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Correspondence between interval 
7r-~equivalences and Sd-functions 

Jl&f WlTZANY 

Abstract. In this paper we study interval ir-equivalences, that is we want to study Sd-
functions from the class of rational numbers Q to Q by means of these ^-equivalences. 
A theorem is proved which says that to each interval ir-equivalence there exists an Sd*-
function to which the tr-equivalence corresponds. 

Keywords: Alternative Set Theory, interval w-equivalence, function. 

Classification: 03E70, 54C30 

Introduction. 
A classical real function T (i.e. a closed figure in Q2) can be represented by an 

Sd-function F : Q —> Q such that T = Fig(F). We want to study T by means of 
that Sd-function F and the Sd-function by means of an interval 7r-equivalence Rp 
on the class of all rational numbers Q which is in a canonical way assigned to F. 

Throughout the paper we use usual notations and principles of the Alternative 
Set Theory (see [V]). In the first section, basic propositions concerning interval 7r~ 
symmetries are proved, discrete basis theorem is also proved. Then the structure of 
Q and the 7r-symmetries are studied in a connection with automorphisms. Finally 
there is proved an important theorem stating that to each interval 7r-equivalence R 
there exists an 5d*-function F such that R = Rp. 

First section, basic notions and motivations of this paper are due to P.Vopenka. 
I also thank K.Cuda for many valuable remarks to the studied matter. 

1. Interval 7r-symmetries (equivalences). 
Let the letters a;, y, z (event, with indices) be variables for rational numbers from 

Q-

Definition. A symmetry R is called to be an interval if 

(V*,y,*)((*,*) £R k x<y<z-+(x,y)eR k (y,z) € R). 

Obviously if M ^ 0 is a class of interval symmetries (equivalences) then C\M is 
an interval symmetry (equivalence). If R is a symmetry then we denote 

"&= {(*>vh(3*ifVi)((*uVi) G R & xi <x,y < yi)}. 

Obviously R is an interval symmetry. If R is an equivalence then B is an interval 
equivalence. If B is a tr-class then R is also a 7r-class. 
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Definition. Let R be an interval symmetry. We say that X is an R-cut if 

\)XCQkH^X^Q, 
2) ( t o , y ) ( * € K k y < x - > y € K ) , 
3) R"X = X. 

We say that a; is its inner or outer R-head if X = {y; y < x} U R"{.r} or Q — X = 
{y; # < y} U R"{#} respectively. 

Proposit ion 1. Let S C R be two interval symmetries. Let X be an R-cut. Then 
X is an S-cut. If x is moreover an inner (outer) S-head of the cut X, then x is 
an inner (outer) R-head of the cut X. 

PROOF: X C S"X C R"X = X. Let X = {y;y < x}US"{x} then X C {y;y < x] 
UR"{x}CR"X = X. m 

We say that a property ip(n) holds for almost all n € FN if there exists an 
m € FN such that v?(n) holds for all n > m. 

Proposit ion 2. Let {Rn;n G FN} be a sequence of interval ir-symmetric such 
that Rn+i C Rn for all n. Put R = n{Rn;n £ FN}. Let X C Q be such that the 
classes X, Q — X are revealed. The following holds: 

(a) R"X = X iff RnX = X for almost all n € FN. 
(b) X is an R-cut iffX is an Rn-cutfor almost all n. Moreover X has an inner 

(outer) R-head iff X has an inner (outer) Rn-head for almost all n. 

PROOF: (a) The case of X = 0 or X = Q is trivial, hence let 0 ^ X ^ Q. Let 
R'^X = X, then X C R"X C R'„\X = X. On the other hand let X = R"X. 
Let us suppose that X ^ RnX for all n € FN, hence Rn H (X x (Q - X)) 7- 0 
for all n. Then R n (X x (Q - X)) ^ 0, thus X + R"X - a contradiction. By 
that we have proved that there exists an m such that X = R'„\X. Let n>m then 
XCR'^XCR^X^X. 

(b) from (a) it follows that X is an R-cut iff there exists an m such that X is 
an JRn-cut for all n > m. Let x be an inner (outer) I2-head of the cut X. Then 
(by the proposition 1) x is an inner (outer) I2n-head of X for almost all n. Let 
conversely xn be an inner I2n-head of the cut X for all n > m. Let x € X be 
such that a:n < x for all n > m. We prove that ar is an inner R-head of the cut 
X. Let x < y. If y € X then (-cn,y) € Rn for all n > m, thus y G R"{x}. Hence 
K _= {y*»y < a:} U R"{x} C R'#X = X , which means that x is an inner R-head of 
X. The case of the outer head is similar. • 

# 
Proposit ion 3 , Let R be an interval it-symmetry. Let X be an Sd-class such 
that X CQJf^X ^ Q,R"X = X. Then there exists a set-theoretically definable 
R-cut Y. 

PROOF: Obviously Q — X is an Sd-class and R"(Q — X) = Q — X. Let us assume 
that Q — X is not an R-cut. Then there exist xo € X, yo € (Q — X), XQ < yo, thus 
XQ € X,yo $ X. Put Y = {x;(3y € X)(x <y< yo)}. Obviously Y is an Sd-class 
which satisfies the first two conditions from the definition of R-cut. Let us prove 
that it satisfies the third condition. By contradiction let us assume that there exist 
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x\ € Y,z ^ Y such that (x\,z) G R. Let x2 G X be from the definition of Y such 
that x\ < x2 < y0. Obviously x2 < z because otherwise it would be z G Y. It 
implies (x2,z) G R, thus z G B"K = X. If y0 < z then we would have (x2,y0) £ R, 
thus y0 G .R"X = K, but y0 ^ K. Consequently z < y0. Since z G X, z G Y, and 
this is the desired contradiction. • 

* Proposit ion 4. Let R be an interval w-symmetry. Then there exists its generat­
ing sequence {Rn;n G FN} such that Rn is an interval Sd-symmetry for all n . 
Moreover if R is an equivalence then Rn+\ o Ifcn+1 C Rn can be assumed for all n. 

PROOF: Let {Sn;n G FN} be a generating sequence of the Tr-symmetry R. Ob­
viously 5 n is an interval 5d-symmetry, 5 n +i C Sn,Sn C 5 n for all n € FN. From 
this R = n { 5 n ; n G FN} C n { 5 n ; n € FN}. Let (x,y) G n{Sn;n G FN}. We 
want to prove (x,y) G R. There exists a sequence {(xn,yn);n G FN} such that 
(xnyyn) € Sn,xn < x,y < yn for all n. Let {(xa,ya);a G 7} be a prolongation of 
this sequence such that xa < x,y < ya for a G 7 and (xaya) G 5 n for n G FN, 
a > n. Hence ( . r a ,y a ) G R if a G 7 — FN and since R is an interval symmetry, we 
see (x,y) G R. We have proved that {Sn;n G FN} is a generating system of the 
7r-symmetry R with the desired properties. If II is moreover an equivalence then 
by the theorem III.1.1[V] it is possible to select from this sequence a generating 
subsequence {Rn;n G FN} such that Rn+\ o Rn+\ C j?n for all n. • 

Definit ion. We say that a class D C Q is a discrete basis of a 7r-symmetry R if 

1) (Vx)(3yeD)((x,y)€R), 
2) (V7 G N) Set {x; x G D & -7 < x < 7 } . 

We say that x,y G D are neighbouring if x ^ y and 

(Vz)(min{x, y} < z < max{.r,y} —> z $ D). 

T h e o r e m . <J§e< R be an interval ir-symmetry. Then the following conditions are 
equivalent: 

(a) There exists a discrete basis of the it-symmetry R. 
(b) Each set-theoretically definable R-cut has an inner and an outer R-head. 

P R O O F : (a)—>(b). Let D be a discrete basis of the Tr-symmetry R. Let X be 
a set-theoretically definable Il-cut. Let xo G X,yo $ X and X\,y\ € D be such 
that (x0lx\) G R,(y0,y\) G R. Obviously x\ G K,yi £ X. Let 7 G N be such 
that - 7 < x\ < y\ < 7 . Put u ~ X n {x;x € D & - 7 < a; < 7} . We see 
xi G u,yi $ u. Let x2 be the greatest element in the set it in the natural ordering 
of Q, y2 G D,y2 > x2 its neighbour in D. Obviously y2 £ X. li x2 < z < y2 then 
either (x2,z) G -ft or (*,y2) G I2 and these two cases exclude one another because 
(*2, z) £R implies * G I*"K = X and (2, y2) G I* implies z G I*"(Q - K) = Q - K. 
Prom this it follows X = {y;y < x2} U I?"{*2}, Q - X = {y;y > y2} U -R"{y2}. 
Consequently x2 is an inner and y2 and y2 an outer I2~head of the I?-cut X. 

(b)—*(a). Let {Rn; n G FN} be a generating sequence of the 7r-symmetry R such 
that Rn is an interval 5d-symmetry for all n (see Proposition 4). There exist (by 
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the theorem III.1.3[V]) 5d-classes Dn such that Dn is a maximal Rn-net. If m < n 
then Rn C Rm and hence 

(V) (Vn)(m < n - (Vx)(3y € Dn)((x,y) G Rm)). 

We will prove that the following holds: 

(2') (Vn)(V7 € N)Set{s,a: £ Dn k - 7 < x < 7} . 

Choose an n € FN and let 7 € N be such that (2') does not hold. Put Y = 
{y;Set{x;a7 € Dn k — 7 < £ < 7 k x < y}}. Obviously Y is an Sd-
class satisfying the first two conditions from the definition of the .ft-cut. We prove 
Y -= R'^Y. Let x0 G Y,yo i Y,(x0iy0) G Rn, obviously x0 < y0. If ztyz2 G Dn 

would be such that x0 < Z\ < z2 < y$ then (21,22) € -Rn, which is impossible 
because Dn is an i?n-net. So between xo,yo there lies at most one element of 
the class Dn and so yo € Y - a contradiction. By that we have proved that 
Y is an Rn-cut and thus also an JR-cut. Let x\ be its inner and yi outer R-
head and thus also i^-head (see Proposition 1). Let 21,22,23 G Dn be such that 
x\ < z\ < z2 < 23 < yi. Then either (xyz2) G Rn and so (21,22) € Rn or 
(22,yi) € Rn and so (22,23) G RN- Between -ci,yi thus there can lie at most two 
elements of the class Dn. This implies yi € Y - a contradiction. 

Let {Da;a G 6} be an 5d*-prolongation of the sequence {Dn;n G FN} such 
that for all a € 6 the following holds: 

(V7€N )Se t{x;x€D 0 k —y<x<<y}. 

Let Sm € (6 - FN) be such for all a G N,m < a < Sm, it holds 

(Vx)(3yeDa)((x,y)€Rm). 

Choose a € S — FN so that a < Sm for all m. Then ** 

(Vm)(Vx)(3y€Da)((x,y)6Rm), 

thus Rm{x} n Da *fi 0 for every m, x. Since Da is an 5d*-class, DQ is revealed and 
so R"{x} n Da = n{.Rm{a;}; m G FN} ^ 0. But it means that 

(Vx)(3y€Da)((xyy)€R). 

We have proved that Da is a discrete basis of the 7r-symmetry R. • 

Proposition 5. Lei R be an interval ir-symmetry which has a discrete basis D. 
Let X be an R~cut} X a sharp class, i.e. (Vu) Set(X n u). Then X is an Sd-class. 

PROOF: Let 7 G N be such that - 7 G X, 7 $ X- Put d = {y; - 7 < y < 7 k 
y G D}. Then X = {y\y < <y}UR'l(df)X),Q -X = {y;7 < y} Ui*"(d -X) , thus 
X and Q — X are ar-classes and so Sd-classes. • 
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Proposition 6. Let R be an interval compact ^-symmetry. Then R has a discrete 
basis which is a set and the class M of all set-theoretically definable R-cuts is at 
most countable. 

PROOF: Let {Rn; n £ FN] be a generating sequence of the 7r-symmetry R. Let d 
be a set such that (\fx)(3y € d)((x,y) € R) (see Theorem III.1.5[V]). Obviously d is 
a discrete basis of the 7r-symmetry R. If x € d then x denote its right neighbour in 
the set d. For X € M let ex denote the greatest element of the set Xf)d. Obviously 
(ex,ex) $ Rimd cx ^ cY for K,F € M,X ± Y. Put An = {cx;X € M 
k (ex,c~x) $ Rn}• Obviously 

{cx;X € M} = U{An;n E FN}. 

Thus it suffices to prove that each An is a finite class. If a?,y £ Anix < y then 
x < y from the definition of J , hence (x> y) $ Rn. But this means that An is an 
Rn-net and so by the theorem IILL3[V] An is finite. • * 

More generally as a consequence of some deeper results of [C] it can be proved 
that the class of all clopen figures in a compact 7r-symmetry is countable. 

2. Interval IT—symmetries and automorphisms. 
Let = mean the basic equivalence on the universe V (see [CK] or the section 

V.1[V]). 

Proposition 1. Let X CQ be an Sd-cut. Then Fig^(X) is also a cut. 

PROOF: If F : V —• V is an automorphism then obviously F"X is also an Sd-cut. 
Since Fig^(X) = U{F"X; F is an automorphism}, Fig^(X) is a cut. • 

Proposition 2. Let F be an automorphism, X CQ an Sd-cut which is not Sd$. 
Then F"X ± Fig, (X). 

PROOF: Let us suppose that F"X = F i g ^ X ) . It implies that Fig«.(X) is an 

Sd-class. It is also a =-figure, it is proved in the section VA[V] that then it is an 
Sdg-class. Consequently X is an Sdg-class - a contradiction. • 

Sd-cuts represent classical real numbers in the sense of Dedenkind's cuts. The 
following proposition says that these Sd-cuts are being moved by automorphisms 
in the limits given by Sd#-cuts which are firm with respect to the automorphisms. 

Define an interval 7r-equivalence 

Ro = D{Z2 U (Q - Zf\ Z is an Sd#-cut} 

Proposi t ion 3 . Let X be a cut, then Fig^(X) = FigH0(K)-

PROOF: Obviously Fig^(X) C Fign0(X). EVom the definition of = 

Fig.. (X) = 0{A; A is Sd$ k X Q A). 

For an Sd#-class A D X put ZA = {y € A; (Vz)(z <y~+ *€ -4)}, it is an Sd#-cut. 
Since F i g ^ K ) = f){ZA;A is Sd$ k X Q A},FigHo(X) C F ig 4 (K ) . • 
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Sdg-cuts occupy a special place among all rational cuts. Thus let us define a 
class of concrete real numbers: 

CR = {X;X is an Sdg-cut k X has not a last element}. 

All finite rational and algebraic numbers, 7r,eetc. belong in the classical sense to 
CR. This class is countable and is closed under algebraic operations and under the 
operation of supremum over Sd$-subclasses. The nonexistence of an infinitesimally 
small concrete real number is equivalent to the axiom of elementary equivalence. 

Now let J? be an interval 7r-symmetry and X an Sd-_R-cut. We say that X is 
limit if X has not its inner or outer head. We will give a sufficient condition on R 
to have a limit Sd-cut. 

In the rest of this section we suppose that the axiom of elementary equivalence 
holds (i.e. Def = FV). 

Proposit ion 4. Let S be an interval Sd$-symmetry. If there exists an Sd-cut X 
of S such that X fl BQ =fi 0, BQ — X ^ 0 and X $ Sd$ then S has a limit Sd-cut. 

PROOF: Let X be an Sd-cut, X i Sd$,S"X = X. Let us suppose that 0 € X, 
1 ^ X. Let A be a maximal Sdg-S-net on [0,1]. If A would be a finite class then X 
could not be limit. If Set(A) then card(A) € Def but card(A) £ FN. Thus A is a 
proper uncountable Sd-class. From the theorem of the preceding section it follows 
that there has to exist an Sd-cut Y of S which is limit. • 

Corollary. Let R be an interval n$ -equivalence. If R has an Sd-cut X such that 
X fl BQ 7- 0, BQ - X ^ 0 and X $ Sd* then R has a limit Sd-cut. 

PROOF: See Proposition 1.2. • 

The converse implication does not hold - the interval Trg-equivalence 

i2+ = {(x,y);x = y = 0 o r x ^ 0 k y ± 0 k (Vn)( | - - 1| < -)} 
y n 

has just two Sd-cuts {x; x < 0} and {x; x < 0} which are both Sd$ and limit. 

3 . Correspondence between interval 7r-equivalences and ra t ional Sd~-
functions. 

Definition. Let F : Q —* Q be a function. We define the relation 

RF = {(xiy);(Vz)(mm{xyy} <z< max{a:,y} -4 F(x) = F(z) = F{y))}, 

where = is the standard compact indiscernible equivalence on Q. 

Proposit ion 1. If F : Q —* Q is an Sd-function then Rp is an interval in­
equivalence. 

PROOF: Obviously Rp is an interval equivalence. Let {Sn;n € FN} be a gener­
ating system of = . Put 

RFfn = {(a,,y);(to)(min{a:,y} <z< max{a;,y} -> 

- (F(x\F(z)) €Sn k (F(z)yF(y)) G S n )} , 

then RF,n is an Sd-class and RF -= f){RFtn',n € FN}. • 
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Examples, (i) Let x £ Q, then a < x < a - f l f o r a n o ; € N C Q . Define F(x) = 
(x - a ) ( - l ) a + (a 4-1 - x)(-l)a+1 (see fig. 1). Then RF = {(x, y); \x - y\ = Q} i8 

a noncompact ^-equivalence on Q. 

(ii) Let x £ Q, then a; = a//3 where a,0 £ N are relatively prime. Put F(x) = 
(—l)a. Then RF = {(x, y); x = y} is a discrete equivalence on Q. 

We want to investigate 5d-functions from Q to Q through interval ir-equivalences 
RF. Results on interval 7r-equivalences can be applied on 5d-functions. 

In this section we will show that to each interval --equivalence R there exists an 
5d*-function F such that R = RF. 

Definition. Let i2bea symmetry on Q, we define the relation of connectedness of 
R as usually 

CntdR(u) = (Vi> C u)(0 ^v^u-+ (32i € t;)(322 £ u - v)((zu z2) £ R% 
5={(x,y) ; (3u)(x ,y€u k CntdR(u))}. 

Proposition 2. Let R be an interval symmetry, 5 the relation of connectedness of 
R. Then 

(a) R C 5 and* 5 w an interval equivalence. 
(b) Arc Sd-class X is R-cut iff it is S-cut. 
(c) If R is an interval ir-symmetry then 5 is an interval IT-equivalence. 

PROOF: (a) It is obvious from the definition that R C 5. Since ui n U2 =̂  0 k 
CntdR(u\) k CntdR(u2) implies CntdR(u\ UU2), we see that 5 is an equivalence. 
Finally let x < 2 < y and (a:, y) € 5, then there is a u C Q such that CntdR(u) 
and x, y € u. Put v = {xi € u;xi < 2}, 21 = max(u),22 = min(u — v). Then 
necessarily (21,22) € H and so (21,2) € .R,(2,22) € R. Consequently CntdR(v U 
{2}), CntdR((u — v) U {2}) and (x, 2) € 5, (2, y) € 5 . We have proved that 5 is an 
interval equivalence. 

(b) If an 5d-class X is an 5-cut, it is also an i?-cut because R C S. Let an 
5d-class X be an .R-cut and x £ X, y $ K be such that (x, y) € 5 . It means that 
there is a u C Q such that xyy £ u and CntdR(u). Put t> = u n K, there has to 
exist 21 € v, 22 € u — v such that (21,22) € -R, but 21 6 K, z2 $ X - a contradiction. 

(c) If R is an 5d-class then it is obvious from the definition that 5 is also Sd. 
Let R be an interval --symmetry, R = n{Un;n £ FN} where Rn are interval 
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5d-symmetries (see Proposition 1.4). Let 5„ be the relations of connectedness of 
Rm hence Sn are 5d-classes. It holds that (see theorem IIL3.1[V]) 

(1) CntdR(u) & (Vn)(CntdRn(u)). 

It is obvious 5 C n{5„;n G FN}. Let (x,y) G n{5„;n € FN}. Then there are 
u „ C ( J such that x,y € un & CntdRn(un). Take a prolongation {u$;S G 7} of 
the sequence {un; n G FN} such that S G 7 — FN and n G FN implies i , y 6 « < 
and CntdRn(u$). Take a 6 € 7 — FN, then x, y 6 ti* and CntdR(u$) (see (1)), thus 
( x , y ) € 5 . • 

Proposition 3. Let 5 he an interval Sd-equivalence. Then there exists an Sd-
function G : Q —•• {—1,1} such that S = RG-

PROOF: Put 5o = {(x,y);(V2)(min{x,y} < 2 < max{x,y} —• (x,2) G 5 or 
(z,y) € 5)}, obviously 5o is an interval 5d-symmetry. Let 5i be the equivalence 
of connectedness of 5o- Obviously S C S\. Let Ai be a maximal set-theoretically 
definable 5i~net and A D Ai a maximal set-theoretically definable 5-net. By 
induction we construct a function G on A\. Let P : N —> Ai be an 5d-numbering 
of the class Ai (if Ai is a set, we consider P : a —* A\). 

I. G(P(0)) = 1. 
II. G(P(a)) = -G(x0) where x0 = max{x € P"a;x < P(a)} if {x G P"a;x < 

P(a)}?0. 
G(P(a)) = 1 otherwise. 

By this an 5d-function G on Ai is defined. Now let x £ A. Then there exists just 
one x0 G Ai such that (x0,x) G 5i . Thus there is a u C Q such that x,x0 G u 
and Cntds0(u). Put Z = {2 G A;min{x0,x} < 2 < max{xo,x}}. Let 21 G z, then 
there exists a 22 G u such that {21,22) G 5 . Indeed, let 21 $ u, otherwise it should 
hold with 22 = 21. Put v = {z £ u;z < z\}, there are 22 G v, 23 G (w — t;) such 
that {22,23) G 5 . Since 22 < 21 < 23, also (21,22) G 5 . Since z is an 5-net and 5 
is an 5d-equi valence, there is a one-one 5d-function from Z into u. Thus Set(z) 
and we can put a = card(z) and G(x) = (-1)Q~'1G(XQ). 

Finally let x G Q. Then put G(x) = G(x0) where x0 G A is such that (x0, x) G 5. 
We have defined an 5d-function G:Q-+{-l,l}. It remains to prove that 5 = /fe­
lt is obvious that 5 C RQ. Let (x,y) ^ 5,x < y, we can suppose i , y 6 i . We 
shall use the common notation [x,y] = {zyx < z <y} and (x,y) ^ {z;x < z < y}. 
U there exist 21,22 G A n [x,y],2i < 22 such that (21,22) G 5i, then from the 
definition of G it is obvious that (x, y) $ .RG* Let us suppose the contrary. Then 
(A - Ai) n (x,y) = 0 and (x,y) k S\. If Set(A n [x,y]) then u = A n [x,y] 
would be 5o connected -a contradiction. Thus A n [x, y] and also Ai n [x, y] is an 
uncountable proper 5d-class. Let x = P(«), necessarily there exist a /5 > a such 
that P(0) € A\f) [x,y]. Let fa be the first such 0. Then G(P(e*)) ^ G(P(/30)), 
hence again (x, y) ^ RQ. m 

Theorem. Let R be an interval TT-equivalence. Then there exists an Sd*-function 
F such that R = RF. 
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PROOF: Let R = n{I?n;n G FN} where {Rn;n G FN} is a generating system 
consisting of interval Sd-symmetries such that I?n+i o I2n+i C J?n, {Ra; a € 7} be 
its Sd*-prolongation and Sa the relations of connectedness of Ra. We will construct 
a sequence { (F n ,A n ) ;n G FN} of Sd-functions Fn : Q —• Q and set-theoretically 
definable maximal I2n-nets An. 

We say that an x G Q lies between connected neighbours xllx2 G An if xi < 
x < x2,x1 and x2 are neighbours in An and (£1,2:2) € Sn. We say that x lies on 
the edge x0 G An if x > x 0 ,x G 1?n{x0} and x0 is maximal in 5 n { x 0 } f\ An or 
x < x 0 ,x € -Rn{zo} and x0 is minimal in 5n{xo} n An. We want to satisfy the 
following conditions (for a G FN): 

(aa) If m < a then Aa D Am and (Vz G Am)(Fa(*) = Fm(z)). 

(ba) If x < y G A« then 

(3z! ,z 2 G ix,y]nAa)(\Fa(Zl)-Fa(z2)\ > 1/4°). 

If moreover x, y € Aa are connected neighbours then 

\Fa(x)-Fa{y)\<l/2". 

(ca) H m <a and x lies between connected neighbours xi,X2 € Am , then 

(1 ) |Fa(x) - Fa(x.)| < l / 2 m + ( l / 4 m + 1 + • • • + l / 4 a ) < l / 2 m + l / (3 .4 m ) 
(• = 1,2). 
If x lies on the edge xo € Am, then 
(2) |Fa(x) - Fa(x0)| < l / 4 m + 1 + • • • + 1/4* < l / (3 .4 m ) . • 

Lemma. Let {(Fjt,A*);k < n} satisfy the conditions (a*),(£*) and (c^) (k = 
0 , . . . , n ) . Then there exists an Sd-function Fn+i : Q —+ Q and a set-theoretically 
defined maximal -ftn+i -net An+i satisfying again the conditions (an+i) ,(6n+i) and 
(cn+i). 

PROOF: Let An+i 2 An be a maximal set-theoretically defined I2n+i-net. Propo­
sition 3 says that there is an 5d-function G such that 5n+i = RQ. Let us de­
fine Fn+i firstly in the points of An+i. For z € An put Fn+i(z) =. Fn(*). For 
z 6 An+i — An we distinguish two cases: 

A. z lies between two connected neighbours x,y € An. 
If (x, y) € 5n+i , then in all points z G An+i n (x,y) define Fn+1(z) so that 

(a) Fn+i(z) lies between the values Fn(x) and Fn(y), 
(b) if z1, z2 are neighbouring in An+i, then 

|F n +i (* i )~F n +i (* 2 ) | G [ l /4"+ 1 , l / 2« + 1 ] . 

There is a z G (An+i n (x, y)) because Rn+1 o H n + 1 o Rn+1 C Rn. Let us suppose 
the contrary, it means [x,y] C JlJJ+ifa-v}. Since (x,y) G 5n+i and (x,y) $ .Rn+i 
there are zx G Rn+1{x},z2 G -R2+i{v}»* < *i < *2 < V such that (*i,z2) G i*n+i. 
It implies (x, y) G Rn - a contradiction. Moreover by the induction hypothesis 



184 J.Witzany 

\fnx -~ F«y| € [l/4n, l /2n] . It is thus possible to satisfy these two conditions (see 
fig-2). 

Fny 1 

Fnx 

Fig. 2 

Let (x, y) t Sn+1. Put d = Fn(y) - Fn(x). In all points z 6 An+1 f\ (x, y) define 
Fn+i(z) so that 

(a) F„+i(z) e {Fn(x), Fn(x) + d/4} if G(x) = G(z), 
(b) F„+i(z) G {Fn(y) - d/4,F„(y)} if G(x) jt G(z) or z e ^ + 1 { j , } , 
(c) if *i, Z2 € An+i n [x, y] are neighbouring, then 

|F n + i (z i ) -F n + 1 (z 2 ) |>d /4 . 

It is obvious (see fig.3) that these three conditions can be satisfied. 

FnУ 

Fnx 

F i g 3 

B. z lies on the edge x € An. Let z 6 S„{x}n[x, oo) where x = max(S'^{x}OAn), 
the second case is similar. Define F„+i in all points z 6 5^'{x} 0 [x, °o) D ^n+i so 
that 

(a) F„+,(z) € {Fn(x) - 1/4-+1, Fn(x)} if G(x) = G(z), 
(b) F„+,(z) £ {F„(x), Fn(x) + l/4"+»} if G(x) 54 G(z) 
(c) if z,,z2 are neighbouring in An+lt then 

|F„+,(z - 1) - Fn+1(z - 2)| > l/4"+1. 
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Again it is possible to satisfy these conditions (see fig. 4). 

Fnx 
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Fig. 4 

On the rest of Q define Fn+i so that it is linear on [x,y] where x,y G An+i are 
connected neighbours or constant on 5n+1{-r}n[x, oo) or 5 n+i{x} fl((—oo, x] where 
x is maximal or minimal in 5 n + 1 {x} n An+i respectively. 

The conditions (a n+i) and (&n+i) are obvious from the construction of Fn+i. Let 
us prove (c n+i) . 

Firstly let m = n + 1. If a: lies between connected neighbours xi,X2 G A m , 
then \Fm{x) ~ Fm{xi)\ < l / 2 m {i = 1,2). If x lies on the edge xQ G A m , then 
| F m ( . r ) - F m ( . r 0 ) | = 0 . 

Secondly, let m < n + 1, then the induction hypothesis states that (cn) with 
this m holds. Let x lie between connected neighbours zi,Z2 € A n . Then Fn+i(x) 
lies between Fn(zi),Fn(^2) and since in the first case of (c n +i)z i ,z 2 he between 
11,22 € A m , in the second case zi,z2 he on the edge z0 € A m , (1) or (2) of (cn+i) 
holds. Let x lie on the edge z0 G A n , then |Fn+i(x) - F n ( z 0 ) | < l / 4 n + 1 as it follows 
from the construction and since in the first case z0 lies between X\,X2 G A m , in the 
second one on the edge XQ G A m , we see that (1) or (2) of (cn+i) again holds. • 

We can suppose that R0 = Q 2 , then put F0 = 0, A0 = {0}. From the lemma it 
follows that there exists a sequence {{Fn, A n ) ; n G FN} with the desired properties. 
Let {(Fa, A a ) ; a G 7} be an Sd*-prolongation consisting of 5d*-functions Fa : Q —• 
Q and 5d*-maximal Ra-nets Aa such that ( a a ) , ( o a ) , ( c a ) for a € 7 hold. 

Take an a G 7 — FN and put F = Fa. It remains to prove that R = RF- Firstly 
observe that F is bounded, indeed \F{x)\ < 1/3 for x G Q as follows from (c a) with 
m = 0. 

Let (x, y) G R and x0 ,y0 G An be such that x G Rn{xQ},y G Rn{yo} and x0 = y0 

or x0 ,y0 are connected neighbours in An . Necessarily there are such x0»yo- From 
(a a ) , {bn) and (c a ) it follows 

1 ^ ) - F(y)l < \Fa{x) - Fa(.r0)| + |Fn(*0) - Fn(yo)| + |F*(y) ~ F«(yo)l < 
< l / 2 n + 2 ( l / 2 n + 1/(3 • 4n)) . 

Since it holds for each n G FN, F{x) = F(y). We have proved generally (V.r,y) 
((x,y) e i ? - 4 F{x) = F(y)). Thus (x,y) G R implies (x,y) G RF-
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On the other hand let (x,y) $ R,x < y. If there are n € FN and x0,y0 € An 

such that x < x0 < y0 < y, then (aa) and (ba) imply that (x,y) £ RF. Let 
card(An n [x, y]) < 1 for all n. Firstly let us suppose that An 0 (x, y) = 0 for all n. 
Necessarily (x,y) $ S. Let n be such that (x,y) $ Sn and x0,y0 € An such that 
x € Rn{x0},y 6 Rn{y0}. Then x0 < x < y < y0 and x lies on the edge x0 € An,y 
lies on the edge y0 € An. Since x0,yo € An are neighbouring, (bn) and (aa) imply 

| F ( x 0 ) - F ( y o ) | > l / 4 n . 

Finally from (2) of (ca) it follows 

\F(x) - F(y)\ > \F(x0) - F(y0)\ - |F(x0) - F(x)| - |F(y) - F(y0)| > 

> l / 4 n - 2/(3 • 4n) = 1/(3 • 4 n) . 

Thus (x, y) $ RF. If An n (x, y) = {x0} for an n € FN then Am f) (x, y) = {x0} 
for all m > n. Obviously (x,x0) $ R or (x0,y) £ R. Since card(An n (x,x0)) = 
card(A n n (x0,y)) = 0 for all n G FN, it holds (x,x0) £ RF or (x0,y) £ RF. This 
implies (x,y) $ RF. • 

Corollary. Let R be an interval ir-equivalence. Then there exists a nondecreasing 
Sd* -function F such that R = RF iff R is compact. 

PROOF: It is obvious that if F is nondecreasing, then RF is compact. Let R 
be compact. By the preceding theorem there exists an Sd*-function G such that 
R = RQ. It would suffice to construct a "variation" of the function G. But we know 
that even a classically continuous function has not to have a variation. Nevertheless, 
in this case it suffices to prove the following • 

Lemma. Let G be a compact rational Sd-function (it means that RQ is compact). 
Then there exists its generalized variation, i. e. a nondecreasing Sd-function F such 
that Ro = RF. 

PROOF: Put = a = {(x, y); \x — y\ < 1/a or x, y > a or x, y < —a}, 

Ra = {(*,y) ; ( to between x,y)((G(x),G(z)) € = „ k (G(z),G(y)) € = * ) } . 

Let 7 > FN be such that for each a € 7, a > 1 there exists a maximal Ra-net ua. 
If G(x) = c for all x € Q then put F(x) s c. If there are x, y such that G(x) £ G(y) 
then we can suppose that there are x, y such that G(x) = 0, G(y) = 1. Thus we can 
suppose that there are x0 < y0 such that 

(Va € 7)(-eo = min(« a & y0 = max(u a)) and ua = {x0 = x0 < • • • < x"a = y 0 }. 

Put 
P 

F«(-5?) = $]|C?(x?)-(?(^1)|. 
6^1 
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If (-c|,x^|+1) 6 Say then let Fa be linear on [sjj,££+i]. If x^ is an edge of 5 a , let 
Fa be constant on S a {x£} n [x£,oo) or 5 a {x£} n ( -00 , x£]. Finally put 

F(x)= £ Fa(x)/(2aFa(yQ))iorxeQ. 
o€7 ,a>l 

F is rational nondecreasing Sd~function such that 0 < F < 2. We want to prove 

RG = RF-

If (x, y) € RG, then Fa(x) = Fa(y) for all a and so F(x) = F(y), i.e. (x, y) € RF-
Let (x,y) $ RG and let F(x) = F(y). Let there be x n , y n G « n such that 

x < xn < yn < y, then F(xn) = F(yn). From the construction of F it follows 
that G(x n ) = G(z) = G(yn) for all z € (um n [xn ,yn]) , m > n and thus G(xn) = 
G(z) = G(yn) for all z € [-cn,yn]. It means (x n , y n ) € RG - a contradiction. Thus 
card([x,y] (1 un) < 1 for all n € FN. This implies (x, y) $ 5 where 5 is the 
relation of connectedness of RG. Thus we have G(x) jfc G(y) and G(x)% = G(z) 
for z e S"{x} n [x,y] and G(z) = G(y) for z £ S"{y} H [x,y]. Consequently 
Fn(x) ^ Fn(y) for an n G FN and so (x, y) $. RF- • 
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