Commentationes Mathematicae Universitatis Caroline

Juhani Nieminen
 Boolean graphs

Commentationes Mathematicae Universitatis Carolinae, Vol. 29 (1988), No. 2, 387--392
Persistent URL: http://dml.cz/dmlcz/106648

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1988
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

bOOLEAN GRAPHS

Juhani NIEMINEN

Abstract

The concepl of Boolean graphs is introduced and Boolean graphs are characterized by means of prime convexes having special properties.

Key words and phrases: Graphs, lattices, prime convex intersections, lattice orders determined by graphs.

Classification: Primary 06D99, 05C38

Let L be a lattice and $\mathcal{P}(L)$ the poset of its prine ideals not containing the trivial prime ideals L and \emptyset. The poset $\mathcal{P}(L)$ is ordered by the set theoretical inclusion \subseteq. Nachbin has proved (see [1, Theorem II.1.22]) that a distributive lattice L with $1 \neq 0$ is a Boolean lattice if and only if the poset $\mathcal{P}(L)$ is unordered. As well known, a lattice is distrilutive if and only if its every ideal is an intersection of all prime ideals containing it. By combining these two results, we obtain a theorem, the generalization of which we will prove for graphs.

Theorem 1. A lattice L with $1 \neq 0$ is a Boolean lattice if and only if the following two conditions hold:
(i) every ideal of L is an intersection of all prime ideals containing it;
(ii) the poset $\mathcal{P}(L)$ is unordered.

The graphs satisfying the analogies of the conditions (i) and (ii) above constitute the class of Boolean graphs, as it will be shown in Theorem 2. We introduce first some graph theoretic concepts.

The graphs $G=(V, X)$ considered here are finite, undirected and connected without loops and multiple lines. The set V is the set of points of G and X its set of lines. The graph theoretic concept corresponding to convex sublattices (and thus to ideals, too), is the convex of a graph. A pointset $A \subset V$ is a convex of G, if A contains all points on every shortest $a-b$ path ($a-b$ geodesic) for any pair $a, b \in A$. The least convex containing a pointset $A \subset V$ is denoted by $[A]=\bigcap\{C \mid C$ is a convex of G and $A \subset C\} ;[a, b]$ is the brief substitute for the complete expression $[\{a, b\}]$. The sets V and \emptyset are trivial convexes. A convex B is prime if also the set $V \backslash B$ is a convex of G; the convexes V and \emptyset are trivial prime convexes of G. We
denote by $\mathcal{P}(G)$ the poset of nontrivial prime convexes of a graph G; this poset is ordered by the set theoretical inclusion. A graph G is a prime convex intersection graph (or has the prime convex intersection property), if its every convex is the intersection of all prime convexes containing it.

A graph $G=(V, X)$ is a Boolean graph if the following conditions (A), (B) and (C) hold:
(A) Let b be an arbitrary point of V. An order relation \preceq can be defined on the set V such that b is the least element with respect to \preceq and the Ilasse diagram graph H of the ordered set (V, \preceq) is isomorphic to G under the mapping $f: f(v)=v$ for every $v \in V$.
(B) The ordered set $(V, \underline{\preceq})$ of (A) is a lattice H satisfying the Jordan-Hölder chain condition (i.e. a graded lattice).
(C) Any two lattices I_{1} and I_{2} derived from G in (A) are order isomorphic.

In [2] the graphs satisfying (A) and (B) were called highly symmetric covering graphs of finite lattices (or briefly, highly symmetric graphs). Such graphs are single cycles of even length, the covering graphs of finite Boolcan lattices, and the products of these two kinds of graphs. The main result of this note is the following theorem which, by Theorem 1 , motivates the name Boolean graphs.

Theorem 2. A graph G is a Boolean graph if and only if the following two conditions hold:
(i) G is a prime convex intersection graph;
(ii) if $P \neq V, \emptyset$ is a prime convex of G, the grephs $G(P)$ and $G(V \backslash P)$ induced by P and $V \backslash P$, respectively, are isomorphic under the mapping $\varphi: G(P) \rightarrow G(\mathrm{I} \backslash P)$ such that if $x \in P$ and $y \in V \backslash P$ are adjacent in G, then $\varphi(x)=y$.

Let G be a graph satisfying the conditions (i) and (ii) of Theorem 2, and consider the condition (ii). If P
 and Q are prime convexes of G such that $P \subset Q$ and $P, Q \neq V, \emptyset$, then $|P| \leq|Q|=|V \backslash Q| \leq V \backslash P \mid$, and because | $P|=|V \backslash P|$, we obtain the equality $| P|=|Q|$, which implies that $P=Q$. Irence the poset $\mathcal{P}(G)$ is unordered, and thus the analogy of the condition (ii) of Theorem 1 is contained in (ii) of Theorem 2. In fact, the condition (ii) of Theorem 2 holds for Boolean lattices, but it is not necessary to present it in so strong form as above. On the other hand, one cannot substitute (ii) in Theorem 2 by the condition " $\mathcal{P}(G)$ is unordered". A counterexample (B is given in the figure: this graph has the prime convex intersection property and its $\mathcal{P}(G)$ is unordered, but by putting the point a the least element, one cannot obtain a lattice. Note that in this graph $|P| \neq|V \backslash P|$ for all prime convexcs P.

One can easily see that a graph J is a prime convex intersection graph if and only if there is for any pair C, x, C is a nonempty convex of J and $x \notin C$ a point of J, a prime convex P of J separating C and x i.e., $C \subset P$ and $x \notin P$. In the proof of theorem 2 we need a lemma, which we present first.

Lemma 1. The convex $[a, b]$ of a prime convex intersection graph G consists of points on $a-b$ geodesics for every pair $a, b \in V$.

Proof. Let a and b be a pair of points such that the convex $[a, b]$ contains at least one point v which is not on any $a-b$ geodesic. This implics the existence of two points x and z, x is on an $a-b$ geodesic and z is on another $a-b$ geodesic, such that no point x_{1}, \ldots, x_{m} of an $x-z$ geodesic $x=x_{0}, x_{1}, \ldots, x_{m}, x_{m+1}=z$ is on any $a-b$ geodesic. Clearly a and b can be chosen such that every convex $[u, w]$ with $d(u, w)<d(a, b)$ is the set of all points on $u-w$ geodesics. We may assume further that $d(a, b) \geq d(x, b), d(z, b) \geq d(x, b)$, and that x and z are as near to b as possible. Let us consider the point x_{1}. Because $d(a, x)<d(a, b)$, the convex $[a, x]$ consists of points on $a-x$ geodesics, and thus $x_{1} \notin[a, x]$. The prime convex interscction property of G implies now the existence of a prime convex P separating $[a, x]$ and $x_{1}:[a, x] \subset P$ and $x_{1} \in V \backslash P$. Because $x_{1} \in[a, b]$, we have $x_{1}, b \in P$. Let $x=b_{0}, b_{1} b_{2}, \ldots, b_{k-1}, b_{k}=b$ be the points of an $x-b$ geodesic. Because x and z are as near to b as possible, $d(z, b) \geq d(x, b)$ and $d\left(x_{1}, z\right) \geq d\left(x_{1}, x\right)=1$, then a $b_{i}-x_{1}$ geodesic goes over $x, i=1, \ldots, k$. This implies that there is no prime convex separating $[a, x]$ and x_{1}, which is a contradiction. Thus the assumption is false and the convex $[a, b]$ consists of points on $a-b$ geodesics for every pair $a, b \in V$, and the lemma follows.

Proof of Theorem 2. Assume that G is a Boolean graph. We should show that G has the properties (i) and (ii) of the theorem.
(i) Let $C \neq V, \emptyset$ be a convex of G. There exists a line $x y$ with $x \in C$ and $y \in V \backslash C$. Because G is a Boolean graph, we can make up a lattice L_{y} with y as the least and 1_{y} as the greatest element. Because 1_{y} is the unique point for y such that $\left[y, 1_{y}\right]=V[2$, Thm. $6]$, the point y is not on any $x-1_{y}$ geodesic, and thus $y \notin\left[x, 1_{y}\right]$ and $\left[x, 1_{y}\right] \neq V$. Consider an arbitrary point c of C. Because $V=\left[y, 1_{y}\right]$, the point c is on some $y-I_{y}$ geodesic, and because $c, x \in C$ and $y \notin C$, the point y does not locate on any $x-c$ geodesic. Assume that c is not on any $1_{y}-x$ geodesic. This implies that no $1_{y}-c-y$ geodesic contains the point x. Thus $d(c, y)<d(c, x)+1$. On the other hand, all points of any $c-x$ gcodesic belong to C and cannot contain the point y, whence $d(c, x)<d(c, y)+1$. These inequalities imply that $d(c, x) \leq d(c, y)$ and $d(c, x) \leq d(c, y)$, whence $d(c, x)=d(c, y)$. Because $d(x, y)=1$, the points of $c-y$ and $c-x$ geodesics and the line $x y$ contain now an odd cycle, which is absurd by [2]. Hence the assumption is false, and the point c is on some $1_{y}-x$ geodesic. The point $c \in C$ was an arbitrary point of C, and thus the convex C is contained in the convex $\left[1_{\boldsymbol{y}}, x\right] \neq V, \emptyset$.

Let $C \neq V, \boldsymbol{b e}$ a a convex, q a point, $q \notin C$, and $x y(x \in C, y \in V \backslash C)$ a line on a $q-c$ path giving the minimum value to the expression $\{d(q, c) \mid c \in C\}$. (ionsider now the convex $\left[x, 1_{y}\right]$ constructed above. We saw that $C \subset\left[x, 1_{y}\right]$ and $y \notin\left[x, 1_{y}\right]$. If $q \in\left[x, 1_{y}\right]$, then also $y \in\left[x, 1_{y}\right]$, because y is on a $q-x$ geodesic; a contradiction. Hence $q \notin\left[x, 1_{y}\right]$, and thus $\left[x, 1_{y}\right]$ is a convex separating C and q. The prime convex intersection property of G follows if
[$x, 1_{y}$] is a prime convex.
Because G is a Boolean graph, there is, by [2], a unique point u such that $[u, x]=V$. Then the point 1_{y} is on some $u-x$ geodesic, and because $\left[x, 1_{y}\right] \neq V$, we have $u \notin\left[x, 1_{y}\right]$. Because, by [2], every point of the convex $\left[x, 1_{y}\right]$ is on some $x-1$ geodesic, there is a point z of a $u-x$ geodesic such that $z \notin\left[1_{y}, x\right]$ and z and 1, are adjacent. Obviously, $u=z$, and because y is on $u-x$ geodesic and $d(x, y)=1$, every point $p \neq x$ adjacent to y is on a $u-y$ geodesic. By the symmetry, we see that every point $r \neq u$ adjacent to l_{y} is on a $1_{y}-x$ geodesic. But then $\left[1_{y}, x\right] \cap[u, y]=\emptyset$ and $\left[1_{y}, x\right] \cup[u, y]=V$, whence $\left[1_{y}, x\right]$ is prime, and the prime convex itersection properly follows.

Let $P \neq V, \emptyset$ be a prime convex of G and $V=[v, u]$ with $v \in P$. Because $P \neq V$, then $u \notin P$, and by [2], the point u is unique. Thus there is for any point $p \in P$ a unique point $q \in V \backslash P$ such that $[p, q]=V$, whence $|P| \leq|V \backslash P|$. The set $V \backslash P \neq V, \theta$ is also a prime convex, and by applying the proof above to $V \backslash P$ we obtain $|V \backslash P| \leq|P|$. Accordingly, $|P|=|V \backslash P|$, for every prime convex $P \neq V, \emptyset$ of G, and thus $\mathcal{P}(G)$ is unordered. As in the proof of (i) above, the prime convex $P \neq V, \emptyset$ is contained in another prime convex $\left[x, 1_{y}\right]$. Because $|V|=2|P|=2\left|\left[x, 1_{y}\right]\right|$, we see that $P=\left[x, 1_{y}\right]$, and thus every prime convex $P \neq V, \emptyset$ has an expression $P=[a, b]$ for some $a, b \in P$.
(ii) Let $P \neq V, \emptyset$ be a prime convex. As in the proof of (i), we see that, $P=\left[x, 1_{y}\right]$ and $V \backslash P=[y, k]$, where $k 1_{y}$ and $y x$ are two lines of G. On the other hand, $G=\left[y, 1_{y}\right]=[x, k]$, and by the condition (C), the lattices H_{1} (where y is the least and 1_{y} the greatest element) and H_{2} (where \boldsymbol{x} is the least and k the greatest element) are order isomorphic. This order isomorphism implies now that the sublattices of $[y, k]$ and $\left[x, 1_{y}\right]$ are also order isomorphic, and because, by [2], the Hasse diagram graph of H_{1} contains exactly the lines of G, this latter isomorphism implies the isomorphism of the graphs $G\left(\left[x, 1_{y}\right]\right)=G(P)$ and $G([y, k])=G(V \backslash P)$. By the symmetry (every two lattices H_{1} and H_{2} are order isomorphic), one can always construct an isomorphism satisfying the demands of the theorem, and the first part of the theorem follows.

Conversely, let G be a graph satisfying the conditions (i) and (ii) of the theorem. By [2, Thm. 6], a graph G is a symmetric covering graph of a finite meetsemilattice if
(1) the relation $u \in[x, y]$ implies that u is on an $x-y$ geodesic in G;
(2) every cycle of G is even;
(3) there is for any three points $p, x, y \in V$ a point $v \in V$ such that the equation $[p, x] \cap$ $[p, y]=[p, z]$ holds.
By [2, Thm. 6], G is a graph satisfying the conditions (A) and (B) of Boolean graphs if G satisfies the conditions (1)-(4), where
(4) every meetsemilattice derived from G is a lattice.

We will show that the conditions (1)-(4) and (C) hold for G, which proves the converse part of the theorem. The condition (1) holds by Lemma 1, and so we concentrate on (2)-(4) and (C).
(2) Assume that G contains an odd cycle. This implies that G also contains a minimal odd cycle $Q:$ if x and y are two arbitrary points of Q, then one $x-y$ geodesic goes along the arc of Q. Trivially, Q contains at least three points x, y and z with $x y, y z \in X$. The points x and y constitute a convex not containing the point z, and thus there is a prime convex P
separating $\{x, y\}$ and $z:\{x, y\} \subset P$ and $z \in V \backslash P$. Because Q is a cycle and $z y \in X$, there is a line $v u$ in Q such that the $z-u$ geodesic of Q is contained in $V \backslash P$ and the $y-v$ geodesic of Q is contained in P. Because Q is a minimal odd cycle, $d(y, v) \neq d(u, z)$. This is absurd because, by the isomorphism φ of (ii), $\varphi(y)=z$ and $\varphi(v)=u$. Hence G cannot contain odd cycles and thus (2) holds for G.
(3) Choose an arbitrary point p of G. If (3).holds for all pairs $x, y \in V$, we are done, and hence we assume that there exists at least one pair x, y such that at least two points z_{1} and z_{2} are needed to generate the convex $[p, x] \cap[p, y]$ (i.e. $\left[p, z_{1}, z_{2}\right] \subset[p, x] \cap[p, y]$ and there is no point w such that $\left.\left[p, z_{i}\right] \subset[p, w] \subset[p, x] \cap[p, y], i=1,2\right)$. If there are several triples p, x, y, we choose that one for which the sum $d(x, p)+d(y, p)$ is the least. Let $a \neq y$ be a point of a $y-z_{1}-p$ geodesic closest to y. By the choice of the pair x, y, z_{2} is not on any $a-p$ geodesic, and thus $z_{2} \notin[a, p]$. Because G is a prime convex intersection graph, there is a prime convex P containing $[a, p]$ but not \dot{z}_{2}. If $y \in P$, then z_{2} as a point of a $y-p$ geodesic belongs to P, which is absurd. Similarly we see that $x \notin P$. Accordingly, $x, y \in V \backslash P$, and because we can substitute z_{2} by z_{1}, we see that no $x-y$ geodesic contains either z_{1} or z_{2}.

Let k_{i} be a point on a $y-z_{i}-p$ geodesic adjacent to $p, i=1,2$. The relation $z_{1} \notin\left[y, k_{2}\right]$ holds, because otherwise p can be substituted by k_{2} and we obtain a triple k_{2}, x, y with $d\left(k_{2}, x\right)+d\left(k_{2}, y\right)<d(p, x)+d(p, y)$, which is a contradiction. The prime convex intersection property of G implies the existence of a prime convex P_{2} containing $\left[y, k_{2}\right]$ and not z_{1}. If $p \in P_{2}$, then z_{1} as apoint of a $y-p$ geodesic also belongs to P_{2}, which is absurd, and thus $p \in V \backslash P_{2}$. If $x \in V \backslash P_{2}$, then z_{2} as a point of an $x-p$ geodsic belongs to $V \backslash P_{2}$, which is a contradiction. Hence $x \in P_{2}$. Accordingly, $\left[x, y, k_{2}\right] \subset P_{2}$ and $z_{1}, p \in V \backslash P_{2}$. Let a_{i} be a point of a $y-z_{i}-p$ geodesic adjacent to y and b_{i} a point of an $x-z_{i}-p$ geodesic adjacent to $x, i=1,2$. If $b_{1} \in P_{2}$, then either $d\left(b_{1}, k_{2}\right)=d\left(b_{1}, p\right)$ and G contains an odd cycle, or a $b_{1}-z_{1}-p-k_{2}$ path is a $b_{1}-k_{2}$ geodesic and $z_{1} \in P_{2}$. Both alternatives lead to a contradiction, whence $b_{1} \in V \backslash P_{2}$; similarly we see that $a_{1} \in V \backslash P_{2}$.

By repeating the consideration above for $\left[y, k_{1}\right]$, we obtain a prime consex P_{1} containing x, y and k_{1}, and its counterpart, the convex $V \backslash P_{1}$, contains the points a_{2}, b_{2} and p. If $d\left(x, z_{1}\right)=$ $d\left(b_{2}, z_{2}\right)$, then $d\left(x, z_{2}\right) \neq d\left(b_{1}, z_{1}\right)$ and by the isomorphism of (ii), the triple b_{1}, a_{1}, p does not satisfy (3) although $d\left(b_{1}, p\right)+d\left(a_{1}, p\right)<d(x, p)+d(y, p)$. A similar contradiction is obtained also in the case $d\left(x, z_{1}\right) \neq d\left(b_{2}, z_{2}\right)$, and thus the original assumption is false. Hence (3) holds for every triple $p, x, y \in V$.

Let p be an arbitrary point of G. As mentioned above, the conditions (1)-(3) imply that G can be translated into a meetsemilattice S_{p} with p as its least element and with the order relation: $a \leq b \Leftrightarrow[p, a] \subset[p, b]$. Now we must show that every meetscmilatice S_{p} is a lattice L_{p}.
(4) Let \boldsymbol{x} and \boldsymbol{y} be two maximal elements of S_{p} without an upper bound. We choose from all pairs x, y of S_{p} the pair, for which the sum $d(x \wedge y, x)+d(x \wedge y, y)$ is the gratest. There is a cycle containing y and p; if not, then the cutline of G divides G into two pieces the separation of which by means of prime convexes produces certainly two nonisomorphic subgraphs. Let Q be a minimal cycle containing y and p and R a minimal cycle containing x and p. Note that $Q \neq R$, because the element $x \wedge y$ exists in S_{p}. Assume that the number of points $n(Q)$
satisfies the relation: $n(Q) \leq n(R)$. Let an $x \wedge y-y$ geodesic be $x \wedge y=z_{0}, z_{1}, z_{2}, \ldots, z_{m}=y$. Because $n(Q) \leq n(R)$, we have $d(x \wedge y, y) \leq d(x \wedge y, x)$. Let P be a prime convex containing p, x and $x \wedge y$ but not z_{1}. Then, by the isomorphism of (ii), there is in $V \backslash P$ the image $u=\varphi(x)$, and clearly $x \wedge u=x \wedge y, d(x \wedge y, u)+d(x \wedge y, x)>d(x \wedge y, x)+d(x \wedge y, y)$ and there is no upper bound for x and u. This is a contradiction, and thus the property (4) holds for G.

Let q be a point of $G, k \neq q$ a point adjacent to q, and P a prime convex separating q and k ($q \in P$ and $k \notin P$). Then the isomorphism of (ii) guarantees the order isomorphism between the lattices L_{q} and L_{k}, and thus every two lattices L_{a} and L_{b} derived from G are order isomorphic, if a and b are adjacent. Let the least element of H_{1} in (ii) be a, that of H_{2} be b, and let $a=c(1), c(2), \ldots, c(m)=b$ be an $a-b$ geodesic in G. By the olservation above, $L_{c(i)}$ is order isomorphic to $L_{c(i+1)}$ for $i=1, \ldots, m-1$, and thus $H_{1}=L_{a}$ is order isomorphic to $L_{b}=H_{2}$. This completes the proof.

Every Boolean graph is a highly symmetric graph as the conditions (Λ) and (B) show. An open problem is, whether the condition (C) is dependent of (A) and (B) (i.e. is every highly symmetric graph a Boolean graph)? We have not yet found any highly symmetric graph without the Boolean property (C).

References

[1] G. GRÄTZER: General Lattice Theory, Birkhäuser Verlag, Basel und Stuttgart, 1976.
[2]. J. NIEMINEN: Symmetric covering graphs of finite semilattices, a manuscript submitted to Comm. Math. Univ. Carolinae.

Department of Mathematics, Faculty of Technology, University of Oulu, 90570 Oulu, Finland
(Oblatum 6.10. 1987)

