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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,4(1987) 

ON THE REFLECTIVE HULL PROBLEM 
Michel HUBERT 

Abstract: It is well-known that if a subcategory of a sufficiently nice 
category A has a cowell-powered epireflective hull, then it has a reflec­
tive hull in ..A .A recent paper of R.E. Hoffmann shows that this amounts*to 
characterize cowell-powered reflective subcategories in A . We improve 
this result by dealing with a more general class of subcategories. The ex­
tension is shown to be particularly relevant in the category of topological 
spaces through a connection with the work of J.M. Harvey. 

Key words and phrases; Reflective subcategories, epireflective hull. 
Classification; 18A40 

Let :& be a subcategory (always assumed to be full and isomorphism-clos­
ed) of a well-complete (i.e. well-powered and complete) and cowell-powered 
category A . The following facts are well-known (see £ 23,£33,£4}): 

(1) Any subcategory of A has an epireflective hull. 
(2) A subcategory 3) of A with 3 £25 £ 5 (where 35 is the epireflec­

tive hull of 33 in A) is reflective in A if and only if it is epireflecti­
ve in Hg. 

(3) 35* is well-complete. 
From this it follows that 

(4) If 35is cowell-powered, then % has a reflective hull in A . 

This condition on 3S obviously calls for an improvement: it is too 
unstable (it depends too heavily on % i t s e l f ) and it is suspected to be rat­
her strong (for an example of an epireflective subcategory of tJofi, , the ca­
tegory of topological spaces which is not cowell-powered, see L 2 3 ) . The 
first result of this paper gives a refinement of ( 1 ) . This leads to a corres­
ponding improvement of ( 4 ) . The fact that this is a significant improvement 
is shown through a connection with a recent paper of 3.M. Harvey ( £ l j ) . Note 
that 3. Adamek and 3. Rosicky have found two reflective subcategories of a 
well and cowell-complete category having their intersection not reflective, 
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and hence having no reflective hull (see £5}). 

First, we need a "local" version of cowell-poweredness. If fo is a sub­
category of *£ , we say that ̂  is .B-CQwell~powered if any object of ̂ f is 
the domain of a representative set of epimorphisms with codomains in 3i . De­
note by Es(3) (respectively P({8)) the subcategory of *€ having as objects 
the extremal subobjects (resp. the products) of those in J3 . The "local 
form" of (1) says that if Kf is an Es(P(3}))-cowell-powered well-complete 
category, then $ has an epireflective hull (which has Es(P(3D) as its class 
of objects). We improve this result by removing the "P" part: 

Theorem. Let ft be a subcategory of a well-complete category 5?. If 
*£ is Es(& )-cowell-powered, then & has an epireflective hull (which has 
has Es(P(i.B)) as its class of objects). 

Proof. Remark that ̂ f is an (Epi, Extremal mono) category (see D J ) . 
Any epireflective subcategory of *£ being closed for products and extremal 
subobjects, we have only to show that Es(P(&)) is epireflective. 

For an object c of *£ , consider a representative set 
4fT.c~*(lrl3'cr

iSof the epimorphisms from c to an object of Es(3J), 
and <VV*r=ek!C-^d~^V 
the (Epi, Extremal mono)~factorization of the induced morphism from c to the 
product JJpd-f « We prove that k is the required reflection morphism. 

Let h:c—#c' be a morphism with c' in Es(P(&)) and hjh^.c —• c"--#c 
its (Epi, Extremal mono)-factorization, c" being also in Es(P(i), there ex­
ist a set D and an extremal mono m.c" —-*JJ^b- with each b^* in 3& . For 

each tf% 0, let t^sc"-—> c^ —frb^ be the (Epi, Extremal mono)-factori­
zation of py-m, where p ^ is the canonical projection JJJ-, ty —• b ^ . Each 
8<fhl» btin0 an epl witn codomain in EsCB), can be identified (via an iso­
morphism) with f ^y for some x <«**)* **• 

Then P ^ ) * < - V > r « r *V hl (where PrQr) is the canonical projection 
rVr^r~~*%Qtf*^- k ^ " 0 ™ ** ar* m •* extremal mono, the equality 
( < V * P ^ ^ i"*»» a unique A*d->c* such thtt Ak=h amJ 

•*"«V* «V<*W* •• *«»• k is «*• h 2 * is unique such that 
ru&k»h. 
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Corollary. Let & be a subcategory of a well-complete cowell-powered 

category A such that 3S (the epireflective hull of 5J ) is 33-cowell-power­

ed. Then Hi is cowell-powered and 

a) 3 is closed for products and extremal subobjects in 3f if and only 

if 35 is reflective in A . In this case 3J is cowell-powered. 

b) If 33 is the intersection of reflective subcategories of A , then 

it is reflective in A and ;35 is cowell-powered. 

c) If 35 is Es((B)-cowell-powered, then J9 has a reflective hull. 

Proof. The inclusion of A In 35 preserves epimorphisms (see £4.3 for 

example), from which it follows that $ is cowell-powered. 

a) (<«*) This follows easily from the facts that 5 is a (Epi, Extre­

mal mono) category and 31 is epireflective in 35 . 

( « M ^ ) In Theorem 1, take <£ * 35 • Inen the equalities £ s ( 3 ) * $ * 

=Es(P(rB)) imply the epireflectivity of 3J in 35 , and hence the reflecti­

vity of A in A . The cowell-poweredness of 3F follows from C43. 

b) Let & = n &T with each %^ reflective in A , Then % A JBLfor 

each f « P , and this, with the fact that they are both reflective in A , 

implies that an extremal mono of 35 is an extremal mono of iffy for each 

>f # r • *B r being closed for the extremal subobjects in 3L, , we conclude 

that & is closed for the extremal subobjects of M . As it is clearly clo­

sed for products, we have the result by part a). 

c) This follows from the theorem and points (2) and (3) above. -* 

To make the connection with the terminology and results of til, we 
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must recall some of its definitions: given a subcategory & of JL , we will 

say that a moronism f:Y—*Y in Jl is J?-genera ting and that 3 is f-generated 

if for any r,s:Yr$ Z in A with Z in 4J and such that rf=sf, we have r=s; a 

^-generating morphism with co-domain in & is a $-epi; Jl is cowell-power-

ing (in A ) if each object in A is the domain of a representative set of 

&-epis; $ (respectively 33,) is the maximal (full) subcategory of A which 

is f-generated for any ft-epi (resp. A -generating) f. The following facts 

are obvious or follow immediately from the remarks at the beginning of £lj: 

i) A is closed under extremal subobjects in 35 if and only if it is 

closed under extremal subobjects in 33- (resp. ^ 3 Q ) . 

ii) 3 is cowell-powering subcategory of Jl if and only if 35 (resp. 

S p J S L ) is &-cowell-powered. 

With this in mind, we immediately obtain the proposition 1, the corolla­

ry and the proposition 3 of HI respectively from parts a), b) and c) of our 

corollary. 

There are certain advantages in considering 35 , because it is Es(P(©)) 

(in well-complete cowell-powered categories), but it is the relative insensi-

tivity of % and # , to changes in $1 , pointed out by Harvey through seve­

ral examples in $rfv , that shows that the weakening of the condition " 3J is 

cowell-powered" to " 3$ is Es( 35 )-cowell-powered" is a significant one. 

R e f e r e n c e s 

[1] 3.M. HARVEY: Reflective subcategories, Illinois 3. of Math. Vol.29 
(1985),no.3, 365-369. 

123 H. HERRLICH: Epireflective subcategories of Top need not be cowell-powe­
red, Comment. Math. Univ. Carolinae 16(1975), 713-716. 

l3j H. HERRLICH, 6.E. STRECKER: Category Theory, Heldermann Verlag,Berlin 
1979. 

143 R.E. HOFFMANN: Cowell-powered reflective subcategories, Proc. Amer. Math 

Soc. 90(1984), 45-46. 

E5J 6.M. KELLY: On the ordered set of reflective subcategories, Sydney Cate­
gory Seminar Reports, August 1986. 

Department of Mathematics Departement de Mathematiques 
University of Zambia University Laval 
Lusaka 32379 Quebec, P.Q. 
Zambia Canada 

(Oblatum 7.5. 1986, revisum 30.6. 1987) 

- 606 -


		webmaster@dml.cz
	2012-04-28T14:52:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




