tably many coordinates different from 0, we have that |G|= cc , if (G)= oc and 

w(G)=|cfC|=20C'. Notice that G is countably compact. 
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Example 5. Let oc be an infinite cardinal number, whose cofinality is /3 

and let ( ° 0 . | f i A ^e a strictly increasing family of cardinals such that 

oc = sup oc.. For each i e. /3 let G. be a discrete topological group with 

|G-|= 06.. The topological product group G= -^TA0. has a boundedness number 

equal to oo , y(G)= /I and l^^oc^. 
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