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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
28,4(1987)

ON THE MULTIPLE BIRKHOFF RECURRENCE THEOREM IN DYNAMICS
Bohuslav BALCAR, Pavel KALASEK and Scott W. WILLIAMSD)

Abstract: We prove the following extension of the Furstenberg-Weiss
Multiple Birkhoff Recurrence Theorem: If the weight of a compact space X is
less than p and if ¥ is a countable commuting set of maps from X to X,

then {X,%J has a multiple recurrent point. We also show that even fof com-
pact connected first countable spaces, the previous result is false if the
weight is lifted.

Key words: Dynamical system, recurrent point, weight of space.
Classification: 54H20, 54A25, 03E65

§ 0. Introduction. In this paper space means compact Hausdorff topolo-
gical space. When X is a space, C(X,X) denotes the semigroup under composi-
tion of all continuous functions from X into X. A family ¢ €C(X,X) is said
to be commuting whenever ¥f,g ¢ &f , fog=gof.

For us, a (dynamical) system will be a pair [X, ¥, where X#@ is a
space and @4 F<C(X,X). In the case ¥= {f}, the system IX,¥] denoted by
[X,f] is traditionally called a discrete (dynamical) system.

A point x¢ X is said to be multiple recurrent in the system [X,¥] pro-
vided that for each neighbourhood U of x, and for each finite set G € ¥,

there is an n€N (the positive integers) such that VgeG, gn(x)su. In the
discrete system case, a multiple recurrent point is exactly that which is u-
sually called a recurrent point. It is G. Birkhoff’'s theorem that each disc-

rete system has a recurrent point (see [Bi] or [Ful,p. 20). H. Furstenberg
and B. Weiss have proved the Multiple Birkhoff Recurrence Theorem (MBR).
If X is a compact metric space and if ¢ is finite and commuting, then [X,¥]
has a multiple recurrent point (see FW ).

The main result shows the possibilities how to extend the MBR.

1) Partially supported by N.S.F. Grant R 118239633
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In 2.3 we prove the following:
For a compact space X with w(X)2 p and a countable commuting subset
¢q C(X,X) there is a multiple recurrent point in the system [X, 1,

We also present an exemple (3.1) showing that some restrictions to the
space X are necessary even for finite <& . Nevertheless, we obtain (2.5) a
slightly weaker result true for all systems [X, ] with & commuting.

Notation: < =Nu{fo}. When X is a set, |X| denotes the cardinality of
X. When X is a space, the weight of X,w(X) is the minimum cardinality of an
open base for the topology of X. A family D of non-empty open sets of a spa-
ce X is called a Jr-base provided that each non-empty open set contains a
member of D. The well known cardinal characteristic p concerns families of
subsets of <w.

penin §1A]: A & [@1° NA'6Lwl%or each tintte A'% A and
VB e [wl3AaA) [B-A|- .
Equivalently, p is the minimum cardinality possessed by a neighbourhood base
of a non-empty nowhere dense subset of (3&- ¢ .It is F. Hausdorff’s classic-
sl result that p2w,. Very important for us is Bell’'s Theorem [Bel:
Each compact separable space X cannot be covered by less than p nowhere den-
se subsets.

§ 1. Preliminaries on minimal sets and systems. Suppose [X,¥] is a sy-
stem. A set A& X 1s said to be ipvariant in [X,¥] provided that A is non-em~
pty and for each f @ & is f[A]l&A.

A set M&X is said to be minimal in the system [X, ] provided it is a
minimal element in the partially ordered, by inclusion, set of all closed
invariant sets. When X is minimal in [X, ¥, then [X, <’] is said to be a mi-
nimal system. Suppose ¢ &C(X,X) is arbitrary, then (&> denotes the set of
all p&C(X,X) such that g is the composition of finitely many members of ¥,
so {¢> is a semigroup under composition.

Although we do not in general assume (as Furstenberg) that ¢f is either
commuting or finite, the proofs of each of the following lemmas are either
similar to the discrete system case and/or straightforward - so they are par-
tially left to the reader (note that compactness is only necessary in 1.1 (i)
and 1.2 (iii)).

1.1. Lemma. Suppose([X, 4] is a system. Then the following two statem-
ents are true:
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(i) If AeX is closed and invariant in [ X, <) then there is an MSA mi-
nimal in (X, Y.
(ii) M is minimal in [X, 9] iff M is minimal in[X,<¥>].

Suppose that (= ,:) is any semigroup. Let us call S @ ¥, syndetic in
> orovided there is a finite set F @ = such that for each g € X there e-
xists f€F so that f.g€S.

1.2. Lemma. Suppose [X, <] is a system and M is a closed invariant set
in [X,<] . Then the following three statements are equivalent:
(i) M is a minimal set in [X,<¥)].
(ii) VY x&M, cl(f£(x):f &« <LDF)=M .
(iii) V¥ xeM and for each non-empty open UgM
4f a ¢ :2(x)&U is a syndetic set in <V> R

Proof. We show (ii) «»(iii).
(—») We claim that U{t'ltu]:: & < ¥¥=M for each non-empty open set
U. When M - l[U):f & {¢>i4d, then this set must be invariant. Therefo-

<1
re from the compactness of M we get fl""’fk so0 that 351 f1 LUl=M. For

g e<¥)and g(x)=y we obtain £, so that ys ISIEUJ and finally ijQ(X)GU, s0
that 5= {f e < &> :f(x)a U} is syndetic.

(e) Let cl(4£(x):f & <F>})$M. Then UsM-cl(§£(x):f @ <F>}) is o-
pen, but {f € <¥H:f(x)& U} is syndetic, that means non-empty.

§ 2. The mein result. We shall use the following combinatorial fact o-
riginally published in [Ra] (also see [GRS], pp. 38-39).

2.1. Lewma. (Gallai ‘s theorem) Suppose that ke N and suppose P is a
finite partition of . If EswK is tinite, then 3P & P, Ir e X,
3neN, such that Vss.E, r+n.se&P.

2.2. Theorem. Suppose that [X, <] is a minimal system, X is &eparable,
w(x) <p, and suppose < is commuting and |¢ [< p. Then the set of all multi-
ple recurrent points is a dense subset of X.

Proof: Let &3 denote the family of all non-empty open sets of X. Fix
G= {91.---,9'(} &< . For every B ¢ 33 define
X
0(B,B)= {v Al gin[V):nlN,Vc B and either .
VGB or VnB=p}.
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To prove the following claim, we need only the assumption that [X, <] is min-
imal and ¢ is commuting.

Claim: D(B,G) is a ar-base of X for each B & 3 . To see this, fix Be §
and suppose U € B is arbitrary.

Define V=BNA U if BnUse@, otherwise define V=U if BAU=@. Pick up x &X.
Since [X,¥] is minimal, we can apply 1.1(ii) and 1.2(iii). Hence the set S=
= 40 e {¢>:0(x)e V} is syndetic in the abelian semigroup <¥>. Let FS< &>
be the associated finite set. For each fe& F define
Y1

v
Pg= dv= (vl,...,vk) ewk:fogl o... ogkk6 st.

Then ‘fP :fe Ft is a finite covering of cok because S is syndetic in {¥>.
Now we apply Gallai’'s theorem for the finite set E= 10, 1} and thgrefore for
some f&F there is a veck and ngN so that for each e-(el,...,ek)e E,

v, +ne v, +Ng,
fogll lo...ogkk k& S.

v Vi
Denote h-fogl1 k , then for each i, g oh&S. It me that

h(x)e V and also gi(h(x))sv for each i=1,...,k. So h(x)eV A f\ g1 %]

e
and then V n r\ gi {V] is a non-empty open subset of U anu the claim is
proved.

To prove 2.2 let A cJ be a base for the topology of X such that |4 |¢
< p. For each A ¢ A - {8} and finite 6 ¥ put N(A,6)=X-UD(A,G). Accord-
ing to the claim, N(A,G) is nowhere dense. As X is separable and | ¥|< p, we
may apply Bell’s Theorem to find an x & X- UfN(A,G):A& R ,G = < is finite}.

So for each A @ & , A a neighbourhood of x and finite G & & there exists
V&0(A,G) such that x€V and V& A. This implies that there exists ne&N such
that g"(x)e A for each geG.

2.3. Corollary. Suppose that X is a compact Hausdorff space with w(x)<
< p. If ¥<C(X,X) is countable and commuting, then the system [X, ¥J has a
multiplé recurrent point.

Proof: From 1.1(i) take a minimal set M of [X,%2 . Then w(M)<p and
by 1.2(ii), M is separable. So 2.2 applies.

2.4. Corollary. (The Multiple Birkhoff Recurrence Theorem) Suppose X is
a compact metrizable space and Y% C(X,X) is countsble and commuting. Then
IX,¢1 has a multiple recurrent point.

Proof: Since p is an uncountable cardinal and w(X) & co , then 2.3
applies.
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Let us agree to call xe X multiple non-wandering in the system [X,¥J
provided that for each neighbourhood U of x and for each finite 6 & <,
Juel, IneN, Vr6G, f"(u)el. This is a slight generalization of Birk-

hoff s notion of non-wandering point IBil. From the claim of the proof 2.2
we obtain immediately

2.5. Theorem. Suppose that [X, ) is a minimal system, and & is commu-
ting. Then each point of X is a multiple non-wandering in [X, ¥}.

There is a much longer purely topological proof of 2.2 and 2.3 which ma-
kes no use of Gallai's Theorem. In fact, Gallai’s Theorem can be obtained
(see [Fu)) as a corollary of the Multiple Birkhoff Recurrence Theorem.

§3. Example. Since the Birkhoff Recurrence Theorem, originally proved
for compact metric spaces, is true for each discrete system, one might con-
jecture that the same is the case for the Multiple Birkhoff Theorem. Howev-
er, we have the following counter-example.

3.1. Example. There is a compact connected first countable space X with
a homeomorphism h:X —% X such that [X,{h,h-I}J has no multiple recurrent
points.

Proof: Let X be the annulus {rema:ll- r<€2, ©is a real} in the plane.
If 1<r<2, a basic neighbourhood of remgwill have the form

{sezm? :0< |s-r|< & § where e< min {r-1,2-r} .
A basic neighbourhood of e?® wi11 have the form, for ¢, 0 < £<1,
L ovise®™® 145216}

where L, ¢ = {re®® .1, r£2, 0<@ -p<et.
A basic neighbourhood of 2eb'ie will have the form, for &, 0<&<1,
Re,0 u-fsez"19 :2- 8 <542 where R;,e‘ .irez"iP :l14r&2, 0< 9—6453 .

Obviously X is first countable. It is easy to show that X is compact and
connected. Now arbitrarily choose an irrational e, O<ec <1 and define a ro-
tation h:X —» X by

h(reZﬂiO )=I‘82ﬂi® W.

Clearly, h is a homeomorphism. On the other hand if €< %, then VO ,0Vne
eN, ¥r, lér&2 h"(re?19)¢ Lepr if h(re?9) Reyo -

Since for all real @ and Vn&N, ©+nec 4k 4 8-nxmod the integers) no
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point of X is multiple recurrent in [X,{h,h’lil .

Our example is the simplest of several exhibiting the fazlure, in pene-
ral, of the Multiple Birkhoff Recurrence Theorem. The first two authors cf
this paper have a compact X, w(X)=2% with a homeomarphism h such that
[X;ﬁh,hZ}] has no multiple recurrent point - this is especially interesting
in the light of the result [ES):

If x is recurrent in a discrete system [X,f], then, ¥neN, x is recurrent in

the system fX,fnJ. The third author jointly with J. Pelant have found a sys-

tem [X, ££,93] with f and g commuting homeomorphism such that [X,£) and [X,g]
have no recurrent point in common. All of these examples will appear elsewhe-

re.

Question 1: Is it provable in ZFC that there is a system [X, %], ¥ fi-
nite and commuting and w(X)=p such that there is no multiple recurrent point
in (X,¥] ?

Question 2: Suppose X is the Cantor set. Is there a commuting $=C(X,X
such that [X,%) has no multiple recurrent point?

S.W.W. wishes to thank Charles University (Prague) for its hospitality
during the completion of this manusript.
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