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A new variant for the Meijer’s integral transform

J. RODRIGUEZ

Abstract. In this paper a new aspect of the Meijer’s integral transform is treated, for which
its corresponding inversion formula has been duly achieved. It turns out to exist a relation
between this transform and Laplace’s, which opens the way to define different types of
convolutions. Furthermore, some operational rules are obtained.
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1. Introduction.
In this paper a new version of Meijer’s integral transform has been studied, which
will be referred to as the M, g-integral transform. This variant generalizes those

of E. Kratzel’s [6], J. Conlan’s, E.L. Koh’s [3] and J. Rodriguez [9] as well, among
others, and it is given as

(L1) Fo) = [ (¥ Lo (st ()
(1.2) £ == /r ()P Eo_y(st)F(s) ds

with T'; = {s/s € C,Rev/2s > ¢ > 0}. The functions L,—;(t) and E,_;(t) appear
in their respective kerns, and are solutions of the differential equation [5]

(1.3) ty' +ay —y=0
E,_1(t) admits the following expansion

[~} t”
(1.4) Eq(t) = ’go ATatn)
and it is known as the modified (or hyperbolic) Bessel—Clifford function of first
kind and order (o — 1). When (a — 1) is a non-integer, then $!~*E;_,(t) consti-
tutes in itself another solution of (1.3), which is non-linearly dependent on Eq_;(%).
Similarly, Ls—1(t) will be referred to as the modified Bessel—Clifford function of
third kind and order (a — 1), and it is given as

(1.5) Looa(t)=— Eqey(t)' ""E1-q(t))

2sen(a — 1)1r(
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1t is of interest to emphasize the fact that E,—1(t) and La-1(%) are linked to their
corresponding Bessel functions by the following expressions

Eq- l(t) =17 a-—l(z‘/-)
(1.6) Lai(t) =t~ T Ko 1(2VA).
Ly—1(t) admits the generalization given in [7] and [8] as

00
(L7) meaiz)= [ r7oeT N (0> 0, sugel < 3,
0
which for g = 1, reduces to

(1.8) n(1,a;2) = 2L4-1(2).
The asymptotic behaviour of Ly-1(t) can be interfered from 5(1, a; t), as follows

Hozlgi-a if Rea—1>0
(19)  Laos(t)~ He-lp-a 4 T0-2)  jf Rea—1=0,a—1#£0
—1nt ifa-1=0
Loze if Rea—1<0
for t — 0%, and
(1.10) La-a(t) ~ %-_t Bptemvi

for t — +4o00.
As for E,_1(2), it can be referred to from [10] that

1
(1.11) Ea-1(2) ~ f‘th) if Rea > 0and z — 0%
and also that
(1.12) z%_*Ea-l(Z) \/_’_(62\/_ + 'e-?\/-+t(or—-1)1r)(l + 0(|z|_1/2))

for 2 = +o00.
Similarly, the following integral representations for L,—1(t) can be derived from
(1.5) through appropriate changes:

' 00
(1.13) Lacy(st) = 1 / ey
' 2 o
1 00
(1.14) La-—l(st) - _2-31-u/ ,r—ae-cr-t/r dr
0
00
(1.15) La—y(st) = _;_t1-a / a2 gmsr—t/r g
0

which will be used to express the M, s-integral transform in terms of the Laplace
transform, so as to enable us to obtain convolutions for that transformation.
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2. The M, g-integral transform.
Its existence is based on the following:

Proposition 1. Let a, B be complez numbers and f(t) a locally integrable function
on (0,00), such that
f(t)_{()(t—ﬂ) if Rea—1>0
Tl o8 if Rea—1<0
for t — 0%, and
£(t) = 0(e™v™)

for t = 4o00.
Under these conditions the integral given as

(2.1) F(5) = Map {70 = | ™ (st)™P 1 Loy (st)f(1) dt

converges for Rev/2s > c. Besides, f(s) proves to be analytic on the convergence
domain.

PROOF : Set

3 T
F(s) = /o (st)+B-1 Lo (st)f(t) + / (st)+P-1 Loy (st)f(2) dt+
+ /w(st)"+p"L,,_1(st)f(t) dt for0<e<T< +oo.
T

It can be noted that the first integral in the right-hand side exists due to (1.9)
together with the hypothesis. The second integral exists because of f(t) being
locally integrable and (st)*+#~1L,_;(st) a continuous function. Finally, existence
for the third integral is guaranteed by (1.10) provided that Rev/2s > c.

Analyticity proves obviously. ]

Now, the following inversion formula can be established.

Proposition 2. Let o, be complez numbers with Rea > 0. Assume that F(s)
is analytic over the domain @ = {s/s € C and Rev2s > B > 0} and also that
|F(s)] < M|s|~9 holds, M and q being real constants non-depending on s and such
that ¢ > —Ref + % Then, for any fized real c > B, the following ezpression

F(s) = / % (st)8-1 Loy (st)f (2) dt
0
is valid for Rev/2s > c. Here f(t) is given by

2.2) £(t) = "l' /r (2t)~P Ea—y(:t)F(2) dz
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with Te = {z/z € C and Re 2z = c}.
PROOF : Assume s to be fixed and that 1 < R < co. Set:

T
K(s,T) = / ()P Loy (st)F(t) dt =
()
1 T
(2.3) = ;‘/ (st)otp-1 La_l(st)/ (28) PEy—1(2t)F(z) dz
[} T,
where
.= {w/w € C and Re V2w =c} =
= {w =a+bi/a= %(c2 —-t3),b=ct,t€ (—-oo,+oo)}.
Consider, on the other hand, the domain defined as

A={(t,2)/te|0,T),z€.}.

To make feasible in (2.3) inversion of the order of integration it suffices to apply
Fubini’s theorem, previously verifying that

((st)**P7 Loy (st)(2t)™? Ea-1(2t)F(2))
proves an absolutely integrable function on A, provided that
Rea >0, andq>—-RJeﬂ+§.

Therefore, the following holds true

gath-1 T
(2.4) I(s,T) = e / 2 PF(z) / t* "1 Eq_1(2t)Lo-1(st) dtdz.
r. 0

Now, by invoking equality [11]

T Te
/ t* 1 Eq_1(2t)La—1(st) dt = (zEo(2T)La-1(sT)+
0 zZ2—38
+8Eqy(2T)Lo(sT)) - 2-(%

and by substituting its right-hand side for the second part of (2.4), we obtain

3a+ﬂ—l a
I(s,T) = o ./r z'pF(z)[ T (zEa(2T)La-1(ST) + sEo—_1(2T)Lo(sT))—-

z2—38
31—-a
T2z - s)] dz.
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Now, by virtue of the asyxhptotic behaviour of Lo—1(t) and E4-1(t), we can have
the following inequality:

Tu
| ——(2Ea(:T)La—1(sT) + 8Eq_1(2T)La(sT))| €
<N. |z|=Re® — Ljs|=Re ¥ 4+ 121 2(J2]'/% + |s|'/?) . e=VIT(Re VEs—c)
h lIz] = Isl|

and, as a consequence,

sa+ﬂ—1

~ / z""F(z);z_:;(zEa(zT)La_l(sT)+sE A(ET)La(sTY)| <

< M1|3|R° g+neﬁ—§e—ﬁ(nem—c)/ ‘zl—q—Re 2-Ref-1 4,
r.
1/20).41/2 1/2 N o
is true for Re v2s > ¢, due to Ll (L e 4 being a bounded function.

12|l
On the other hand, the last integral converges because

q>—Rbﬂ+1>—Re-;——R;eﬂ+§—.

Thus, for every fixed s, with Re/2s > ¢ > 0, this integral proves uniformly conver-
gent on 1 < T < oo and then it is valid to take up the limit for T — oo:

00 B -8
A2 1T = /o (st)“*”“La_l(t>f(t)d*=%/rc =1y,

8§ —2

To finish the proof, it only remains to perform the evaluation of the integral

2

RMz_

N
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3
Ry = Fc,, + ERi,ya

i=1

whose contour (considered by J. Betancor [1]) admits the following parametric

representation
— 1(y2 _ 42
Ry, ={ Z((:))= ;t(y P telwl
— L1(42 _ .2
R,y ={ :((:))= iSt v t€cy
a(t) = 1(2 — y2
Ra={ 0K
a(t) = L1(c? — 12
Tey ={ b((:))=:t( “ telun

If F(2) is holomorphic on @ = {z/z € C and Rev2z> B > 0}, then it follows
from Cauchy’ theorem that

/ i—ﬂ—F(Q dz = 2mis™PF(s).
R,

8$—2z

But according to the previously established bounds we can write

I 2P F(2)

M| -rarRes-)
Rl;' $—z

<
“1< T
which tends to zero for y — +oco in view that ¢ > —Ref + 1. Here d(s) denotes
the distance from s to R, ,.
The same procedure and conditions lead to

-8 -8
[ ZE@ g, Lo, |/ Z7FE) 4 o,
Ry $—%2 Ry $—7%
for y — oo.
Hence " i
/ 27 PF(z) dz = / 2 PF(z) dz
Ry $—2 .y $—72

and, as a consequence,
lim I(s,T) = F(s)
T->o00

can be easily inferred. ]

In the following, several propositions will be given in order to express the Mq,s-
integral transform in terms of Laplace’s. We always take the assumption that every
integral is absolutely convergent.



A new variant for the Meijer’s integral transform
Proposition 3. The integral transform

F(5) = Mo (£} = [ " (st) ™1 Lo_y(st)f(2) dt

can be re-written for Rea > 1 as:

(2.5) F(s) = Map{f(t)} =

= _——P(a\_/_-ilz) 30+ﬂ—1£ {{2&4—25—1 '/ol(l _ T)a—gfﬁf(fzr) dT; 2‘/;}

To justify this we will invoke the well-known connection existing between the
K-integral transform and Laplace’s [4], given as

/ooo(zy)’/ Ka-1(zy)g(z) dz =

L 9l—a 00 z
_ V72 o} / . / (z? — r2)*~3rd-ag(r) drdz
I(a - 3) 0 °

Now, by performing the changes of variable z = v/t y =2,/ andr = fir
and also by using the relation

Laoy(z) = 277 Kooy (2V7)

we obtain
/,, (s)°+8-1 Loy (st)f(t) dt =
Vsl 1 eatser [ -2
2.6 =Y 't“*“/ 1-7)*" 378 f(tr) drdt
( ) zr(a_%) o e 0( lr) Tf(-‘l') T

where £(t) = =P+ g(vA).
Finally, the new change ¢ = ¢2 in the right-hand side of (2.6) leads to the result

stated in (2.5).

Proposition 4. The M, g-integral iransform can be ezpressed as
sp

2.7 F(s) = Mo {f(t)} = 7s{f—a,a+ﬁ—l(t)}

provided that Rets > 0, which proves equivalent to stating that

3a+ﬁ—l

(2.8) F(s) = Map {f(t)} = —5—£{fa-2,6(t)}

549






		webmaster@dml.cz
	2012-04-28T19:34:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




