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Extension of Lipschitz mappings on metric trees 

JIŘÍ MATOUŠEK 

Dedicated to the memory of Zdeněk Frolfk 

Abstract. Let Y be a tree metric apace (i.e. satisfies the four-point condition, e.g., a graph 
tree with the graph metric). If X is a subset of Y and / is a mapping of X into a Banach 
space Z with Lipschitz constant L, then / can be extended on the whole Y with Lipschitz 
constant at most C • Lt where C is an absolute constant. The extension depends linearly 
and continuously on / . 

Keywords: Lipschitz mapping, extension problem, metric tree, tree metric space 

Classification: 54C20, 54E35 

1. Introduction and statement of results. 
We shall consider the following situation: Let Y be a metric space, X a subset of 

y , Z a Banach space and / : X —• Z a Lipschitz mapping (by \\f\\iip we shall denote 
the Lipschitz constant of / ) . The question is now whether / can be extended on 
Y in such a way that its Lipschitz constant does not grow too much. This problem 
has received a quite a lot of attention (both in the context of extension problems 
in general and in Banach space theory). 

In the sequel, we shall denote by c(X, Y, Z) the necessary ratio of growth, i.e. the 
quantity 

e(X,Y,Z) =sup{hif{||7||.i./||/||..>; J: Y — Z, / \x= /}; 
f:X—»Z, | |/ | | . i,6(0.oo)}. 

A pair (K, Z) is said to have the contraction-extension property, if c(X, K, Z) = 1 
for any X C Y. Many results about this property can be found in the book 
[WW75]. In particular, the spaces Z, such that (Y,Z) has the contraction-
extension property for all metric spaces Y have been studied independently by 
several authors (e.g., Dress [Dre84], Isbell); important examples of such spaces are 
f£o (the spaces of n-term real sequences with supremum metric). Another famous 
result is the theorem of Kirzsbraun, stating that the pair (l2, 2̂) has the contraction-
extension property. 

In connection with the growing interest in quantitative aspects of Banach space 
theory several works have appeared, investigating the possibility of extension when 
certain increase of the Lipschitz constant is allowed. As older results in this direction 
we can mention e.g. [Gru60], [Lin66]. More recent are papers [JL84] and [JLS86]. 
The former proves that e(Jf, Y> l2) = 0(\/logn) for any metric space Y and any its 
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n-point subset K, and shows that this cannot be much improved in general. The 
paper [JLS86] proves that e(X, F, Z) = O(logn) for any metric space F, its n-point 
subspace Y and any Banach space Z. Moreover if Y is k-dimensional Banach space 
and X C Y any its subset, then e(K, F, Z) = O(k). 

In this paper we prove that for a certain class of metric spaces F, e(K, F, Z) 
is a constant independent of F and Z. Our class of spaces wiU be so-called tree 
metric spaces. The study of such spaces has eminently practical motivation (nu­
meric taxonomy), but also interesting theoretical aspects (see e.g. [Dre84] for more 
background information). 

A metric space (Yyp) is a tree metric space, if for any four points 
xy y, z, u € Y the following four-point condition holds: 

p(x, V) + p(u, v) < max(p(x, u) + p(y, u), p(x, v) + p(y, u)). 

The foUowing equivalent definition may be more iUustrative: A metric tree T is a 
metric space (T, p), satisfying the foUowing two axioms: 

(i) For every a:, y € T, x •£ y there exists a uniquely determined isometry 
</>z,v- [0,p(x,y)] —• T with 4,,9(0) = *» <t>x*(p(*>y)) = y-

(ii) For every one-to-one continuous mapping / : [0,1] —• T and for every t E 
[0,1] it is 

K/(0), f(t)) + rf/W- /(I)) = P(/(0), / (I)) . 

Now tree metric spaces are exactly subspaces of metric trees (see [Bun74], 
[Dre84]). Finite tree metric spaces can be imagined as subspaces of usual graph-
theoretic trees (with nonnegative weights on edges, determining their length). 

Let Lip(X, Y) denote the linear space of aU Lipschitz mappings from a metric 
space X to a metric space F . This space can be considered either as a subspace of 
C(XyY) with the supremum norm, or with the pseudonorm ||. \\np. 

Our result is now stated as foUows: 

Theorem. Let T be a metric tree, X C T any its subset and Z a Banach space; 
then e(K, T, Z) < C, where C denotes an absolute constant. 

The mapping e: Lip(X,Z) —* Lip(T,Z) denned by the above extension is a 
linear operator (of norm 1 with respect to !<» norm and of norm < C with respect 
t o II • II J*f> pseudonorm). For every / € Lip(X, Z) we have Ime(/) C convlm/. 

A simple example shows that we cannot take C = 1 in the previous theorem: 
Consider a tree with three vertices of degree one (leaves) and one vertex of degree 
three, with unit-length edges. The set of leaves is isometrically embedded into the 
set of vertices of an equilateral triangle with side 2, but no extension of this mapping 
into the plane on the three-valent vertex is a contraction. 

The proof of Theorem is given in the next section. Its heart is a construction of 
a suitable cover of the metric tree; in this it resembles the method of [ JL84] and of 
other extension theorems (e.g., Dugundji theorem - see [Eng77]). 
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2. The proof. 
We introduce the following notation: If T is ametric tree, x, y £ T} then (x, y) 

will denote the set Im<^Xlf, where $9%w is the isometry guaranteed by axiom (i) from 
the definition of metric tree. The set (x, y) is compact and the mapping </>XfV induces 
a complete linear ordering on it, so it makes sense to speak about supremum and 
infimum of a subset (we take x < y in the above notation). FWther for X C T we 
denote (X) = | J (x, y) (the closure of the union of all (x, y » . 

*,y€X 

Lemma. Let T be a metric tree. 

(i) [Dre84] Let x, y, z € T. Then there exists exactly one point t e T such that 

(x, y> = (x, t) U <*, y>, (x, z) = (x, t) U (*, z), 

(y,*) = (y,*>U(M>, 

where the unions are disjoint upto the point t; t can be expressed as 
sup((x,y) n (x, z)) (similarly with permutations of x, y, z). 

(ii) If X C T, Y = (X) and x£ T\Y, then for every y€Y the point 

z = ini((x,y)nY) 

is the same, and it is the nearest point ofY to the point x. 

PROOF : (ii) is easily obtained from (i): Consider two points y, y' €Y and take 
the point t for the points x, y, y' as in (i). Since (y,y')C .r*, it is also t € Y and the 
point z = inf((x, y) n Y) lies on (x, t), and so it coincides with inf((x, y') n Y). • 

Now we can begin the proof of Theorem. Let T be given metric tree, X C T 
and / : X —• Z a Lipschitz mapping. First we shall discuss the easy phases of the 
extension. 

Firstly, a Lipschitz mapping defined on some set can be uniquely extended to the 
closure of this set without an increase of Lipschitz constant; so we shall assume that 
X is closed in T. 

Assume that a Lipschitz mapping / is already defined on the set Y = (X). If 
x is a point of T \ y , we put f(x) = /(inf((x, y) n Y)% where y is any point of Y 
(according to the Lemma (ii), this value is independent of y). 

Let x, y € T \ y . If (x,y) n Y -=- 0, choose z € Y and take the point t for 
x, y, z as in Lemma (ii): t = sup((j?,xjf n (-*,y». Then we have t $ Y and 
(t, *) n y = (x, *) n y = (y, z) n y , hence / (x ) = / (y ) = /(inf((t", *) n Y)). 
_ If (x,y> n y j£ 0, we define x' = inf((x,y) n Y\ y' = sup((x,y) n Y). Then 
/ (x ) = / ( x ' ) , / (y ) = / (y ' ) and at the same time p(x,y) > p(x'1y% therefore 

In the sequel we may thus assume that T = (X). We shall extend the mapping / , 
defined on a closed subset I C T , on each arcwise connected component of T\ X 
separately. For every component K we thus obtain a Lipschitz mapping / # on 
K U K, extending / . If x, y € T \ X are two points of distinct components K, L, 
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then (xyy) contains points of X. If x' is the first such point and y' the last such 
point, we have p(x, y) = p(xt x') + p(x', y') + p(y\ y), so we may use the estimate 

\\M*) -Tim < B7*(*) - /(*')ll + ll/(*') - /(y)ll +»/(»') - Tim , 
and then the Lipschitz property of / , fx and ft. 

Let K be a component of arcwise connectedness of T \ X. The base of our proof 
wiU be a construction of a certain cover of K by metric trees. 

We choose any point r € K; we call it the root of K. If x € K and d is a positive 
real number, we define the sets 

S(x,d) = {y € K; x € (r,y), p(x, y) < d} , 
BS(x,d) = {y € K; x € (r,y), p(x,y) = d}. 

We introduce the foUowing notation and terminology: The point x is caUed the root 
of the set S = S(x,d) (notation x = root(S)), and the number d the height of S 
(d = ht(S)). The points of BS(xy d) are caUed leaves of S. 

We shaU define set systems Co, C\... and auxiliary sets i2o, R\,... by induction. 
We put 

Co - {S(r,,>(r,K)/2)}, .Ho = BS(r,p(r,X)/2). 

If the set Hj-i has already been defined, we put 

Cj = {S(s,p(a,,X)/2); s € - V i } , 
R$ = U{BS(x,/>(x,K)/2); x € Rj-i). 

Finally we have 

In the sequel, we shaU prove the foUowing properties of the system C: 
(i) The sets of C are disjoint 

(ii) The sets of C cover K 
(iii) For every SeC, ht(S) = ^root(S),K)/2 
(iv) For every S € C;*, j > 1 there exists exactly one S' € C,_i such that the 

root of S is a leaf of S'. 
If S, S* are as in (iv), we define pred(S) = S1. For the (single) S € Co we set 

pred(S) = S. 
(v) For every S€C, ht(S)/2 < ht(pred(S)) < 2ht(S). 
Using these properties, we shaU now define the extension / of the mapping / 

on X U K and we shaU estimate its Lipschitz constant. The proof of (i)-(v) is 
postponed to the end of the section. 

For every S € C we choose a point prox(S) € X, such that /.»(root(S),K) =* 
p(root(S), prox(S)) (this is possible in a metric tree, but also ̂ (root(S), prox(S)) < 
2p(rooi(S),X) would suffl.ce). 
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For x € X we shall have f(x) = f(x). If x 6 K, By (i), (ii) there exists a unique 
SeC with x £ S. We put 

5' = pred(S), 

P* =/>(*> root(S)), 
h = ht(S), 

/ t = /(prox(S)), 

/ - = /(prox(S')), and we define 

(*) / ( , ) = P«A + ( f c - P » ) / i 

We shall estimate the norm of the difference f(x) — / (y ) for ar, y € K U K. It is 
easily seen that it suffices to take s, y with x £ (r, y) (for general xf y consider the 
point z = sup((r,x) D (r, y)) 6 (s, y) and use p(x, y) = p(a;, z) + £(z, y)). 

First we consider the case x G S € K, y € X. The value of f(x) is a weighted 
average of some values of /(y') , y' € K, where 

/>(*,«')< 
< m«ix(/>(root(S), X) + ht(S), ,>(root(pred(S)), -X) + ht(S) + ht(pred(S))) = 

= 0(ht(S)) = 0(p(x,X)) = 0(p(x,y)), 

so in this case the Lipschitz constant grows in a bounded ratio only. 
Further if 5 € C, S' = pred(S), then /(root(S)) = /(prox(S')). If the point 

x G S' approaches y = root(S), then p(x,root(S')) tends to the value (S'), and so 
/(a;) has limit f(y). Therefore it suffices to consider the case when both x and y 
are in the same 5 €C, x 6 (r, y). In the notation of (*) we have 

Il7(*) - 7(y)|| = \\Pzh + (h - Pz)f2 - P,h -(h- p9)f2\\/h = 
ll>* - l>*l • ll/i - f2\\/h = />(^,y) | |/| |^ • p(prox(S),prox(5'))/h. 

However, it is 

/?(prox(S),prox(S')) < p(ptox(S), root(S)) + p(root(S),root(S'))+ 

p(root(S'),prox(S')) = t>(root(S),K) + ht(S') + p(root(S'),K) = 0(ht(5)) 

(by (iii) and (v)), so \\J(x) - / (y) | | = , (* , y ) . 0(\\f\\Hp). 
The statements in the second part of the theorem are easily seen from the above 

(the linearity of the extensor e is immediate, the statement about the norm of c 
with respect to ||. ||oo is a reformulation of the bound on the Lipschitz constant 
o f / ) . 

It remains to prove (i)-(v): 
(i) On K we can define a partial order by the relation x < y iff (r, x) C (r, y) (the 

correctness of this definition is seen from Lemma, part (i)). Then the construction 
implies that the elements of every set Ri are pairwise incomparable, and if y € 
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S(x, d), x € Ri, then y > a?, and y is incomparable to all other elements of .R, - this 
is proved by induction. 

(ii) For a contradiction, we assume that some z 6 K is not covered by any set 
S € C. Let y be the supremum of the set of all points in (r, z) which are covered. 
The set of covered points on (r, z) is open, so y is not covered. Since y £ X and X 
is closed, it is p(y,X) — e > 0. The point y is necessarily a limit of points Xi € Hi, 
lying on (r, y); so let us take an index t such that a.,- 6 (r,y) and p(x», y) < e/4. But 
then p(xi,X) > p(y,X) - p(y,Xi) > 3e/4, so in (t -f l)-th step of the construction 
the covered part of (r, z) should have been extended by at least 3e/8, which would 
have covered also y - a contradiction. 

(Hi) is obvious from the construction. 
(iv) is easily seen from the considerations in the proof of (i). 
(v) Let us denote S' = pred(S). We have ht(5#) = p(root(S'),X)/2 

< /?(root(5),K)/2F^(root(5'),root(S))/2 == ht(S) + ht(S')/2, hence ht(S') < 
2ht(5) . Similarly it is ht(5) = p(root(S)yX)/2 < p(root(S')tX)/2 -f p(root(5), 
root(5'))/2 = ht(S') + ht(S'). • 

Acknowledgement. I would like to thank Jan Pelant for valuable comments on 
the subject. 
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