Kamil John
Compact non-nuclear operator problem

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 4, 819

Persistent URL: http://dml.cz/dmlcz/106808

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
ANNOUNCEMENTS OF NEW RESULTS
(of authors having an address in Czechoslovakia)

COMPACT NON-NUCLEAR OPERATOR PROBLEM
Submitted to Mathematische Annalen

The problem (+) of the existence of compact non-nuclear operator reads: Given
two infinite dimensional Banach spaces X, Y does there always exist a compact
non-nuclear operator $f : X \to Y$? By Pisier’s space we understand every infinite-di
mensional Banach space X such that $X \otimes \varepsilon X = X \otimes \mathcal{A} X$ and such that X and
X^* are of cotype 2. The problem (+) was studied by several authors and is solved
in the negative by the following

Theorem. Let X be a separable Pisier’s space and $Y = X^*$ its dual space. Then
every compact operator $f : X \to Y$ is nuclear.

The proof is based on Lemma 1 and on an approximation result below.

Lemma 1. Every approximable operator $f : X \to Y$ is nuclear. (Approximable in
the sense of Pietsch.)

Lemma 2. Let $f : E \to F$ be a compact operator factorable through a space
G and let the space G has the approximation property and separable dual G^*.
Then f is approximable (i.e. there are finite-dimensional operators f_n such that
$\|f_n - f\| \to 0$).

Corollary. Every compact 2-absolutely summing operator $f : E \to F$ on the
separable Banach space E is approximable.