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Smoothing effect and regularity for
evolution integrodifferential systems

MARIAN SLODICKA

Abstract. A system of two partial quasilinear integrodifferential equations (hyperbolic and
parabolic) is considered. Smoothing effect and regularity of higher order in ¢ resp. ¢,z is
studied.
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1. Introduction.

Character of linear parabolic equation guarantees that its solution for ¢ > 0
belongs to a more regular space than the initial function. This fact is well-known
as smoothing effect and it has been studied in [1]-[4], [10],.... In general it is not
true for hyperbolic equations. In spite of this the smoothing effect for the parabolic
part of the system (2.3) can be proved (see Theorem 3.3)

Regularity of weak solutions for linear parabolic and hyperbolic equations has
been considered in (1], [3], [4], [6], [7], [9],..... The aim of the section 4 resp. 5 is to
obtain higher order regularity of the weak solution of a linear evolution integrodif-
ferential system in ¢ resp. t,z. To this purpose we discretize the time variable and
apply the technique of Rothe’s method which allows to carry the regularity results
from elliptic to parabolic (hyperbolic) equations.

The existence and uniqueness of the weak solution of our problem is considered
in [11]. To prove it, we use the technique developed in [3]. Before reading this
paper we recommend the reader to see [11].

2. Notations and preliminaries.

Let H,Y be real abstract Hilbert spaces with norms |-|, || - ||, where HNY is dense
in H and Y; H*,Y* be dual spaces to H,Y with norms | |[1,]| ||;. Denote by S,
the interval (—g,t) for t € J,J = (0,T) where T < 00,9 € (0,00). The function
spaces we use are rather familiar and we omit their definitions (see [5]). By < is
denoted the continuous imbedding. Let (z,w) g, (u,v)y be the continuous pairings
forze H*,we HueY*veY.

In the following we keep the notation from [11].

If X,Y are Banach spaces, a € (0,1) then:

- By Lip,(X,Y) is denoted the set of all functions g : X — Y satisfying

lg(u) — g(v)lly < Cllu=v|§  Vu,veX.

For a =1 the notation Lip(X,Y) = Lip1(X,Y) is used.
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- By Lip(J x X,Y) is denoted the set of all functions g : J x X — Y satisfying

lg(t,u) = g(t',v)lly < C (It =t'| 1+ flullx + [lollx] + |lu - vllx)
vt t' € J; Yu,v € X.

Definition 2.1. The operator E : Loo(S7,X) = Loo(J,X) (X is a Banach space)
is said to be a Volterra operator in X iff

[u(s) =v(s) forae. s€ S, telJ]=
[E(u)(s) = E(v)(s) for a.e. s € (0,t)].

Let E : Lip(St,H) — Lip(St,H) resp. F : Lip(St,Y) — Lip(S7,Y) be a
Volterra operator in H resp. Y and G : Loo(J,Y) = Loo(J,Y), I : Loo(J,H) —
L (J,H) be in the form

(2.2)  R(z)(t) = /0 t K(t,s)z(s)ds, R=G,I; K€ Loo(J xJ).

Let us fixe € Lip(J XY x H3 x Y2 H*),u:J =Y " v:J - H* p, : J = Y*
and-the continuous bilinear forms p(t; z, w), a1 (¢; u, v), a2(t; u, v), b(t; u,v), d(t; z,v),
g(t;u,v), p(t; u, w), 9(t; z,w) for z,w € H and u,v € Y. The notation r¥(t; z,y) is
used for 8r(t; z,y).

We consider the following problem:

PC-1. To find u,v such that

(1) v =a,v=B,0v =+ in Sy = (—gq,0) where a € Lip(Sy, H), B € Lip(Se,Y N
H) and v € Lip(So, H).
(ii) the identity (2.3) is satisfied

(2.3) p(t; Bu(t), @) + a1(tu(t), ) = d(t; (u + v + I(u + v))(t), @)+
+9(t; G(u + v)(t), ) + p(t; (u + G(u + v))(t), p)+
+9(t; (u + v + I(u + 0))(2), ) + (p(t), @)y + (v(t), ¥)H,
p(t; 07 v(t), 8) + b(t; Drv(t), 6) + az(t; v(2), ¢) =
=d(t; (v + I(u + v))(t), ¢) + 9(t; G(v)(¢), )+
+(e(t, u(t), E(u)(t), E(v)(t), E(8v)(t), F(v)(t), G(u)(?)), 6}
Vo, € YNH, forae teJ

Remark 2.4. In general the symbols p,d,g,I,G, E may be different at any two
places of their occurrence in (2.3).
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The following conditions are sufficient for our approach (V¢ € J;w, A > 0 will be
determined; Vz,w € H;Vu,v € Y;Vy e Y N H):

(25) p(t; z, w) = p(t; w, z)

(2.6) p(t; 2,2) 2 Cz|?

(2.7) P9t 2,w)| < Clz| |w] i=0,...,A
(2.8) ai(t;y,y) 2 Cillyl® - Cly/?

(2.9) o (¢ w,0)] < Clull ol i=0,.. 0
(2.10) az(t; u,v) = ay(t; v, u)

(2.11) ax(t;y,y) 2 Cillyll® - Clyl?

(2.12) |a$ (t; u, v)| < Clull |lv] i=0,...,w
(2.13) b (t;u,v) = 8V (2; v, u)

(2.14) 169 (85w, v)] < Cllul [[v]] i=0,...,w
(2.15) b(t;y,y) > —Cly|?

(2.16) 3o € (0,1) : oaz(t;y,y) + bV (t;y,y) > —Cly|?

(2.17) lgP(t;u, )| < Cllullvl] i=0,...,w
(2.18) [dD(t; z,u)| < Clz|||ul i=0,...,w
(2.19) o9 (t;u,2)| < Cllull || i=0,..,w
(2.20) 199 (t;w,2)| < Clw| |z j=0,...,w

(221)  [E(z)(t) — E(=)()] < |t = 'I6(l|zllc(s,, 1)L + 18ezl Lo (50,80))
’ vt,t' € J;t' < t;0 € C(R4,Ry);Vz € Lip(St, H)

(222) ||F(2)(t) = F(2)t)I < It = t'16(llzllcse, )T + 10zl Lo (50,v))
vt t' € J;t' < t;8 € C(R4+,R4);Vz € Lip(S1,Y)

(2.23) DK € Loo(J x J)
(2.24) pe HJ,Y?)
(2.25) m € HYY(J,Y™)
(2.26) v € H(J,H")

(compatibility condition)
for Up = a(0), V53(0), V1 = ¥(0) € Y N H exist Uy, V2 € H such that

(2:27) P(0; U1, ) + a1(0; Us, ) = d(0,Uo + Vo, )+
+(0; U, ) + 9(0; Up + Vo, ) + (1(0), ¥)y + {v(0), ¥},
p(0; V2, ) + b(0; V1, 8) + a2(0; Vo, ¢) = d(0; Vo, 4)+
+(e(0, Uo, E(a)(0), E(8)(0), E(7)(0), F(8)(0),0), $)u
Ve, €Y NH.
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Remark 2.28. The function § may be different in both inequalities (2.21) and
(2.22). Nonnegative constants C' may stand for various constants in the same dis-
cussion (C does not depend on n).
For a given positive integer n the following notation is introduced (: = 1,...,n;
T=T/n;t; =ir):
w; = w(t;), Sw; = (w.- - w;_,)/‘r

(where w is an arbitrary function),

a(t) t € So
2.29 a(t) = )
( ) 4 () {u,-..1+(t—t.-_1)5ug ticp <t<ty; 1=1,...,n
B(t) t e Sy
2.30 () =
(2.30) un(?) {v.'-1+(t-t.'-1)6v.~ tisg <t<t; t=1,...,n
a(t) te S
. up(t) = .
(231) Tn(t) {u,- ticy<t<t; 1=1,...,n
ﬂ(t) te Sy
2.32 Ua(t) = :
(2:32) On(t) {‘v,’ tici <t<t; 1=1,...,n
t) te S,
2.33 V(t) = {7(
( ) " ( ) vi—1 +(t—t.~_1)62v.- tic1 <t<t; 1=1,...,n
(1) (1) t€ So
2.34 V. (t) =
( 3) "() {61),' ticip<t<t; 1=1,...,n
(2.35) a(t) te Sy
~ ~ Us = o(0) t€(0,7)
Ui—1 = Uj—1,n(t) = ‘ Neo VR .
uj—1 + (t — t;)6u; te(t,tiy); Jji=1,...,1-1
Ui—1 te (t.‘,T).

The functions v;—; resp 6v;—; are defined analogously as u;—; but instead of «
will be 8 resp. 7.

3. Smoothing effect. -
The aim of this section is to prove the smoothing effect for the parabolic part of
our system in PC-1. We choose the following approximation scheme

(3.1) p(ti; 6uiy @) + a1 (8 uip) = d(ti;uimy + viey + Li(u +v), @)+
+9(ti; Gi(u + v),90) + p(ti; i1 + Gi(u + v), )+
+9(ti; uica + viey + Li(u + v,0) + (pi, @)y + (vi, 0) Hs
P(ti; 6%vi, @) + b(ti; v, ) + az(ti; vi, ¢) =
= d(ti;vie1 + Li(u + v),8) + g(ti; Giv, 8) + (e, d)H
Vo, €YNH,

where

Riz = RGi_1)(t:) for R=E,F,G,I
e; = e(ti,u;—1, E;u, E;v, E;6v, Fv, G;u)
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