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Estimates on the eigenvalues 
for some nonlinear ordinary differential operators 

RAFFAELE CHIAPPINELLI 

Dedicated to the memory of Svatopluk Fucflc 

Abstract. We obtain some detailed information about the location of the eigenvalues for a 
class of nonlinear Sturm-Liouville operators. 

Keyword*: Nonlinear eigenvalue problems, selfadjoint operators, Liusternik-Schnirelmann 
theory, Courant's variational principle 

Classification: 34B15, 47H12, 58C40 

We consider the eigenvalue problem 
f Ltt + /(ap,tt)*J 

1 ' l tt(a) = u(b) = 0 

= Лti 

on the compact interval [a, 6] of the real line R, where Lu := — (p(x)u*)' + q(x)u is 
a regular Sturm-Liouville operator with real coefficients p t=. C1([a,6]),p > Q,g € 
C[a,6], and / : [a,6] x R —• R is continuous and such that f(x>0) = 0 for all 
x€[a,6]. 

Clearly, tt = 0 is a solution of (1) for all A € R, and we are interested in the 
existence and location of eigenvalues of (1), namely values of A for which there 
exists a nontrivial solution (an eigenfunction) of (1). 

It is well-known that the linear problem corresponding to (1), namely 

(2) ( I t t = : A t t 

V ' \ tt(a) = u(b) = 0 

has an infinite sequence of eigenvalues Aj(n = 1,2,...) such that Aj < Aj < . . . 
and A° —> -foo. It is also well-known that X% — Aj_j —> oo as n —> oo; therefore, 
given any C > 0, we have A® + C < A°+1 for all large enough n. 

In this note, we aim at discussing the following statement of "quasi discrete" 
spectrum for (1): 

Theorem. Assume {hat f satisfies 

HI) 0 < f(x,s)s < as2 for some a > 0 and all (x,s) € [a, b] x R; 
H2) / (x , -3 ) = - / (x ,3) and |/(x,«)| < a\s\* for some p > 1, some a > 0 and 

aM(s,a)€[a,6]xR; 
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H3) f(x,s)s > 2F(x,s) > as2 - fi\s\ for some $ > 0 and all (x,s) G [a, 6] x R, 
where a is as in Hl)and 

F(x,з) = [ /(x.ť)< 
JO 

Then the following conclusions hold; 
1) (1) has no eigenvalues outside the intervals [An,An +a](n = 1,2,...; we 

assume without loss of generality that An+1 — An > a for all n); 
2) for each n = 1,2,..., (1) has a one-parameter family An = An(r), r > 0, of 

eigenvalues (with corresponding eigenfunctions un(r) satisfying J^u^r) = 
r2) such that 

20 A n < A n ( r ) < A n + a for all r > 0, 
2„) An(r) -» An (r - 0); An(r) -> A°n + a(r - oo). 

The proof will be divided into three steps; we first show (Lemma 1) the nonexis
tence part by means of the spectral properties of the selfadjoint operator in L2(a, 6) 
associated with L; next we use the Liusternik-Schnirelmann (LS) theory to prove in 
Lemma 2 the existence of eigenvalues, and finally in Lemma 3 we carry out the re
quired estimates; these are obtained by means of elementary bounds on the "energy 

o . 

functional" of (1) restricted to the manifold [u € Wly2(a,b): fau
2 = r2]. 

We draw the reader's attention to the fact that HI) and H3) above force / keep 
uniformly close to the linear function as in the following sense: on setting h(x, s) := 
f(x,s) — as, then |n(*,3)| < a\s\ and |/i(.z,.s)| < fi for all (a., s) G [a, b] x R, as is 
easily checked. 

Note in particular that the assumptions of the theorem are all satisfied by / = 0, 
in which case the above inequalities boil down to An(r) = An for all r and all n, 
as due. On the other hand, if / s 0 the assumption p > 1 in H2) is necessary for 
the validity of the result; an immediate counterexample is given by /(a., s) = as 
itself (a / 0). Indeed, we then have again a linear problem, whose eigenvalues are 
An(r) = An+a (r > 0, n = 1,2,...) so that the first assertion in 2u) is not satisfied. 

To exhibit a nontrivial example, let us take 
, ,3 

/(x,u) = /(u) = C: 
W 

1 + u2 

with C > 0; then / satisfies HI) and H2) with a = a = p = C and p = 3. To check 
H3), observe that 

2F(x,u) = 2F(u) = C[u2 - log(l + u2)] 

while 

/(u)u = C [ « J - I ^ j ] 

Therefore, on setting g(u) := f(u)u - 2F(u), we see that g'(u) = {ffij-»)» > 0 *or 

u > 0; since g(0) = 0, this gives g(u) > 0 for all u (notice g is even). 
The second inequality in H3) follows similarly on setting h(u) := 2F(u) - C(u2 -

|u|) and observing that h'(u) = C(l - j ^ * ) > 0 for u > 0. 
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Lemma 1. Assume f satisfies HI). Then, if X < A? or X e]X°n + a, A°+1[(n > 1), 
problem (1) has only the trivial solution u = 0. 

PROOF : Take A €]A^ -f a, A°+1[ (the case A < Aj can be treated similarly) and 
write (1) as 

,3x r i u - ( A ~ f ) = fu - / (x ,u )=:^ (x ,u ) 
V ' I u(a) = u(b) = 0 

where, due to HI), g satisfies: 

(4) - f <0(*,s)/s<f (a*0) 

i.e. \g(x,s)\ < f \s\ for all (x,s) € [a, b] x R. 
Let now H = L2(a> b) equipped with the usual scalar product and norm ||u||2 = 

fa u2(*) ̂ *» anc^ ^et ^ denote the realization in H of the differential operator £; T 
is a selfadjoint operator in JET with domain 

D(T) = {u€H |u ' ,u"€i I and u(a) = u(b) = 0} 

and spectrum a(T) = {A° : n = 1,2,... }. 
Let moreover G denote the Nemytskii operator by the function g : G(u)(x) = 

g(x, u(x)) for u € IT and x € [a, 6]; from (4) we have ||<?(u)|| < f ||u|| for all u € H. 
Then (3) is equivalent to 

Tu-tiu = G(u), u 6 JP(T) 

where ^ = A — f, so that Xn + f < /i < A°+1 — f. This in turn can be written as 

(5) u = {T-l>I)-1G{u) 

where I is the identity map in H. Due to the selfacljointness of T, we have ||(T -
/1I)""1!! = [dist(/i,cr(T))]""1; therefore, if u is a solution of (5), then 

l|u|| < | | (T-, . /)->| | ||G(u)|| < |(dirt(f.,<r(D)]--||t.y 

But dist(p,a(T)) = min[A®+1 — fAyu — Xn] > f; the last inequality then shows 
that necessarily u = 0, proving the Lemma. • 

To prove the existence of the eigenvalues for (1) we make use of the LS critical 
point theory: standard references for this are e.g. [3] or [4]. 

o 

We shall hence forth consider weak solution of (1), namely u € Wlf2(a,b) such 
that 

(6) / ( p t - V + / qw + / /(*, u)v = A / uv 
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for all v € Wl>2(a, b); f stands for £ . 
Let us set further 

(7) VoW-lJpiuV + ljqu2 

(8) <p(u)~<p0(u) + JF(x,u) 

<Po and <p are the "energy functionals" associated with (2), (1) respectively. For 
r > 0, let moreover 

Mr := [u € W1'2^ b): f u2 = r2] 

and for each n = 1,2,... set 

Kn(r) = {K C Mr : K compact, symmetric ,7(K) = n} 

where f(K) denotes the genus of K. Finally, introduce the "LS critical levels" 

(9) C n ( r )= inf sup2y>(u). 
#«(r) K 

With these notations, as a special case of theorem 6 in [1] we obtain the following 
result: 

Lemma 2. Assume f satisfies H2) and suppose further that F(x, u) > 0 for all 
* € [a, b] and all u € R. Then given r > 0, there exists a sequence un(r) of (weak) 
eigenfunctions of (1) belonging to Mr and such that 

(10) 2ip(un(r)) = Cn(r) (n = l ,2 , . . . ) 

where Cn(r) is as in (9); the eigenvalue Xn(r) corresponding to un(r) satisfies 

(11) A„(r)r2 = SVo(ti»(r)) + J /(~,un(r))un(r). 

Moreover, An(r) —• -foo as n —• oo (for each r > 0) and An(r) -H• An OJ r —• 0 
(for each n = 1,2,...). 

Remark 1. To obtain (11), just put u = t> = un(r) in (6) and use the normalization 
condition Jun(r) = r2 together with the definition of <p0* 

Remark 2. The behaviour of An(r) asn—•ooorr~>0 can be formulated in more 
precise terms (see [1]): in particular one gets A2(r) ~ n2(n —• oo) for each r > 0 
(as in the linear case) and An(r) = An + O^"1)^ - • 0) for each n € N. Related 
results can be found in a very recent paper by Shibata ([5]). 
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Remark 3. If / = 0 (i.e. if the problem is linear) the LS procedure gives exactly 
the eigenvalues \n of (2); we have in this case 

(12) r2A«= inf sup2^o(u) 
-<n(r) K 

which is nothing but a reformulation of the classical Courant's minimax principle 
in terms of the sets Kn(r); see e.g. [2j. 

The conclusions of the Theorem will now be a consequence of the following result. 

Lemma 3. Assume f satisfies HI), H2), HS) and let An(r) be the eigenvalues of 
(1) as given by Lemma ft. Then, for each n == 1,2,..., we have: 

») A„<An(r)<A„ + a ( r > 0 ) ; 
ii) An(r) —• Â  + a as r —> oo. 

PROOF : First note that HI) implies 

0 < F ( * , . s ) < ! * 2 

for all (x, s) € [a, b] x R; this implies (see the definitions (7), (8) of <pQ and <p) 

<pQ(u) < <p(u) < <p0(u) + - r 2 

for all u € MT. Using the definition (9) of Cn(r) and Remark 3 above we get 
therefore 

(13.) r-Ai<C(r)<r-A!i + «r-

Moreover, the same assumption HI) together with one half of H3) gives 

2F(x,s)<f(x,s)s<as2 

for all (i, s) € [a, 6] x R; therefore 

2<p(u) < 2<p0(u) + / /(x, u)u < 2<p(u) + ar2 

for all u € Mr (we have also used the inequality ^Po <<p already seen above). 
Writing this for u = tin(r) and using (10) and (11) we get 

(14) Cn(r)<r2An(r)<Cn(r) + cr2. 

Using together (13) and (14) yields 

An<An(r)<An + 2<* 
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and the inequality i) now follows on considering that (1) has no eigenvalues outside 
[Xn, \n 4- ot], as shown in Lemma 1 (and assuming for convenience that A°+j — A J > 
2or for all n). 

To prove ii) we use the second half of H3), namely 

2F(x,u) >au2-0\u\ 

which gives, on integrating and using Schwarz's inequality, 

2 I F(x,u)>ar2 -0r 

for all u € Mr(0 = 0(b - a)1/2). Therefore, 

2<p(u) > 2tpu(u) + ar2 -0r (u € Mr) 

and so, again from the definition of Cn(r) and Remark 3, 

c M ^ r - A S + o r - - ^ . 

Together with the inequality C„(r) < rJA„(r) proved in (14), this shows that 

A„(r)>A»+a-£ (r > 0) 
r 

and ii)%now follows on looking at i) and taking the limit as r —> oo. • 
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