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ARCH, MAT3H.,2, SCRIPTA FAC SOL-NAT. UJEP BRUNENSIS 
XIII: 111—116, 1977 

REPRESENTATION OF THE FINITE 
DIRECTED ACYCLIC GRAPH 

O L D Ř I C H SAPÁK, Brno 
(Received February 2, 1976) 

A method is presented which allows to represent the finite directed acyclic graph 
by means of the real matrix. This representation facilitates easy to test a great number 
of binary relations on the graph and it is proved to be unique. 

1. INTRODUCTION 

The analysis of computer programs for the parallel processing leads many times 
to problems concerning finite directed acyclic graphs. As we shall deal with such 
graphs only, we shall always understand by the term graph a finite directed acyclic 
graph. 

A graph having n nodes is usually represented in form of a n x n Boolean connect­
ivity matrix C in this way: ctj = 1 if and only if an arc (ij) exists in this graph and 
ctj = 0 in an opposite case. If we want to investigate some properties of a graph, 
it is better to use another representation of it. 

2. CONSTRUCTION OF THE PROJECTION MATRIX 

Let G be a graph with n nodes which we denote by at, a2,..., an. This defines 
an n-dimensional vector space Vn with the basis al9..., an. 

Definitions: 

1. Let v(at) denote the number of arcs beginning in the node at. 
2. We say that the nodes ar and aj are in the relation R0, if and only if there exists 

an arc (ai% aj) in the graph G. 
3. For an arbitrary node at we define A t to be the set of all immediate pre­

decessors: 
At «. {ajlajRoat}. 
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Construction: We shall construct the flow T(at) in the node at in this way: 

ufAt V\aj) 

If there are no predecessors of a node ak9 then Ak = 0 and T(ak) = ak. For an 
arbitrary node at of the graph G9 the expression T(at) is an element of Vn and it is 
of the form: 

T(at) = r ^ + r| 2a 2 4- ... + rinaH9 where r^ are rational numbers. 
We shall define the projection Pt(j) of the node as in the direction at as a coordinate 

at at in the expression T(aj). It holds r ik = Pk(i). 
The expression (*•) can be transcribed by means of the projections in the follow­

ing way: 

where 

fй-.?„fł,«' 
, _ 0 for ІФj 
ðtJ~l f o г / = j . 

Now let us construct the real projection matrix P. 

al...ai...a„ 

•ЛU) 

This matrix P is the above-mentioned representation of the graph G. 

3. PROPERTIES OF THE PROJECTION MATRIX 

To demonstrate the reason for the construction of the projection matrix, we shall 
define several relations. 

Definition: We say that 

1. a+Riaj, if there exists a path from the node at to the node a$ in the graph G; 

2. a{R2aj9 if there exists no path from the node at to the node as in the graph G; 

3. aiR3aJy if all possible paths starting in the node a% must reach the node ay9 

4. atR4aj9 if there exists a path going from at to aJf but there also exists another 
path going from at which passes by aj9 i.e. atR4as = (afi^j) and (at non -R^). 
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Theorem: The following assertions hold for every pair of nodes 0;> a,-

a ) O g P i ( j ) ^ 1, P,(0 = 1, 
b) aiR^j == Pi(j) > 0 and i ^j\ 

atR2aj = Pi(j) = 0 or i = j , 

atR3aj = PiO) = 1 and i i= j , 
atR4aj = 0 < Pi(j) < 1. 

This theorem can be proved by means of the mathematical induction performed 

with respect to the number of arcs. 

Remark: Projections can be also interpreted from the point of view of the theory 
of probability. Let us pass through the graph in the following way. In every node a{ 

having v(at) = k it holds that the probability of the choice of each from the k follow­
ing arcs is 1/k, i.e. equal. In such case P^f) represents the probability of the reaching 
of the node aj under the condition that we have passed through the node a(. 

Remark: Some other relations can be also investigated by means of projections. 

In such a case the construction of Pt(j) can be slightly modified. 

The method has been originally designed for the testing of the relation R5. 

aiR5aj = aiR4aj and v(at) > 1 and there exists no node ak having this property: 

aiR3ak and akRxaj. 

4. E X A M P L E 

T(ax) = ax 

T(a2) = \/3T(ax) + a2 = l/3at + a2 

T(a3) = \/3T(ax) + a3
 = \/3at + a3 

T(a4) = \j3T(ax) + T(a2) + l/2F(a3) + a4 

= 5/6ai + a2 + l/2a3 + a4 

1 T(a5) = l/2F(a3) + T(a4) + a5 = 

= ax + a2 + a3 + a4
 + a5 

axR0

a2 

axRias 

a2Ria3 

a2R^ 
axR*a4 

p <*i a2 a3 
a

4 «5 

Яl 1 0 0 0 0 

a2 1/3 1 0 0 0 

a* 1/3 0 1 0 0 

a
4 5/6 1 1/2 1 0 

as 
1 1 1 1 1 
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5. E X I S T E N C E A N D U N I Q U E N E S S 

O F T H I S R E P R E S E N T A T I O N 

Existence is given by the construction of the matrix P. Before proving the uniqueness 
we shall introduce some definitions and lemmas. 

1. For the graph G we define the n x n Boolean reachability matrix R in this way: 

R.j = 1 = aiR1aj 

Rik = 0 = aiR2aj 

2. P is the projection matrix defined in the second section. It has the following 
"contravariant" connection to the matrices C and R: Rtj = 1 = afi^ = Pf(j) = 
= Pjt > 0. 

3. Let us call by T-arc the arc a^aj, if and only if there exists such a node ak 

that it holds: a^Pia* and akRxaj. 
4. For the graph G we define its frame Gi as the graph containing all the arcs 

from G except T-arcs. 
5. We shall understand by the transitive closure of G its frame Gx to which all 

possible T-arcs are added. 

Lemma 1 : Let Gx and G\ be graphs without T-arcs with the same reachability matrix 
R = R'. Then it holds G, = G;. 

Proof: Suppose that Gt and Gi are two different graphs without T-arcs and they 
have the same matrix R. Then there exist nodes ai, a$ that afP0

aJ *n <-M, but a{ non R0aj 
n Gi (or vice versa with respect to Gt and Gi). Since a,K0^J in Gx => a^K^ in Gx => 
==> RtJ = 1 => R'ij = 1 => afPiaj in Gi. As at non R0aj in Gi, there exists a node ak, 
so that aiKiafe and akRxak in Gi. Through matrix R the same relations hold in the 
graph Gl5 where a^aj also holds. Hence the arc atR0aj in G! is the J-arc, that 
yields a contradiction to the fact that Gx has no T-arcs. Hence Gx and Gi must be 
equal. 

Lemma 2: The reachability matrix R does not change if we add to or remove from 
a graph any T-arcs. 

The proof of this lemma is evident. 

Corollary: Let us consider the system S(A) of all graphs with the same set of nodes A. 
The graphs in S(A) with the same reachability matrix R will be put into the same class. 
The system of such classes forms a decomposition on the system S(A). Each of these 
classes can be represented either by the matrix R or by the frame Gx which is equal 
for all graphs of the given class, or by the transitive closure. 

Remark: Symbols referring to Gt are provided with a prime. 
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Lemma 3: Let G and G' be two graphs with the same set of nodes and with the same 
projection matrices P = P'. Then G and Gf have the same frame and for each node ax 

it holds v(at) = vf(a). 
Proof: To the matrix P we shall define a matrix R in the following way: 

- R y = l 3 / * j and Pt(j) > 0, 

R(J = 0 = / = j or Pi(I) = 0. 

Matrix R defined in such a way is the reachability matrix of the both graphs G 
and G'. Thus the both graphs are in the same class of the decomposition; they have 
the same frame and they can differ only in F-arcs. 

Suppose now that for some at it holds e.g. v(a,) < v'(ai). At least one F-arc in the 
graph G' must go from the node af, so that the preceding inequality could hold. Since 
F-arcs go from the node at, there must also go some arc of the frame from the node at. 
Let it be the arc a^aj. Then it holds; 

Pt(j) = l/v(ai) > l/vf(at) = Pi'(j), that is in the contradiction to P = P' and hence 
for all ai it holds v(af) = v'(ai). 

Definition: To any arc of G we shall associate an integer which we shall call the 
length of the arc. Be atR0aj an arc. Then there exists a finite number of different 
(not necessary disjunct) paths leading from af to ay in the graph G. To any of these 
paths we associate an integer— namely the number of arcs this path is composed of. 
We shall define the length of the arc atR0aj as the greatest of these integers. 

Remark: All the arcs of the frame are of the length one; the F-arcs have the length 
greater or equal two. 

Theorem: Let G and G' be two finite directed acyclic graphs with the same set of 
nodes and with the same projection matrices P = P'. Then it holds G = G'. 

Proof: Suppose that G # G'. Then they can differ only in F-arcs. Let B be the set 
of all such F-arcs, that each of them appears just in one of the graphs G and G'. 

B = {atR0aj \ (atR0aj in G and at non R0aj in G') or (at non R0aj in G and 
aiP0tf/ in G')}. Since G ^ G', it holds B ^ 0. 

In B we shall find such a F-arc that all the other F-arcs from B are of the same or 
greater length (see Definition). 

Let it be the arc akR0am and let it be for instance an element of the graph G. 
Be C = {ai | akKiai and atRxam} u {afc, am}. Then for any pair of nodes ap9 

areC it holds apR0ar$B — {akR0am}. [If apR0areB — {a^Po^m}* ^ e n the -T-arc 
apR0ar would be of the smaller length then the arc akR0am.] From this fact and from 
the fact that v(at) = v'(at) for all ai9 it follows that for all ap e C - {am} it holds 
Pk(p) = P'k(p) and Pk(m) = Pk(m) -F l/v(ak). Hence Pk(m) > Pk(m) which is a con­
tradiction to the supposition P = P'. Hence it holds G = G'. 
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Corollary: The finite directed acyclic graph is completly characterized by means 
of the projection matrix P which determines it as well as the connectivity matrix C. 

O. Sapdk 
662 95 Brno, Jandckovo ndm. 2a 
Czechoslovakia 
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