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Speed-up for propositional Prege systems 
via generalizations of proofs 

J A N KRAjfcEK 

Abstract. A Frege system with the substitution rule has a speed-up over a Frege system 
with respect to the number of proof-steps which is of the form: Q(2n). 

Keywords: Frege system, generalizations of proofs, the number of proof-steps 

Classification: Prim.:03F20, Sec.:03F07 

Let us denote by F (FF, SF respectively) some Frege system (Frege system with 
the extension rule, Frege system with the substitution rule respectively). Frege 
system is a usual propositional calculus based on a finite number of axiom schemes 
and rules. The extension rule allows to infer the formula p = A, provided the 
atom p does not occur in A, in any line preceeding p = A and in the last formula 
of the proof. The substitution rule allows to infer from formula A(pi, • • . ,p*) any 
formula A{B\,..., Bk) where formulas B» are simultaneously substituted for atoms 
Pi. These propositional calculi were defined in [2]. 

In this note we are interested in the number of steps (= proof Hnes) in proofs in 
these calculi. For these purposes the exact choice of the systems is not essential. In 
[2] it was shown that for any two Frege systems Fi, F2 there is a polynomial-time 
computable function (=polynomial simulation) / ( x , y) such that if d is an Fi-proof 
of the formula A then /(d, A) is an F2~proof of A. The same holds for any two Frege 
systems with the extension rule and for any two Frege systems with the substitution 
rule. It is easily seen that these polynomial simulations increase the number of steps 
only linearly. Moreover, EF-proofs can be transformed into F-proofs increasing 
the number of steps only linearly too-c/.[2, Prop.4.3]. 

In [3], [7] it was shown that EF polynomially simulates SF. The expHcit simu­
lation constructed in [7] increase sometimes the number of steps exponentially. It 
follows from the result of Cejtin and Cubarjan [1] that this must hold for any such 
a simulation. Namely they have proved that SF has an exponential speed-up over 
F w.r.t. the number of steps. 

The aim of this note is to present a new proof of this result (with an improved 
bound) which is a simple application of the results about generalizations of proofs 
[4,5,6,8]. 

It should be stressed explicitely that this speed-up result does not solve the 
important open problem whether F polynomially simulates SF since the formulas 
on which the speed-up is realized are themselves of an exponential length. 

Propositional formulas are built up from atoms po > Pi > • • • 9o > 9i • • • > constants 0,1 
and connectives including *i and —>. 
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The depth dp(A) of a formula is inductively defined by: 

(i) dp(A) = 0 iff A is an atom or a constant, 
(ii) dp(nA) = l + dp(A), 

(hi) dp(A - > £ ) - = 1 + max(dp(A), dp(B)). 

In the sequel (~l)m(A) will abbreviate the formula: 

- .(- .(-{. . . (n A ) . . . ) . 
s" "V " " ' 

m-times 

Theorem. There are constants c,e > 0 such that for all 1 < k < w it holds: 

(i) there is an SF-proof of (l)2 (1) with < c.k steps, 

(ii) any F-proof of (i)2 (1) must have > e 2k steps. 

PROOF: Assume k > 1. 

(i) Consider formulas 

B * : = P - ( - 0 2 * ( p ) . 

Obviously SF h Bo. Also B*+i can be derived from Bk in SF within a 
constant number of steps: by substitution 

P-h)2*(p) 

derive from Bk the formula: 

0 ) 2 ' ( p ) - ( - i ) 2 ' + , ( p ) , 

and by cut-rule (which is a derived rule in SF) applied to this formula and 
Bfc derive Bjb+i-

Hence Bjb's have SF-proofs with 0(k) steps. But (~i)2 (1) is inferred from 
Bfc by the substitution p \-• 1 and one more application of cut-rule. This 
proves the first part of the theorem, 

(ii) We must show that any F-proof of ( i ) 2 (1) has at least e • 2k steps, for some 
constant e > 0. 

C la im. There is a constant Co > 0 such that for any F-proof d = C\,..., C( there 
is a sequence d* = C * , . . . , Cf of propositional formulas built-up from the atoms 
occurring in d and new ones q = qo,..., qa such that: 

(i) d* is an F-proof, 
(ii) dp(C0) <cQl, for i < /, 

(iii) there is a substitution a assigning to atoms q some propositional formulas 
such that a(d*) = d. 

Proof of the claim: The claim is an immediate corollary to Theorem 2.1 of [5]. 
However, to make the exposition reasonably accessible we outline another argument 
based on the technique developed in [4,6,8]. For the details see there. 
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To any F-proof d with / steps is assigned a unification problem 0<*, 

ftrf = {(suh),...i(sr,tr)} 

such that 

(a) dp(sj),dp(tj) < ci, for all j < r, 
(b) r<c2l, 

where the constants c\, c2 depend only on the particular system F. 
As proved in [4,6,8] any unifier 8 of Qd determines an F-proof d$ of depth 

dp(d6) < m^x(dp(6(sj))1dp(S(tj))). 

Let 8Q be a most general unifier of fi«*. By the results of [6,Lemmas 1.1 and 1.2] tt 
holds: 

dp(dSo) < 2 • r • max(dp(sj)1dp(tj)\ 
3<r 

i.e. by (a) and (b) above: 

dp(d6o)<2-ci'C2-L 

Moreover, for any unifier 8 of Wd-> d& is a substitution instance of d$Q. In particular, 
d is a substitution instance of d$0. Put d* = ds0 and c 0 = 2 • ci • C2. This proves the 
claim. 

Assume now that 
d = Ci,..., Ct 

is an F-proof of the formula (~l)2 (1), i.e. C| = (~l)2 (1). 
By the claim there is an F-proof d* = C*,..., C* such that in particular it holes: 

(i) dp(C*) < CQ • /, and 

(ii) C\ is a substitution instance of C*. 

Thus if c 0 • / < 2*, C* has necessarily the form: 
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oгы, 
for some atom g0 and m < CQ -1. 

Define the substitution a: 

a (?o) = 0, if m is even 

= 1, if m is odd. 

It follows from the claim that a(d*) is an F-proof of a false formula. Thu$ >t 
must hold: 

c 0 - / > 2 * . 

CQ
 L . • 

This bound improves the bound obtained in [1] which was only of the form £*« 
e > 0 . 
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