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ON THE NUMBER OF COMPACT SUBSETS
IN TOPOLOGICAL GROUPS

0.T. ALAS

Abstract: Results on the number of compact subsets in topological groups
are proved. Examples are provided.
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Notation and terminology. Let (G, ) be a nondiscrete Hausdorff group,
e be its neutral element and X denote the set of all compact subsets-of G.
For any set X, |X| denotes the cardinality of X; and, for any topological
space X, ¥(X), x(X), w(X), c(X), wL(X) denote the pseudocharacter, charac-
ter, weight, cellularity, weak Lindelof number of X, respectively.

1. Number of compact subsets

Definition (due to I. Juhdsz). The boundedness number of (G,~) - deno-
ted by bo(G) - is the smallest infinite cardinal number o¢ such that for any
open neighborhood V of e, there is a subset A of G, with |A| £ &¢ , so that
V.A=G.

Notice that this notion is different from total- 3-boundedness introduced
by Comfort in [31].

Theorem 1. The following inequalities hold y(G)& 6l<| K |« bo(G)"’(G).

Proof. There is a collection of open symmetric neighborhoods of e, v,
such that | U |= y(G) and N4V.V|V € V%= {el. For each V& V" fix a subset
AV of G such that V.AV=G and |AV|ébo(G). Now the proof follows the one which

appears in [1], since () ( U Vx.Vx)= A , the diagonal of GxG,
Vel xeAy
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6] £ bo(G)V(G) and any compact subset of G has density not bigger than y(G).

Remarks. 1) As a matter of fact, the proof above shows that the set of
all closed subsets of G whose densities do not exceed ¥(G) has cardinality
not bigger than bo(G)V(G).

2) It is easy to see that bo(G)&w.(G)<£c(G) (hence, bo(6)¥(E)=
W (6)Y®=c(6)Y®) and w(B)=bo(B) . 1(5).

3) 1If bo(G) is either a successor cardinal or a singular cardinal, then
o(G)bO(G)=o(G), where o(G) denotes the number of open sets in G.

Corollary 1. 1f bo(®)<¥(®, then (6)<|¥|<2¥®,

Lesma. If K is a nonempty compact subset of G, then ~(K,G) £ y(G).

Proot. Let 1V be a collection of symmetric open neighborhoods of e, clo-
sed under finite intersections. Furthermore we shall assume that |V |= vy(G)
and Nicl(V)|V ¢ V3= {e}. Then N{V.K|V e ¥#=K; indeed, let y 4K, then
there is V e V' such that VynK=@ (otherwise, Vyn K@, ¥V € V" and since K
is compact, N {cl(Vy)nK|V e V¥ would be nonempty, which is impossible).

But if VynK=@, then y ¢V.K.

Corollary 2. If bo(G)éﬂ(G) and there is a compact subset K of G such
that y(K,6) < (G), then ||=2%C).

Proof. If there is a nonempty compact subset K of G such that y(K,G) <

< y(B), then for each xeK, ¥(G)=¥(x,6) £y(x,K) . y(K,6). It follows from
flech-Pospf8il’s theorem that [K|Z 2¥®), hence |X|=2¥E) .

w°

Theorew 2. (GCH) 1If G is pseudocompact, then |K| %=|X].

Proof. Since G is infinite and pseudocompact, tRen |G| 2250, We may as-
sume that if o is a cardinal number such that o¢c Z 2 °, cf (o(.)*KD, then
&€ = o .

From Theorem 1 and since bo(6)= %, either |X1=2¥®) o [5]=|%|= y(5).
In the first case there is nothing to prove; let us consider that |G|=|3|=
= 4 (G). From van Douwen’s theorem 1.1 ([4]) if cf(IGI)ay\o, there is a car-

dinal m < |G|, such that y(G)<w(G) £2%. But |G|=Z2% hence |6]=|%K|=2%
and the proof is completed.

Lema. If V is an open symmetric neighborhood of e and (cl(V)) deno-
tes the set of all compact subsets of cl(V), then |3C|=bo([;)|'x GIOIR
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Proof. It is immediate that |¥ |2 bo(G) and |K|2 |3 (c1(V))|: On the
other hand, let B be a subset of G such that bo(G)2 |B| and V.B=G. For each
nonempty finite subset F of B let 'JCF denote the set of all compact subsets
of G contained in V.F. The function from JCF into TT{¥ ((cl V)y)|ye F} which
assigns to each K & :‘ICF the point (clVynK) oF is injective. But
K=U4XK |B+FcB, tinite} and | K (cl Vy)|=| K(cl V)|, hence
| %] £ bo(6)| K(cl V)|, which completes the proof.

Remark. The GCH cannot be avoided in Theorem 2, since I. Juhdsz, under
.

CH and using forcing arguments, obtained an HFD subgroup of {0,13} 1, such that
5
K| O+|x%].

2. Examples

® K.
Example 1. ([5] or(2], page 1170.) Under %,=2 0 and #,<2 1'there is
a hereditarily separable pseudocompact group G with |G|=|X|= #, (which is
K3
not a power of 2, but “"2 0. .Kz).
@
Example 2. Let G be the topological subgroup of £0,1% 1 whose members

are the (x“) such that {« & wllx& =1} is countable. G is countably com-

x6w
1

W $#
pact, y(6)= %, |6]=2 ° and |XK|=2 L (Notice that the set ~i(><’~’c)°“.o1 =

eslx& =1 for at most one x € @y is compact and has just one accumulation
point.)

w.
Example 3. Let us consider {0,1% 1 with the Gy -topology (each factor
with the discrete topology). For each 3 e ., let ys be the point (xaC )d“‘i

such that x =1, Voo < f3 and Xoc =0, otherwise. Denote by G the topological
subgroup generated by the ygz . Then bo(G)= # and wL(G)= K. (Notice that
no countable subcollection of { prg' 1({0§)| £ e ‘01}, where prg denotes the
projection for each § € @, has its union dense in G.)

+o

Example 4. Let oc be an infinite cardinal such that & "= & . anmfort
proved that there is a dense countably compact subgroup G, of {0,1}2 such
that IG* |= e . Denoting by G the topological product group X x G* , where
Z  denotes the subgroup of {0,1}“’ such that its elements have at most coun-
tably many coordinates different from 0, we have that |G|= o , y(G)= e and
w(G)=|K|=2%. Notice that G is countably compact.
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Example 5. Let o be an infinite cardinal number, whose cofinality is (3
and let (c‘i)iet3 be a strictly increasing family of cardinals such that
&« = %93 o For each i e 8 1let Gi be a discrete topological group with
|G1|= oy The topological product group G=

equal to o , W(G)=p and |¥|= <P

.TT_6. has a boundedness number
2ef 1
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