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Correspondence between interval
r—equivalences and Sd—functions

JIRf WITZANY

Abstract. In this paper we study interval m—equivalences, that is we want to study Sd-
functions from the class of rational numbers Q to Q by means of these m—equivalences.
A theorem is proved which says that to each interval r—equivalence there exists an Sd*-
function to which the m—equivalence corresponds.

Keywords: Alternative Set Theory, interval x—equivalence, function.
Classification: 03E70, 54C30

Introduction.

A classical real function F (i.e. a closed figure in @?) can be represented by an
Sd-function F : Q — Q such that F = Fig(F). We want to study F by means of
that Sd—function F and the Sd—function by means of an interval 7—equivalence Rp
on the class of all rational numbers Q which is in a canonical way assigned to F.

Throughout the paper we use usual notations and principles of the Alternative
Set Theory (see [V]). In the first section, basic propositions concerning interval =—
symmetries are proved, discrete basis theorem is also proved. Then the structure of
@ and the m—symmetries are studied in a connection with automorphisms. Finally
there is proved an important theorem stating that to each interval m—equivalence R
there exists an Sd*~function F such that R = Rp.

First section, basic notions and motivations of this paper are due to P.Vopénka.
I also thank K.Cuda for many valuable remarks to the studied matter.

1. Interval r—symmetries (equivalences).
Let the letters z,y, z (event. with indices) be variables for rational numbers from

Q.
Definition. A symmetry R is called to be an interval if

(Vz,y,2)((z,2) ER & <y <z—(z,y) €R & (y,2) € R).

Obviously if M # 0 is a class of interval symmetries (equivalences) then NM is
an interval symmetry (equivalence). If R is a symmetry then we denote

R = {{z,9); Gz1,11)((z1,01) €R & 2, < 7,y S 11)}.

Obviously R is an interval symmetry. If R is an equivalence then R is an interval
equivalence. If R is a w—class then R is also a v—class.
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Definition. Let R be an interval symmetry. We say that X is an R-cut if
)XCQ&I£X£Q,
2) (Vr,y)(z€X & y<z—oy€X),
3) "X =X.
We say that z is its inner or outer R-head if X = {y;y <z} UR"{z} or Q - X =
{y;z <y} U R"{z} respectively.

Proposition 1. Let S C R be two interval symmetries. Let X be an R-cut. Then
X is an S—cut. If z is moreover an inner (outer) S-head of the cut X, then z is
an inner (outer) R-head of the cut X.

PROOF: X CS"X CR"X =X. Let X = {y;y < z}US"{z} then X C {y;y < z}
UR'{z}CR'X=X.m

We say that a property ¢(n) holds for almost all n € FN if there exists an
m € FN such that ¢(n) holds for all n > m.

Proposition 2. Let {Rn;n € FN} be a sequence of interval m~symmetric such
that Ray1 C Ry for alln. Put R = N{Rn;n € FN}. Let X C Q be such that the
classes X,Q — X are revealed. The following holds:

(a) R"X =X iff R\ X = X for almost alin € FN.
(b) X is an R-cut iff X is an Ry—cut for almost all n. Moreover X has an inner
(outer) R-head iff X has an inner (outer) R,-head for almost all n.

PROOF: (a) The case of X = @ or X = Q is trivial, hence let § # X # Q. Let
R!X = X, then X C R"X C R, X = X. On the other hand let X = R"X.
Let us suppose that X # RiX for all n € FN, hence R, N (X x (Q — X)) # 0
for all n. Then RN (X x (@ — X)) # 0, thus X # R"X - a contradiction. By
that we have proved that there exists an m such that X = R}, X. Let n > m then
XCRIXCRLX =X.

(b) From (a) it follows that X is an R-cut iff there exists an m such that X is
an Rp—cut for all n > m. Let z be an inner (outer) R-head of the cut X. Then
(by the proposition 1) z is an inner (outer) R,~head of X for almost all n. Let
conversely z,, be an inner R,-head of the cut X for all n > m. Let z € X be
such that z, < z for all n > m. We prove that z is an inner R-head of the cut
X. Let z <y. If y € X then (z,,y) € R, for all n > m, thus y € R"{z}. Hence
X C{y;y £z} UR"{z} C R"X = X, which means that z is an inner R-head of
X. The case of the outer head is similar. m

Proposition 3. Let R be an interval w—symn:etr'y. Let X be an Sd-class such
that X C Q,0 # X # Q,R"X = X. Then there ezists a set-theoretically definable
R-cutY.

PRrOOF: Obviously Q — X is an Sd—class and R"(Q — X) = @ — X. Let us assume
that @ — X is not an R—cut. Then there exist zo € X, yo € (Q — X),zo < yo, thus
20 € X,y0 ¢ X. PutY = {z;(3y € X)(z <y < yo)}. Obviously Y is an Sd-class
which satisfies the first two conditions from the definition of R-cut. Let us prove
that it satisfies the third condition. By contradiction let us assume that there exist
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r) € Y,z ¢ Y such that (z;,2) € R. Let z; € X be from the definition of ¥ such
that z; < z2 < yo. Obviously z, < z because otherwise it would be z € Y. It
implies (z2,2) € R, thus z € R"X = X. If yo < z then we would have (z2,) € R,
thus yo € R"X = X, but yo ¢ X. Consequently z < yo. Since z € X, 2 €Y, and
this is the desired contradiction. ®

‘Proposition 4. Let R be an interval m-symmetry. Then there ezists its generat-
ing sequence {R,;n € FN} such that R, is an interval Sd-symmetry for all n.
Moreover if R is an equivalence then Rn41 0 Rny1 © Ry can be assumed for all n.

PROOF: Let {Sa;n € FN} be a generating sequence of the m—symmetry R. Ob-
viously Sy is an interval Sd-symmetry, S nt+1 C SnySp €S, for all n € FN. From
this R = N{Sn;n € FN} C N{Sp;n € FN}. Let (z,y) € N{Sn;n € FN}. We
want to prove (z,y) € R. There exists a sequence {(z,,yn);n € FN} such that
(Tn,Yn) € SnyZn < 2,y < y, for all n. Let {(z4,¥a); @ € v} be a prolongation of
this sequence such that z4 < z,y < yo for @ € v and (z4ys) € S, for n € FN,
a > n. Hence (za,Ya) € Rif a € y — FN and since R is an interval symmetry, we
ee (z,y) € R. We have proved that {Sn;n € FN} is a generating system of the
n-symmetry R with the desired properties. If R is moreover an equivalence then
by the theorem IIL1.1[V] it is possible to select from this sequence a generating
subsequence {Rp;n € FN} such that Rp41 0 Rnyy C R, foralln. m

Definition. We say that a class D C @ is a discrete basis of a m—symmetry R if
1) (Vz)(3y € D)((z,y) € R),
2) (Vy e N)Set {r;ze€D & —y<z <~}

We say that z,y € D are neighbouring if z # y and

(Vz)(min{z,y} < z < max{z,y} — 2 ¢ D).

Theorem. Jet R be an interval m-symmetry. Then the following conditions are
equivalent:

(a) There exists a discrete basis of the m-symmetry R.
(b) Each set-theoretically definable R-cut has an inner and an outer R-head.

ProoF: (a)—(b). Let D be a discrete basis of the 7—symmetry R. Let X be
a set-theoretically definable R-cut. Let zo € X,yo ¢ X and z;,y; € D be such
that (zo,z1) € R, (yo,y1) € R. Obviously z; € X,y ¢ X. Let ¥ € N be such
that —y < z; <yy <. Putu=Xn{z;z2 € D & -y <z <4} We see
T) € u,y1 € u. Let z; be the greatest element in the set u in the natural ordering
of Q,y, € D,y; > z, its neighbour in D. Obviously y, ¢ X. If z; < z < y; then
either (z2,2) € R or {(z,y2) € R and these two cases exclude one another because
(z2,z) € Rimplies z € R"X = X and (z,y;) € Rimplies z € R"(Q - X) = Q - X.
From this it follows X = {y;y < 22} UR"{z2}, @ — X = {y;¥ > y2} U R"{y2}.
Consequently z, is an inner and y; and y; an outer R-head of the R—cut X.
(b)—(a). Let {R,;n € FN} be a generating sequence of the r—symmetry R such
that R, is an interval Sd-symmetry for all n (see Proposition 4). There exist (by
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the theorem III.1.3[V]) Sd—classes D, such that D, is a maximal R,-net. If m <n
then R, C R,, and hence

(1) (¥n)(m <n — (Yz)(3y € Da)((7,y) € Rm)).

We will prove that the following holds:

(2") (Yn)(Vy € N)Set{z,z € D, & —y <z <7}

Choose an n € FN and let ¥ € N be such that (2’) does not hold. Put ¥ =
{y;Set{z;z € Dy & -y <z <y & =z < y}}. Obviously Y is an Sd-
class satisfying the first two conditions from the definition of the R-cut. We prove
Y = RIY. Let zo € Y,yo € Y,(20,40) € Rn, obviously zg < yo. If 21,2, € D,
would be such that zo < 23 < 23 < yo then (z,22) € Ry, which is impossible
because D, is an R,—net. So between zg,yo there lies at most one element of
the class D, and so yo € Y - a contradiction. By that we have proved that
Y is an R,-cut and thus also an R—cut. Let z; be its inner and y; outer R-
head and thus also R,-head (see Proposition 1). Let z;, 23,23 € D, be such that
) € 71 < 23 < z3 £ y1. Then either (z,2;) € R, and so (21,22) € R, or
(22,41) € R, and so (22,23) € Rn. Between z;,y; thus there can lie at most two
elements of the class D,. This implies y; € Y - a contradiction.

Let {Dq;a € 6} be an Sd*-prolongation of the sequence {D,;n € FN} such
that for all @ € § the following holds:

(Vy € N)Set{z;z2 € Dy & —y <z <~v}.
Let 6m € (6§ — FN) be such for all @ € Nym < a < 6, it holds
(Vz)(3y € Da)((z,y) € Rm).
Choose a € § — FN so that a < §,, for all m. Then e
(Vm)(Vz)(Jy € Da)({z,y) € Rm),

thus Rl {z} N Dy # @ for every m,z. Since D, is an Sd*—class, D, is revealed and
so R"{z} N Dy = N{R%{z};m € FN} # 0. But it means that

(V2)(3y € Da)((2,y) € R).

We have proved that D, is a discrete basis of the 7—symmetry R. m

Proposition 5. Let R be an interval m—symmetry which has a discrete basis D.
Let X be an R-cut, X a sharp class, i.e. (Vu)Set(X Nu). Then X is an Sd-class.

PROOF: Let ¥ € N be such that —y € X,7¢ X. Putd={y;—7<y<~v &
y € D}. Then X = {y;y < 7}UR"(dN X),Q — X = {y;7 Sy} UR"(d — X), thus
X and Q — X are n—classes and so Sd—classes. B



Correspondence between interval T—equivalences and Sd-functions

Proposition 6. Let R be an interval compact n-symmetry. Then R has a discrete
basis which is a set and the class M of all set-theoretically definable R-cuts is at
most countable.

PROOF: Let {Rn;n € FN} be a generating sequence of the 7—symmetry R. Let d
be a set such that (Vz)(Jy € d)({z,y) € R) (see Theorem II1.1.5[V]). Obviously d is
a discrete basis of the 7-symmetry R. If z € d then T denote its right neighbour in
the set d. For X € M let cx denote the greatest element of the set X Nd. Obviously
(cx,6x) ¢ Rand cx # cy for X,)Y € M, X # Y. Put 4, = {cx; X € M
& (cx,¢x) ¢ Rn}. Obviously

{ex; X € M} =U{An;n € FN}.

Thus it suffices to prove that each A, is a finite class. If z,y € A,z < y then
7 < y from the definition of 7, hence (z,y) ¢ R,. But this means that A, is an
R,-net and so by the theorem II1.1.3[V] A, is finite. ® .

More generally as a consequence of some deeper results of [C] it can be proved
that the class of all clopen figures in a compact 7~symmetry is countable.

2. Interval 7—symmetries and automorphisms.

Let = mean the basic equivalence on the universe V (see [CK] or the section
V.1[V]).

Proposition 1. Let X C Q be an Sd-cut. Then Fig.(X) is also a cut.

ProOF: If F:V — V is an automorphism then obviously F”X is also an Sd—cut.
Since Figs (X) = U{F"X; F is an automorphism}, Fig. (X) is a cut. ®
Proposition 2. Let F be an automorphism, X C Q an Sd-cut which is not Sdy.
Then F"X # Figs (X).

PROOF: Let us suppose that F"X = Fig,(X). It implies that Fig.(X) is an

Sd—class. It is also a =—figure, it is proved in the section V.1[V] that then it is an
Sdg—class. Consequently X is an Sdg—class — a contradiction. ®

Sd-cuts represent classical real numbers in the sense of Dedenkind’s cuts. The
following proposition says that these Sd—cuts are being moved by automorphisms
in the limits given by Sdg—cuts which are firm with respect to the automorphisms.

Define an interval m—equivalence

Ro = N{2?U(Q - 2)*; Z is an Sdg—cut)
Proposition 3. Let X be a cut, then Figs (X) = Figp,(X).
PROOF: Obviously Figs(X) C Figg,(X). From the definition of =
Figs(X) = N{4; Ais Sdy & X C A}.

For an Sdg—class A D X put Z4 = {y € 4;(Vz)(z < y — z € A)}, it is an Sdy—cut.
Since Figs (X) =N{Z4;A is Sdy & X C A}, Figp (X) C Fige (X). »
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Sdg—cuts occupy a special place among all rational cuts. Thus let us define a
class of concrete real numbers:

CR = {X;X is an Sdyp—cut & X has not a last element}.

All finite rational and algebraic numbers, 7, eetc. belong in the classical sense to
CR. This class is countable and is closed under algebraic operations and under the
operation of supremum over Sdg—subclasses. The nonexistence of an infinitesimally
small concrete real number is equivalent to the axiom of elementary equivalence.

Now let R be an interval 7—symmetry and X an Sd-R-cut. We say that X is
limit if X has not its inner or outer head. We will give a sufficient condition on R
to have a limit Sd-cut.

In the rest of this section we suppose that the axiom of elementary equivalence
holds (i.e. Def = FV).

Proposition 4. Let S be an interval Sdg-symmetry. If there ezists an Sd-cut X
of S such that XN BQ # 0,BQ — X # @ and X ¢ Sdy then S has a limit Sd-cut.

PROOF: Let X be an Sd-cut, X ¢ Sdy,S"X = X. Let us suppose that 0 € X,
1¢ X. Let A be a maximal Sdg—S-net on [0,1]. If A would be a finite class then X
could not be limit. If Set(A) then card(A) € Def but card(A) ¢ FN. Thus Ais a
proper uncountable Sd—class. From the theorem of the preceding section it follows
that there has to exist an Sd-cut Y of S which is limit. m

Corollary. Let R be an tnterval ng-equivalence. If R has an Sd-cut X such that
XNBQ#0,BQ— X #0 and X ¢ Sdy then R has a limit Sd-cut.

PROOF: See Proposition 1.2. m
The converse implication does not hold - the interval mg—equivalence

Rp={(myhiz=y=0orz#0 & y#0 & () -11< 1))

has just two Sd—cuts {z;z < 0} and {z;z < 0} which are both Sdy and limit.

3. Correspondence between interval r—equivalences and rational Sd-
functions.

Definition. Let F : @ — Q be a function. We define the relation
Rr = {{z,y); (Vz)(min{z,y} < z < max{z,y} = F(z) = F(z) = F(y))},
where = is the standard compact indiscernible equivalence on Q.

Proposition 1. If F : Q — Q is an Sd-function then Rp is an interval w-
equivalence.

PROOF: Obviously RF is an interval equivalence. Let {Sn;n € FN} be a gener-
ating system of =. Put
Rpn = {(z,¥); (Vz)(min{z, y} < z < max{z,y} —
— (F(z), F(2)) € Sn & (F(2), F(y)) € Sa)},
then RF,, is an Sd—class and Rr = N{Rpn;n € FN}.
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Examples. (i) Let z € Q, thena <z < a+1for an @ € N C Q. Define F(z) =
(z — a)(—1)* + (a +1—z)(—1)**! (see fig. 1). Then Rr = {{z,y);|z—y| =Q} is
a noncompact m—equivalence on Q.

-1
Fig.1

(ii) Let z € @, then £ = a/fB where a, € N are relatively prime. Put F(z) =
(—1)*. Then Rr = {(z,y);z = y} is a discrete equivalence on Q.

We want to investigate Sd—functions from @ to @ through interval r—equivalences
Rp. Results on interval r—equivalences can be applied on Sd—functions.

In this section we will show that to each interval m—equivalence R there exists an
Sd*—function F such that R = Rp.

Definition. Let R be a symmetry on Q, we define the relation of connectedness of
R as usually

Cntdg(u) = (Vo C u)(D # v # u = (321 € v)(322 € u — v)({21,22) € R)),
S = {(z,9); Bu)(z,y € u & Cntdgp(u))}.

Proposition 2. Let R be an interval symmeiry, S the relation of connectedness of
R. Then

(a) RC S and S is an interval equivalence.
(b) An Sd-class X is R-cut iff it is S-cut.

(c) If R is an interval m-symmetry then S is an interval m—equivalence.

PROOF: (a) It is obvious from the definition that R C S. Since uj Nuz # 9 &
Cntdgr(u;) & Cntdgr(uz) implies Cntdr(u; Uuz), we see that S is an equivalence.
Finally let z < z < y and (z,y) € S, then there is a u C Q such that Cntdp(u)
and z,y € u. Put v = {z; € u;z; < z}, 2y = max(v),22 = min(u — v). Then
necessarily (z1,22) € R and so (z1,z) € R,(z,2z2) € R. Consequently Cntdr(v U
{2}), Cntdr((u —v) U {z}) and (z,z) € S,(z,y) € S. We have proved that S is an
interval equivalence.

(b) If an Sd-class X is an S—cut, it is also an R—cut because R C S. Let an
Sd—class X be an R—cut and z € X,y ¢ X be such that (z,y) € S. It means that
there is a u C @ such that z,y € u and Cntdg(u). Put v = uN X, there has to
exist 21 € v,2z2 € u—v such that (21, 22) € R, but 2; € X, z2 ¢ X - a contradiction.

(c) If R is an Sd—class then it is obvious from the definition that S is also Sd.
Let R be an interval m—symmetry, R = N{R,;n € FN} where R, are interval
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Sd-symmetries (see Proposition 1.4). Let S, be the relations of connectedness of
Ry, hence S, are Sd-classes. It holds that (see theorem III.3.1[V])

(1) Cntdg(u) & (Vn)(Cntdg, (u)).

It is obvious S C N{Sx;n € FN}. Let (z,y) € N{Sn;n € FN}. Then there are
up C Q such that z,y € u, & Cntdg,(u,). Take a prolongation {us;6 € v} of
the sequence {u,;n € FN} such that § € y — FN and n € FN implies z,y € u;
and Cntdg, (us). Take a 6§ € v — FN, then z,y € us and Cntdg(us) (see (1)), thus
(z,y)eS. m

Proposition 3. Let S be an interval Sd-equivalence. Then there ezists an Sd-
function G : Q — {—1,1} such that S = Rg.

Proor: Put Sy = {(z,y);(Vz)(min{z,y} < z < max{z,y} — (z,2) € Sor
(z,y) € S)}, obviously Sy is an interval Sd-symmetry. Let Sy be the equivalence
of connectedness of Sp. Obviously S C S;. Let A; be a maximal set-theoretically
definable S;—net and A O A; a maximal set-theoretically definable S-net. By
induction we construct a function G on A;. Let P : N — A; be an Sd-numbering
of the class A; (if A; is a set, we consider P : a — A;).
I. G(P(0))=1.
II. G(P(a)) = —G(zo) where 7o = max{z € P"a;z < P(a)} if {z € P"a;z <

P(a)} #0.

G(P(a)) =1 otherwise.
By this an Sd-function G on A, is defined. Now let € A. Then there exists just
one zg € A; such that (zo,z) € S;. Thus there is a u C @ such that z,z, € u
and Cntdg,(u). Put Z = {z € A;min{z,z} < z < max{zo,z}}. Let 2; € Z, then
there exists a 2, € u such that (21,22) € S. Indeed, let 2; ¢ u, otherwise it should
hold with z; = 2z;. Put v = {z € u;z < z1}, there are z; € v, 23 € (u — v) such
that (22,23) € S. Since 2; < z; < 23, also (21,22) € S. Since Z is an S—net and S
is an Sd-equivalence, there is a one-one Sd—function from Z into u. Thus Set(Z)
and we can put & = card(Z) and G(z) = (-1)*"'G(zo).

Finally let z € Q. Then put G(z) = G(zo) where zo € A is such that (zo,z) € S.
We have defined an Sd-function G : Q@ — {—1,1}. It remains to prove that S = Rg.
It is obvious that § C Rg. Let (z,y) ¢ S,z < y, we can suppose z,y € A. We
shall use the common notation [z,y] = {2,z < z < y} and (z,y) = {z;z2 < z < y}.
If there exist 21,z € AN [z,y],z1 < 22 such that (z;,22) € S), then from the
definition of G it is obvious that (z,y) ¢ Rg. Let us suppose the contrary. Then
(A= A)N(z,y) = 0 and (z,y) € S1. If Set(A N [z,y]) then u = AN [z,y]
would be Sy connected —a contradiction. Thus AN [z,y] and also A; N [z,y] is an
uncountable proper Sd—class. Let z = P(a), necessarily there exist a # > a such
that P(8) € A; N [z,y]. Let By be the first such B. Then G(P(a)) # G(P(fo)),
hence again (z,y) ¢ Rg. ®

Theorem. Let R be an interval m-equivalence. Then there ezists an Sd*-function
F such that R = Rp.
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PROOF: Let R = N{Rn;n € FN} where {Rn;n € FN} is a generating system
consisting of interval Sd-symmetries such that Rn4+1 0 Rat1 C Ry, {Ra; @ € 7} be
its Sd*-prolongation and S, the relations of connectedness of R,. We will construct
a sequence {(Fpn,An);n € FN} of Sd—~functions F, : Q — Q and set-theoretically
definable maximal R,-nets A4,,.

We say that an z € Q lies between connected neighbours z,,z; € A, if z; <
z < z2,t; and z; are neighbours in A, and (z;,z;) € S,. We say that z lies on
the edge z9 € An if z > 2o,z € Ri{z¢} and z¢ is maximal in Sii{zo} N 4, or
z < 29,2 € Ra{z0} and zo is minimal in S!{zo} N A,. We want to satisfy the
following conditions (for « € FN):

(aa) If m < a then Aq 2 A and (Vz € Ap)(Fa(z) = Fu(2)).

(ba) If z < y € A, then

(321,22 € [z,y] N Aa)(|Fa(21) — Fa(22)| 2 1/4%).
If moreover z,y € A, are connected neighbours then
|Fa(z) - Faly)| < 1/2%.

(ca) f m < a and z lies between connected neighbours z1,22 € Ay, then
(1) |Fa(@) = Fa(i)] < 1/2™ + (1/4™+) 4 ... +1/4%) < 1/2™ +1/(3.4™)
(i=1,2).
If z lies on the edge zo € Ay, then
(2) |Fa(z) - Fa(zo)| < 1/4™1 + .. + 1/4% <1/(34™). u

Lemma. Let {(Fi,Ax);k < n} satisfy the conditions (ai),(bk) and (cx) (k =
0,...,n). Then there ezists an Sd-function Fr.yy : @ — Q and a set-theoretically
defined mazimal R, 1-net Anyy satisfying again the conditions (any1), (bnyy) and
(cnt1)-

PROOF: Let A,4+1 2 A, be a maximal set—theoretically defined R, 41-net. Propo-
sition 3 says that there is an Sd-function G such that Sp4+1 = Rg. Let us de-
fine Fn4y firstly in the points of An41. For 2 € An put Fuyi(z) = F,(z). For
2 € Apyy — A, we distinguish two cases:

A. z lies between two connected neighbours z,y € A,.

If (z,y) € Sn+1, then in all points z € Apyq N (z,y) define Fy 4 (2) so that

(a) Fny1(2) lies between the values F,(z) and Fy(y),

(b) if 21,2, are neighbouring in An4,, then

|Fat1(21) = Faga(z2)| € [1/4™11,1/27%).

There is a z € (An41 N(z,y)) because Rpyy 0 Rnyy 0 Rug1 € Ry Let us suppose
the contrary, it means [z,y] C Rnyq{z,y}. Since (z,y) € Sn41 and (2,y) ¢ Rns1
there are z; € Ry, {z},22 € R, {y},z < 21 £ z2 <y such that (z;,23) € Rpy1.
It implies (z, y) € R, - a contradiction. Moreover by the induction hypothesis
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| Fnz — Fayl € [1/47,1/27]. 1t is thus possible to satisfy these two conditions (see
£8-2).

Fay |

F.z

Fig. 2

B Let( (;c, y)tg f..“. Put d = Fu(y) — Fu(z). In all points z € Ap4q N (z,y) define
n+1(2 80 a
(8) Fn+1(2) € {Fu(z), Fa(z) + d/4} if G(z) = G(2),
(b) Fuy1(2) € {Fa(y) — d/4, Fa(y)} if G(2) # G(2) or z € Sy, {y},
(c) if 21,22 € Apyy N[z, y] are neighbouring, then
|Fat1(z1) = Fuya(22)| 2 d/4.

It is obvious (see fig.3) that these three conditions can be satisfied.

1 N Y
7
-~
-~
7~
~
-~
Fr | /AN
| : = %
x y
Fig. 3

B. z lies on the edge z € A,. Let z € S,{z} N[z, c0) where £ = max(S" {z}N4.),
the second case is similar. Define Fy41 in all points z € S%{z} N [z, 00) N An+1 8O
that

(8) Foy1(2) € {Fa(z) — 1/4™, Fu(2)} if G(z) = G(2),

(b) Fuy1(2) € {Fa(z), Fa(z) + 1/4™*1} if G(z) # G(2)

() if 2y, 2, are neighbouring in An+1, then

|Fasa(z = 1) = Faga(z - 2)| 2 1/4"F.
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Again it is possible to satisfy these conditions (see fig. 4).

Fur + N

Fig. 4

On the rest of Q define F,41 so that it is linear on [z,y] where z,y € Aa41 are
connected neighbours or constant on S%,,{z}N[z, c0) or Sh,1{z}N{(—00, z] where
z is maximal or minimal in Sjj;{z} N An41 respectively.

The conditions (@n+1) and (bn41) are obvious from the construction of Fp41. Let
us prove (Cp41)-

Firstly let m = n + 1. If = lies between connected neighbours z;,z; € Am,
then |Fim(z) — Fm(zi)l < 1/2™ (i = 1,2). If z lies on the edge o € Am, then
|[Fin(2) — Fm(20)| = 0.

Secondly, let m < n + 1, then the induction hypothesis states that (c,) with
this m holds. Let z lie between connected neighbours z;,z2 € A,. Then Fy44(z)
lies between F,(z1), Fu(2z2) and since in the first case of (cn41)21,22 lie between
£1,T2 € Am, in the second case zy, z; lie on the edge 20 € Am, (1) or (2) of (cn41)
holds. Let z lie on the edge zg € Ay, then |Fp41(2) — Fu(zo)] < 1/4™¥1 as it follows
from the construction and since in the first case z, lies between z;,z5 € Ay, in the
second one on the edge o € A, we see that (1) or (2) of (cn41) again holds. m

We can suppose that Ry = Q?, then put Fy = 0,49 = {0}. From the lemma it
follows that there exists a sequence {{(Fn, Ap);n € FN} with the desired properties.
Let {(Fy, Aq); a € v} be an Sd*—prolongation consisting of Sd*—functions F : Q@ —
Q and Sd*-maximal R,—nets A, such that (aq),(ba),(ca) for a € 4 hold.

Take an « € ¥ — FN and put F = F,. It remains to prove that R = Rp. Firstly
observe that F is bounded, indeed |F(z)| < 1/3 for z € Q as follows from (c4) with
m =0.

Let (z,y) € R and x4,y € A, be such that z € R, {z¢},y € Ri{yo} and zo = %0
or To,Yo are connected neighbours in A,. Necessarily there are such zp,yp. From
(aa), (bn) and (cq) it follows

[F(z) = F(y)| < |Fa(z) = Fa(2o)l + |Fa(20) = Fa(w0)| + |Fa(y) — Fa(yo)l <
<1/2" +2(1/2" +1/(3-4™)).

Since it holds for each n € FN, F(z) = F(y). We have proved generally (¥z,¥)
({z,y) € R = F(z) = F(y)). Thus (z,y) € R implies (z,y) € Rp.
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On the other hand let (z,y) ¢ R,z < y. If there are n € FN and zo,y0 € An
such that z < 7o < yo < ¥, then (a,) and (bs) imply that (z,y) ¢ Rp. Let
card(A, N [z,y]) <1 for all n. Firstly let us suppose that A, N (z,y) = 0 for all n.
Necessarily (z,y) ¢ S. Let n be such that (z,y) ¢ S, and zo,y0 € A, such that
z € R!'{zo},y € Ru{yo}. Then 2o < z <y < yo and z lies on the edge zo € An,y
lies on the edge yo € An. Since zg,yo € A, are neighbouring, (bn) and (a4 ) imply

|F(z0) — F(yo)| 2 1/4™.

Finally from (2) of (ca) it follows

|F(z) = F(y)l 2 |F(z0) — F(yo)| = |F(z0) — F(z)| = |F(y) — F(yo)| 2
>1/4" —2/(3-4") =1/(3-4").

Thus (z,y) ¢ Rr. If A, N(z,y) = {zo} for an n € FN then Am N (z,y) = {z0}
for all m > n. Obviously (z,z¢) ¢ R or (z9,y) ¢ R. Since card(A, N (z,z¢)) =
card(A4, N(zg,y)) =0 for all n € FN, it holds (z,z¢) ¢ RF or (zo,y) ¢ Rp. This
implies (z,y) ¢ Rr. w

Corollary. Let R be an interval n-equivalence. Then there ezists a nondecreasing
Sd*-function F such that R = Rp iff R is compact.

PROOF: It is obvious that if F' is nondecreasing, then Rp is compact. Let R
be compact. By the preceding theorem there exists an Sd*-function G such that
R = Rg. It would suffice to construct a “variation” of the function G. But we know
that even a classically continuous function has not to have a variation. Nevertheless,
in this case it suffices to prove the following m

Lemma. Let G be a compact rational Sd-function (it means that Rg is compact).
Then there exists its generalized variation, i.e. a nondecreasing Sd-function F such
that Rg = Rp.

PROOF: Put é9= {(z,y);lz —y| < 1/aor z,y > aorz,y < —a},
R, = “z: y);(Vz between z, y)((G(.’L‘), G(Z)) €=, & (G(Z)9G(y)) G'—.—‘a)}'

Let v > F'N be such that for each a € v,a > 1 there exists a maximal R,-net uq.
If G(z) = cfor all z € Q then put F(z) = c. If there are z,y such that G(z) # G(y)
then we can suppose that there are z,y such that G(z) = 0,G(y) = 1. Thus we can
suppose that there are o < yo such that

(Va € 7)(zo = min(ua & yo = max(uq)) and uq = {20 =2§ < - <z, =y}
Put
8
Fo(z3) = Z |G(2§) — G(z5_1)-
5=1
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If (zg,:c;“) € Sa, then let Fy, be linear on [z§,2§,,]. If z§ is an edge of S, let
F, be constant on Sy{z§} N [2§,00) or S5{z§} N(—0o,z§]. Finally put

F(z)= Y Fa(2)/(2°Fa(y)) forz € Q.

a€y,a>1

F is rational nondecreasing Sd-function such that 0 < F < 2. We want to prove
Rg = Rp.

If (z,y) € Rg, then Fy(z) = F,(y) for all @ and so F(z) = F(y), i.e. (z,y) € Rp.

Let (z,y) ¢ Rg and let F(z) = F(y). Let there be zn,yn € up such that
z £ Zn < yn <y, then F(z,) = F(yn). From the construction of F it follows
that G(zn) = G(z) = G(yn) for all z € (um N [Tn,yn]),m 2> n and thus G(z,) =
G(z) = G(yn) for all z € [zp,ys]. It means (z,,y) € Rg — a contradiction. Thus
card([z,y] Nu,) < 1 for all n € FN. This implies (z,y) ¢ S where S is the
relation of connectedness of Rg. Thus we have G(z) # G(y) and G(z) = G(z)
for z € §"{z} N [z,y] and G(z) = G(y) for z € S"{y} N [z,y]. Consequently
F.(z) # Fa(y) for an n € FN and so (z,y) ¢ Rr. ®
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