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Continuity of superposition operators on wo and Wo 

RYSZARD PLUCIENNIK 

Abstract. In this note the complete characterization is given for continuity of the super­
position operator acting from the space of all sequences or ail functions Cesaro strongly 
summable to zero into the space li or Li([0, oo)), respectively. Properties as well as crite­
ria for uniform continuity of such kind of operator are essentially different from analogical 
ones for superposition operator acting from l\ to l\ or from Li([l,oo)) to 2.-i([l,oo)). 
Keywords: Space of all sequences Cesaro strongly summable to zero, space of all functions 
Cesaro strongly summable to zero, Lebesgue sequence space, Lebesgue function space, 
superposition operator 
Classification: 46E30, 47B38 

1. Introduction. 
Let R = ( -co , oo) be the set of all real numbers, N the set of all natural numbers 

and S the set of all real sequences. We shall denote the n-th term of a sequence 
x 6 S by xn and write x = {xn}. By l\ we denote the space of all x 6 S such that 
Y^kLi \xk\ < oo equipped with the norm || • ||/ defined as 

n*iii = f > - i 
*=i 

for every x € li. Further, let î o be the space of all sequences which are Cesaro 
strongly summable to zero, i.e. 

1 n 

w0 = {x € S : — V^ \xk\ —* 0 as n —• oo}. 
*=-i 

It is well known (see [10], [9] and [4]) that w0 is a Banach space with the norm 

\\x\\w = sM2-rJ2r\*k\h 

where J2r denotes a sum over the range 2 r < k < 2 r + 1 and r € No = {0 ,1 ,2 , . . . }. 
For convenience, denote Ir = {k € N : 2 r < k < 2 r + 1 } . 

Define the superposition operator F from S into S as follows: 

Fx = {/(&,#*)} for every x G 5, 

where the function / : N x R —> R. Moreover, sometimes we shall assume additio­
nally some of the following conditions: 

(1) / ( k , 0 ) = 0 for every k € N; 

(2) / (k , •) is continuous for every k € N; 

(2) for every k € N the function / (k , •) is bounded on every bounded subset of 
real numbers. 
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The complete characterization of F acting from lp into lq(p,q .^ 1) was given by 
F. Dedagich and P.P. Zabrejko [6]. Operator F defined on sequence Orlicz space 
was considered by J. Robert [14] and I.V. Shragin [15]. This note is a continuation 
of research made by Chew Tuan Seng (see [4], [5]) and R. Pluciennik [11]. For 
convenience of reading we shall present the following theorems: 

Theorem 1. Let / : N x R —» R satisfy (1) and (2). The superposition operator F 
acts from WQ to h iff the following condition is satisfied 

(3) 

there exist a = {ak} € h *nd c = {ck} € h with ak ^ 0, ck > 0 and 
rj > 0 such that for r £ No, k € Ir, we have 

\f(k,u)\^ak + cr2~r\ul 
whenever \u\ < 2rn. 

Remark 1. The above theorem was proved in this form by Chew Tuan Seng in 
[4]. It remains true without assumption (1). Moreover, using in the proof of that 
theorem (cf. [4]) the idea of the proof of Theorem 3 from [11], we can place 
assumption (2) for weaker one (2) 

We say that the superposition operator F from Banach function space (K, || • | |x) 
into Banach function space (F, || • | |y) is locally bounded at the point z € X iff 
there exist constants a > 0 and ft > 0 such that for every x G Ba(z) = {x € X : 
||x — z\\x < or} we have \\Fx — Fz\\y < /?. The superposition operator is called 
bounded iff sup{||Fa:||y : x € Be(Q)} < oo for every Q > 0. 

Theorem 2. Suppose that the function / : N x R -> R satisfies (3). Then the 
operator F is locally bounded at every point z € u>o ^ff for every k € N the function 
/(&,•) is bounded on every bounded set of real numbers, i.e. f satisfies (2). 

Theorem 2 was proved by R. Pluciennik [11] in the case of / satisfying (1). 
Obviously, using a well-known technical trick, we can omit assumption (1). 

Theorem 3. The superposition operator F is bounded operator from WQ into h iff 
for every Q > 0 there are sequences O(Q) = {ak(Q)} £ h vn& C(Q) = {cfc(,o)} € fi 
such that for r € No and k 6 Ir, the ineaquality 

(4) \f(k,u)\^ak(Q) + cr(e)2-r\u\ 

holds, whenever \u\ < 2r
e. Furthermore, 

/*/(?)< "/(ff)<Proll. + 2/./G>) 

for every e>0, where 

Hf(e) = sup{| |Fx| | , : x € Be(0)} 

and 

v,(e) - . inf{||a(<>)||. + \\c(e)\\, : |/(fc,«)| < ak(e) + c r ( e )2 - r | u | , | u | ^ 2
r
e}. 
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For the proof we refer to [11]. 
Results as well as proofs concerning boundedness, continuity and uniform continu­

ity of the superposition operator in function spaces differ essentially from analogical 
ones in the sequence case. It is reason, why it is worth to consider the function case 
WQ separately. To this end let M be the space of all Lebesgue-measurable real 
functions defined on [l,oo) (more precisely, equivalence classes of such functions 
with respect to equality almost everywhere). Define the space 

W0 = {x e M : lim i / \x(t)\dt = 0} 
T-+oo I Ji 

equipped with the norm 

\\x\\w= sup { 2 - ' / \x(t)\dt}, 
r€N0 JA(r) 

where A(r) denotes the interval [2 r ,2r-f 1). Li([l,oo)) denotes the space of all 
integrable real functions defined on [l,oo) and || • ||L denotes the natural norm in 
L1([l,oo)). For the function case we shall assume that / : [l,oo) x R —> R is the 
Caratheodory function, i.e. the function f(t, *) is continuous for almost all (a.a.) 
t e [1, oo) and / ( • , u) is measurable for every u € R. The superposition operator F 
from M into M is defined by the formula 

[Fx](t) =• f(t,x(t)) for every x € M. 

The following theorem, proved by Chew Tuan Seng (see [4]), is fundamental: 

Theorem 4. The superposition operator F maps the space WQ into the space 
Li([l,oo)) iff there exist a > 0 and c = {cr} e h such that for each r € N0 

there exists ar(-) € L%(A(r)) with fA,r) ar(t)dt < c r such that the inequality 

(5) \f(t,u)\<ar(t) + a2~rcr\u\ 

holds for a.a. t € A(r) and u e R. 

Define the function a(- ) : (l,oo) —» [0, oo)by the formula a(t) = ar(t) for t € A(r). 

2. Results in sequence case. 

Theorem 5. Suppose that the superposition operator F acts from WQ into l\. Then 
the operator F is continuous at every point z € WQ iff the function f(k, *) is contin­
uous for every k € N, i.e. f satisfies (2). 

PROOF : For the proof of sufficiency suppose (2). By Theorem 1 there exist a 
number n > 0 and sequences {a*} € / i , {c*} € l\ of non-negative terms such that 
for r € No and k e Ir we have 

\f(k,u)\^ak+cr2~r\u\, 
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provided |w| < 2r??. Fix z = {zk} £ WQ. Let f be the smallest natural number such 
that for k = 2 f 

ll*X{*,*+i....}llti» < 2 ' 

where Xtkk+i ..} d e n o* e s the characteristic function of the set {k, k -f 1 , . . . }. Then 
for every x € Bv/2{z) we have 

ll*X{*,t+if... }IU = s up{2" r ] T \xk\} ^ 
i r ^ f r r 

< s u p { 2 - r Y ] | z f c - z * | } + s u p { 2 - r ] T M } < i y . 

Hence \zk\ < f 2 r and \xk\ < ?y2r for every k 6 Ir> whenever r ^ f. For fixed e > 0 
we define 

oo oo 

re = min{.s > f : ^ a* < - and ])Tc r < — } . 
*=2- r=» ' 

Since / (k , •) is continuous for every k € N, so there is a 8 € (0, r?) such that 

2 r « - l 

E l/(M*)-/(M*)l<§. 
* = 1 

provided \\x - z\\w < 8, i.e. la;* - zk\ < 62r* for k = 1,2,.. . ,2r* - 1. Therefore, 
using inequality (3) for r ^ re , we have 

oo 

||Fx-F-||, = El/(M*)-/(M*)l< 
*=1 

2 r « - l oo oo 

< E l/(*.**)-/(*.**)l + E i/(*.**)i+ E l/(*.**)l< 
*=1 *=2r« Jt=2r« 

oo oo 

<|+2 E «* + Ec-i2-r[Er(i**i+i**i)]}<«-
fc=2r- r=rt 

This completes the proof of sufficiency. 
Suppose conversely that the superposition operator is continuous 

ik : R —• u?o be the embedding defined for every u € R by the forrr 
on WQ. Let 

WQ y ix 

J>* 

/(*.•) 
1. R 
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i.e. /(lb,•) =pjfcoFo t*. Obviously, functions p* and t* are continuous for 
every k € N. Consequently, the function /(fc, •) is continuous for each k € N as 
a composition of continuous functions. Thus the proof of the theorem is complete. 

• 
If the function /(fc, •) is continuous on R for every fc, then the superposition 

operator F generated by / is continuous (Theorem 5) and locally bounded (Theorem 
2). The following example shows that F is not necessary uniformly continuous on 
bounded sets. 

Example 1. Consider the operator F generated by the function 

/(Jb,u) = 2-r |u2-r |r for every r € N0, k € Jr. 

Obviously, /(fc, •) is continuous for every k € N. Moreover, / satisfies inequality 
(3) with a = {a*} = {0},c = {cr} = {2~r} and 17 < 1. Hence / is continuous and 
locally bounded operator from w0 into Jj. We shall show that F is not uniformly 
continuous on bounded sets. To this end, consider two sequences 

x(r) = {4p)} = {(2* + l)x<2'}}, 
-W = - ( r ) = {(2k - l)X{2-}},r = 0,1.. . . 

Obviously, x(r) and «(r) belong to £3(0) for every r € N0. Jtether, 

||x(r) - -(r)||«, = | : -» 0 as r -» oo. 

On the other hand, denoting [r/2] = max{i € N0 : j < §}, we have 

^-^--M(-vu) '-(-V i) ']-
= г-^-ч-1 

[ г / 2 )// - w g(U OK""-" >2 

for r > 1. Hence F cannot be uniformly continuous on the ball Bs(0). 

Theorem 6. The following three statements arc equivalent: 
a) F is a uniformly continuous (on bounded sets) operator from WQ into l\; 
b) For every positive constants g and 6 one can find sequences of non-negative 

real numbers a(g>6) = {<-*(& £)},<(0,£) = {**(M)}»<<fc*) = {<*(<?>*)} such that 
<*,*) € luKtft) ^ Mb*) € luMeJ)\\t + ||K<?,*)l|i - 0 as 6 -> 0 and for 
r = 0,l, . . . ,fc€/r> the inequality 

(6) |/(*, u) - /(*, v)\ < ak(6y 6) + 6r(^, *)2-r(|u| + |v|) + cr(g, 6)2~r\u - v| • 

holds, whenever \u\ < 2r£, |v| < 2rg and \u - v\ < 2r«; 
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c) / satisfies (2) and F is a bounded operator from wo into /_. 

PROOF : a) => b). Let u>/(_?, 6) be the modulus of continuity of the operator F, 
i.e. 

_->/(_?, £) = sup{||Fa: - Fy\\i: x,y € Be(0) and ||x - y\\w < 6}. 

Fix _? > 0 and 6 > 0. Define 

ÍVÍ-,-) = suP{V;r |/(_,__) - /(*,»_)|: 1 X_r |__| < _, 

_7 ___r l-
f*l ** 6 -nd — _T_ |__ - y_| < 5}. 

By Theorem 5 the function /(ifc, •) is continuous for every i.. Therefore, for each 
r € No there are sequences of real numbers -Cj. and J/*,.. € I r (depended on _> and 
8) such that 

£.(_•,*) = ____ |/(M_) -/(*,__)., 

_7 _Lr 1**1 < -' _7 _Lr l»l < « and _7 ___. I** ~ »*l < *• 

For any r 6 N0 we define the sequences _t-r)(_,5) = {-_(_»,-)} and - ^ ( ^ i ) = 

{-i (_*>-')} by t n e following formulae 

(')/• _n J ž * foг* = l,2,...,2 г

 ( r ) f * for k = l ,2, . . . ,2 r 

0 for fc > 2 r 

Obviously, _(r>(_?,^) € £,(0),2(r>(_?,£) € Be(0) and the difference _(r>(_?,£) 
*(r> (_?,£) € B_(0) for every r € No. Consequently, for every n € No we obtain 

_T er(_, S) = _T[£ r |/(„, s_) _ /(„, -_)|]__ 
r = 0 r-_0 

= ||F_<">(M) - -F*(n>(*,*)l|i < ufaS). 

Hence, we conclude that c(_?, 6) _= {cr(_?, £)} € /i and ||c(_?, 8)||j < u;/(_?, 6*). Consider 

g9$6(k,s) = «ip{|/(*,. +1) - / ( M l - 2_ r(^,^)2- r^1 | t | : |*| < 2 r* 

and - 2 r - _ < t < 2r_? - _} 

for r € N0,fc € I r and |_| < 2"r_?. Evidently, _?_».*(&, J ) > 0 for every fc € N. 
By the definition of supremum, for every e > 0 there is a sequence f(_?,£,e,_) = 
{.*(_?, £ , M ) (denoting shorter i = {!)_}) such that \fk\ < 2r£,-2r_? - s < t* < 
2r_? — 5 and 

__,«(*,*) < ! / ( * , * + « . ) - / ( * , - ) ! -2c r( e ,_)2----1 | f„ | + | -
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for k € Ir, r = 0,1,2,... and \s\ < 2rQ. Further, for every r € No a finite sequence 
{m,} (depended on Q, 8,e, 3 and r) with mi = 2r < rri2 < * • • < rni = 2 r + 1 — 1 can 
be found such that 

m 2 - l m 8 - l 2 r + 1 - l 

E > i = Ei«"-i+Eif-i+-+ E 1**1 
* = 2 r Jt=m2 X;=m{.i 

and 
m , + i ~ l 

2r~1£< ]T |f*K2 r8 fori = l , 2 , . . . , / - l , 

and 
2 r + - - l 

0< £ N<2r*. 
fc=mi»i 

Hence 

Er»t.«(*.«)<EPwfc'j+f-)-^*»')i-2^(«'^-"r*"lEri
f-i+Er2T^ 

< /{*.(*,*) - 2cr(ff,«)2-^-12'-15(l - 1) + E r Jf = cr(e,6) + E r ff 

It follows that 
0 0 00 

iiG*,**iii = Ylg^(k^xk) < 5 ^ a r ^ ' ^ + e 

*=1 r = l 

for every a: € BQ(0), where G6t6 is the superposition operator generated by gej. 
Therefore, GQ>6 is a bounded operator from WQ into /1 and by the definition of the 
sequence c(^,8), we have 

sup{\\Get6x\\i: x € Be(0)} < u>/(M). 

Consequently, by Theorem 3, there are sequences of non-negative terms a(#, 6) = 
{ajfe(#, 6)} € /1 and &(#, 8) = {&*(#, 6)} € /1 such that for each k € Ir, r = 0,1,2,. . . , 
the inequality 

9eA^s)^"k(Q,6) + br(Q,6)2-r\s\ 

holds, provided |s| < 2r,o. Thus, by the definition of #$,$(&, s), we have 

\f(k,s +1) - / ( M l < «*(*,*) + MM)2~ rM + cr(^,^)2-r|t| 

for each A; € Ir,r € N0,|t| < 2r£,|$+*| < 2r<?,|.s| < 2rQ, where cr(Q, 6) = 6~1cr(Q,6). 
Taking into account the symmetry of our considerations and putting s+t = u, s = t>, 
we obtain desirable inequality (6). Moreover, analysing the proof of Theorem 3 
(cf.[ll]), it is easy to notice that sequences a(Q,6) and b(Qr6) can be found such 
that 

||a(09«)||i < \\G*r*0\U+»fM < *»f(e>S) ™d IW*.*)||i < Q'^fM. 
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Consequently, 

H*.*)fli+ «-<*,-OHi-OMf-o, 
which proves the implication a) => b). 

b) =->• c). The continuity of /(fc, •) for every k € N is obvious. For the proof of 
boundedness of F fix g > 0. Then, using inequality (6) with S = #, we have 

||/(M)| - l/(M)|| < l/(M) - /(M)l < 
<**(*>, Q) + [M*> *) + cr(Q, tf)]2"r|t|. 

Putting a*(#) = |/(fc, 0)| + a*(#, g), cr(g) = 6r(^, #) + cr(g, g), we obtain inequality 
(4) and by Theorem 3, the operator F is bounded from w0 into 1%. 

c) => a). Let e and # be fixed positive constants. Define 

oo oo 

r(e) = min{5 € N0 : £ ak(g) < - and £ c r ( ^ ) < — } , 
*=2- r=# °^ 

where sequences a(g) = {a*(#)} and c(#) = {cr(g)} are from Theorem 3. Let 
a?, JZ 6 Btf(0). By the continuity of f(k, •) for every A; € N, there exists a 6 € (0, #) 
such that 

2 r < * > - l 

£ |/(M*)-/(M*)I<!> 
* = i 

whenever ||x — z\\w < S. Therefore, using inequality (4) for r > r(e), we have 

2 r<«>-1 oo 

||F*-.F*||,= £ |/(M*)-/(M*)I+ £ (l/(M*)l + l/(M*)l)< 
*==1 *=2 r<«) 

< | + 2 E «*(«) + E er(«)-~r(Eri*-i + Ef.i*-i)<e' 
*=2'(-) r=r(e) 

provided ||x — z\\w < S. This completes the proof of Theorem 6. • 

The above theorem is rather surprising. It shows that in the case of continuous 
/(fc, •) for each k € N, the boundedness of the superposition operator F acting from 
WQ to h is equivalent to the uniform continuity (on bounded sets) of this operator. 
Such theorem usually is not true, when we replace another sequence space instead 
u>0, for instance l\. The following example shows this fact: 

Example 2. Let /(&, u) = u sin kwu for u € R and k € N. Then the superposition 
operator F generated by / is continuous and bounded (on every bounded set) from 
(i to l\. Consider the sequences 

x(») . {,W} . {*L+!X{n)} md 2(n) = {4»)} . {*jj±X{u)}. 
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Obviously, x^ and z^ belong to £3(0) for every n € N and 

|U(n) _ 2(nhl = l .- .>Oa8n->00. 
n 

Nevertheless, since 
||Fx<»> - Fz^\\i = 2 

for every n € N, so F cannot be uniformly continuous on the ball £3(0)' 
Let us define 

irf(Qj6) = inf{||«(*,«)||f + 2Q\\O(Q,6)\\I + *IW*,*)l|i: l / ( M ) - / ( M ) l < 
< a.(*,«) + &r(e,*)2-r(|ti| + |v|) + cr(Q,6)2~r\u - v|, \u\ < 2T Q, |v| < 2r

6 

and |ti - v| < 2r6) 

for every Q > 0 and 6 > 0. 

From the proof of the first implication of Theorem 6 follows immediately 

Corollary 1. The functions <*>/(*, •) and **/(•, •) are equivalent in the sense that 

(7) u>f(Qy6)K*f(Q,6)^5u>f(Q,6) 

for all positive real numbers Q and 6. 
3. Results in function case-
Theorem 7. Every superposition operator F acting from Wo into Xi([l,oo)) is 
continuous and bounded 
PROOF : The boundedness of F follows inmiediately from (5). It is sufficient to 
prove the continuity of F. Without loss of generality it can be assumed that F0 = 0. 
First, we shall show the continuity at zero of operators Gr(r € No) defined by the 
formula 

l G r X l ( < ) - \ 0 otherwise, r - ° ' 1 ^ -

Obviously, Gr maps Wo into Li([l,oo)) for each r € No. Assume the contrary. 
Then there exist f € No and a sequence of functions xn € Wo(n € N) which is 
convergent in norm to 0, whereas 

(8) IIGrXnIU > V for every n € N, 

where 17 is a positive number. Without loss of generality it can be assumed that 

(9) f>n | |„,<oo . 

Hereinafter, we shall construct sequences of numbers {e*},of functions {xnh} and 
of sets Ak C [l,2r)(fc € N) such that the following conditions are satisfied: 

(a) e*+i < §£*, 
(b) fiiAk) < e*, 
(c) \\G*xnkXA*h>tl> 
(d) if fi(E) < 2e*+i for every set E C [l,2r), then ||Gf*«4X-f IU < K w h e r e M 

is the .Lebesgue measure. 
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Assume that ei = (2 f - l),xni(t) = xx(t), Ai = [l ,2 r). In virtue of absolute 
continuity of the norm of the function GfXi and of condition (8), it is easy to 
verify that there exists an 6*2 such that conditions (a), (b), (c) and (d) are satisfied. 
Suppose that ek,xnk and Ak are already defined. Since Gfxnit £ Xi([l,oo)), so 
one can find an ek+i such that condition (d) will be fulfilled. Obviously, et+i 
satisfies condition (a). F\irther, the fact that xn —• 0 in the norm implies that 
the sequence xnX[i,2r) ia convergent to zero in measure. Therefore, by Lemma 17.5 
from [8] GfXn is convergent to zero in measure. Thus GfXn(n = 1 ,2 , . . . ) cannot 
have equi-absolutely continuous norms because it would be convergent in norm, 
i.e. continuous at zero in contradiction to assumption (8). Hence there exist a set 
Ak+i C [ l ,2 f ) and a function xnfc+l such that p(Ak+i) < £*+i and 

2 
\\GfXnk+lXAh+l\\L > 2*1' 

In virtue of principle of mathematical induction we conclude that conditions (a), 
(b), (c) and (d) are satisfied for k = 1,2, 

Now, let us define a function y by the following formula 

*>-{r-(0 tlitkX1^ 
where Bk = -4*\US*+1 »̂> (& = 1* 2 , . . . ) . Obviously, for t -̂ j we have BiDBj = 0 . 
Since 

( 00 \ 00 

U AA < J2 ei<2ek+u 
ts-fc+l / is-fe+l 

-.fe+1 

then, by (c) and (d) it follows that 

(11) \\GfVXBh\\L > WGfXnkXAk\\L - \\GfXnkX\j~k IA.\\L > j*?, 

for k = 1,2, Moreover, by (9), we have 

1 °° / 
I M k ^ m a x ^ X ; / \xnk(t)\di^ 

r<f 2r ^ JBhnA(r) 

^E?!?^ / \*nh(t)\dt<Y,WX^ 
£i r<r * JBknA(r) j£x 

whence y $ W0. Applying the assumption of the theorem we obtain that GrV € 
Li([l, 00)). On the other hand, in virtue of (11), we have 

\\GM\l = f0 \f(t, y(t))\ dt = £ / |/(t, xnk (0)| dt = f ; \\GryXBh \\L = <*>> 
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and consequently G?y $ Li([l,oo)). We have thus arrived to a contradiction. 
Therefore Gr is continuous at zero for every r 6 No. 

Fix e > 0. Now, let f be such a large natural number that 

£ . .i—v Є 
] Г / ar(t)dt < - and ľ c , < — , 

where ar(-) and cr are from Theorem 4. By the continuity Gf at the point zero and 
by mentioned Theorem 4 there exists a S £ (0,1] such that 

OO - oo 

\\Fx\\L < ||F*X[i,--)l|i + 52 / °r(')* + ll-lk«53 cr < є, 

provided ||£||w < S. Hence F is continuous at zero. For the proof of continuity of 
F at an arbitrary point xo € Wo. It is enough to remark that the continuity of the 
operator F at the point xo is equivalent to the continuity of the operator 

Fix = F(x0 + x) - Far0 

at zero in Li([l,oo)). This completes the proof. • 

The application of many principles of nonlinear analysis to the study of different 
types of equations requires upper estimations for the operators which are generated 
by given functions. Let for every Q > 0 

Uf(o) = inf{||a||L + ||c||L0 : | /(t , u)\ < ar(t) + 2- rc r |u | for a.a. t € -4(r)}, 

where ar(*) and cr(r € No) are as in Theorem 4. Moreover, we associate with the 
operator F a function fif which is defined by 

Pf{Q) = sup{||Fx||L : ||*||iv < Q) (Q> 0) 

and describes the growth of F on balls centered at the origin. The next theorem 
gives a two-sided estimation for the operator considered by us. 

Theorem 8. The functions fif and Vf are equivalent in the sense that 

fif(Q) < Uf(Q) < 2fif(Q). 

PROOF : Fix Q > 0. By definition of i//, we have immediately 

||Fx|U<||a|U + ||c||,|Hk 

for every x G Be(0) and consequently fif(Q) < Vf(g) 
Since the operator F is bounded on the ball -Btf(0), so we can define 

cr(£) = s u p i / \f(t,x(t))\dt:x£W0 aad / \x(t)\ dt ^ g2
r \ 

[JA(r) JA(r) J 
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for each r € No. Therefore, for every e > 0 there exists a function #*,«(') such that 

/ |y«,«(*)l * < 2r and cr(Q) < / |/(t, y§t9(t))\ dt + ^ 
JA(r) JA{T) * 

for each r € No. FYtrther, for every n € N the function 

4")(-) = y.,.(-k[1)2-)(-) 

belongs to Be(0). Consequently, for every n € No 

£>(*)< £ ( / \f(^v9Amdi + ̂ )<^F^u + ̂ <^e) + ̂  
rs*0 r=-0 \JMr) L ) 

Hence, by the arbitrariness of n £ No and e > 0, we conclude that C(Q) = {cr(#)} € 
h and ||c(£)||i < fif(Q). 

Define he : [l,oo) x R -• R by 

/*,(*, u) = max{0, |/(t,ti)| - c ^ - ^ M } 

for t € A(r) and r € No. Fix a function a; € Wo and let .A+ denote the set of all 
points t € A(r) for which he(t, x(t)) is positive. Now, choose m € No and 7 € [0,1) 
such that 

/ Jx(t)\dt = (m + y)Q2r 

and divide A* into subsets Ar, Ar,..., A™*1 such that 

/ \x(t)\dt<Q2r (i = l ,2 , . . . ,m + l). 

From the definition of cr(#) it follows that 

/ \f(i**(t))\dt<Cr(Q) (t = l ,2 , . . . ,m + l) 
JAJ 

and therefore, by the definition of he, we have 

/ M*> *(*)) * ^ (m + l)cr(e) - cr(^)(m + 7) < cr(ey 
JA(r) 

Lemma 17.2 from [8] ensures that there exists a sequence y*(-)> \Vk(t)\ < * s u c n 

that 
M t>y*( t))= «up *t(*»tt)« 

l«K* 



Continuity of superposition operators on WQ and W0 5 4 1 

We put 

f S UI 
«riõ(t)={ H< 

l o 

sup hß(t,u)~ lim hß(t,yk(t)) for*Є .A( г) 
Д.-~>oo 

otherwise , 

r = 0,1, Hence, by Fatou Theorem, we have 

/ ar,e(t) dt < sup / hQ(t, yk(t)) dt < cr(6), (r = 0,1,.. . ) , 
JA(r) * JA(r) 

i.e. ae(-) = J2lZ:o arte(') € £i([l ,oo)). Thus, by the definition of he, we conclude 

\f(t, u)\ < ar,e(t) + Cr(Q)2-rg-1 \u\ (r = 0 ,1 , . . . ) , 

for a.a. t € A(r) and for u € R. Consequently, 

i °° °° 
Me) < KIU + - J2cr(e)e < 2 VJCr(e) < 2ftf(e). 

1* r=0 r=0 
It completes the proof. • 

By Theorem 7 the operator F is always continuous. On the other hand, F is not 
necessary uniformly continuous on bounded sets. The following example shows this 
fact: 

Example 3 . Let f(t, u) = X[i,2) W w s m « . Choose a sequence of subsets Dn C [1,2) 
such that fi(Dn) = (47m)""1. Consider the functions 

*«(*) = (4n + l)~XD«(*)> n£N, 

yn(t) = ( 4 n - l ) ~ X D n ( < ) , n € N . 

Obviously, ||a;n||w < 1 and \\yn\\w < 1 for every n € N. Moreover, ||x» - yn\\w = 
^- —• 0 as n —• oo. The superposition operator F generated by / maps the space 
W0 into the space Li([l,oo)), because inequality (5) is satisfied with ar(t) = 0 for 
every r € N 0 , a = 1 and {cr} = {1 ,0 ,0 , . . . } . By Theorem 7 the operator F is 
continuous on the whole space W0. Nevertheless, since 

\\Fxn-Fyn\\L = \\4imXn(-)U = h 
so F cannot be uniformly continuous on the ball B\(0). 

Theorem 9. The superposition operator F is uniformly continuous (on bounded 
sets) from Wo into Li([l,oo)) iff for every positive constants Q and 6 one can find 
sequences of non-negative terms O(Q,6) = {K(Q,6)} € 1\,C(Q,6) = {cr(Q,6)} € h 
and a non-negative function affts(') € Zi([l,oo)), such that 

(a) \\ae,6XA(r)h < Qbr(Q,6) for every r € N0 , 
(b) \\b(Q, 6)\\i ->0 as 6 -*Q for every fixed Q, 
(c) the inequality 

\f(t,u) - f(t,v)\ < ae<e(t) + br(e,6)2-'(\u\ + M) + cr(e,6)2-r\u - v\ 
holds for a.a. t € A(r) and u,v € R. 

Since the proof of necessity of Theorem 9 is analogous to the proof of implication 
a) =-> 6) from Theorem 6, so we shall omit it. The proof of sufficiency is obvious. 
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