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1. Introduction 

A linear differential equation of the third order of the form 

(R) y*+P(0y" + q(0y' + K0y==0, 

where p(t), q'(t), r(t) are continuous on [a, oo) was studied by several authors, 
namely Hanan [3], Lazer [4], Rab, Singh [9], [10], Svec and Zlamal [12] 
in the case p = 0. This equation (R) in the form 

(S) y'° + p(t) f + 2A(t) y' + (A'(t) + b(t)) y = 0, 

where 2A = q9 A' + b = r for A g 0, p = 0 was investigated by Gregus [1], [2] 
and Moravsky [5]. Some new results were obtained by Regenda [8]. 

A new canonical form was derived by F. Neuman [6], [7] for a linear differential 
equation of the n-th order of the form 

(T) y("> + at(i)y^^ + ... + an(t)y = 0, 

aieC°(l) for i = 1,2,...,«; I is an open interval (bounded or unbounded). 
Here Cn(I) denotes for n jg; 0 the class of all continuous functions on / having 
here continuous derivative up and including the w-th order. This canonical form 
is global i.e. each linear differential equation of the n-th order can be transformed 
into the form on the whole interval of definition, on the contrary to local canonical 
forms due to Laguerre —Forsyth characterized by at s 0 and a2 = 0. 

This general canonical form depends on an interval of definition and n — 2 
positive functions af € Cn~\ i = 1, 2, ..., n — 1. 

For n = 3 the canonical form (see [6]) is 

(U) um - OL'(X)I<X(X) U* + (1 + a2(x)) u' - *'(x)l*(x) u = 0, 

<x 6 Cl(J) and oc(x) > 0 for x € / . 
In this paper oscillation properties of solutions of the linear differential equation 
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of the form (U) for / = [a, oo) are studied and some generalizations of the results 
in p i ] are obtained. 

2. Basic relations 

It can be verified through differentiation that for (S) on / the following identities 
t 

are satisfied. If we denote L(t, a) = exp {Jp(s)ds} > 0, F[y(t), a] = (y,2(t) — 

- 2y(t)f(t) - 2A(t)y2(t))L(t, a) and G[y(t), a] = (y»(t) + A(t) y(t))L(t, a),. 
then 

(F) F[y, a] = F[y(a), a] + j (p /2 + 2(ft - Ap) y2) L(s, a) ds, 
a 

(G) G[y, a] = G[y(a), a] - J (.4/ + (b - Ap) y) L(s, a) ds, 
a 

(H) y'(t) L(t, a) = f(a) - \ (2Ay' + (A' + b) y) L(s, a) ds. 
a 

In the proofs of some theorems in the papers [4], [9] there is used the procedure 
given in the form of the following. 

Lemma 1. Let ut(t) e Cr[a, oo) be functions, cin constants, i = 1, 2 , . . . , s. Let the 
sequence {y„} be defined by the relations 

a i 

y^Ic^Wi, £ 4 = 1 . 
i « l i-=l 

Then there exists a subsequence {nj} such that cinj -* c, and {ynj} converges on every 
finite subinterval of [a, oo) uniformly to the function 

i = l i = l 

as tij-* <x> such that 

yW = lctu\'\ I c f = l, z = 0,1,2,-,m^r. 
i-=-l i = l 

The next two results were proved in [8]. 

Lemma 2. (Lemma 2.1.) / / p(t) = 0, A(t) = 0, A'if) + b(t) = 0, and b(t) --
oo 

— A(t) p(t) £> 0 and not identically zero on any subinterval of [a, oo), J p(t) dt < oo-
a 

and y(t) # 0 is a nonoscillatory solution of (S), which is eventually nonnegative? 
with 

0 = F[y(c), c] = yt2(c) - 2y(c)y\c) - 2A(c)y2(c) 

(c e [&> °o) arbitrary), then there exists a number d ^ c such that 
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y(0 > 0> y'(0 > 0, y"(0 = 0 and ym(t) S 0 for t = d. 

Lemma 3. (Theorem 3.3.) If p(t) ^ 0andb(t) - A(t)p(t) ^ 0, and not identically 
zero in any interval, then (S) has a nonoscillatory solution. 

3. Further relations 

Theorem 1. Letp(0 ^ 0,A(t) ^ m > 0,A'(t) + b(t) = 0andb(t) - A(t)p(t)^ 
00 

^ 0 be not identically zero on any subinterval of [a, oo). If \ pit) At < oo then any 
a 

solution which vanishes at some point is oscillatory. 

Proof: Let c be a zero of the nontrivial nonoscillatory solution y(t). Then 
F[y(c), c] = yf2(c) > 0 and from Lemma 2 there exists a number d ^ c such 
that y(t) > 0, y'(t) > 0, j"(t) = 0 and jw(t) = 0 on [d, oo). Let f0 e [d, oo) be 
a zero of the function y"(t). From (H) we have 

/ ( / ) L(t, t0) = - J (2,4/ + (^' + ft) 7) L(s, t0) As < 0, 

thusj;"(0 < Oon (t0, oo) The function y" must be positive for all t _- d. Then 
lim j>(0 = oo as / -* oo and G[y(t), d] = O" + AljO L(f, d) J> my is the un
bounded function according to (G). But we have also 

G'[y, d] = -(Ay' + (b - ^p) j ) L(t, d) < 0 

on [d, oo) which is a contradiction, and the solution y(t) is oscillatory. 

Lemma 4. iet p(t) <£ 0, J( t) ^ 0, A('(t) + 6(t) ^ 0 not identically zero on any 
subinterval of [a, oo) and y(t) ^ 0 be nonoscillatory solution of the equation (S) 
satisfying the inequality F[y, a] > 0. Then c e [a, oo) exists such that for all t ^ c 
there holds y(t)y\t) > 0. 

Proof: Let y(t) be a nontrivial nonoscillatory solution of the equation (S). 
Let t0 be its last zero. If y is nonvanishing on [a, oo), let t0 be arbitrary. We can 
suppose without loss of generality that y > 0 for all t > t0. 

We assert that the function y'(t) has at most one zero on (t0, oo). Indeed, if 
r1 e (t0, oo) is a zero of y', then 

F[y(h), a] = ( - 2 ^ ) y"(tL) - 2A(tt) y2(h)) exp {jj>(0 <*t} > 0 

and hence y"(ti) < 0. Consequently tt is the unique zero. 
Let c > tt > t0. Then y(0y'(0 9* 0 holds on [c, oo). Now we will show that 
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y > 0. Suppose on the contrary that y' < 0 for t ^ c. If t2 e [c9 oo) is a zero of j " , 
then from (H) we have 

y"(0 L(t912) = - J (2,4/ + (A' + b) y) L(s912) is > 0, 
t% 

and on [d9 oo), d > f2 ;> c, it must be >>* # 0. Let >>" < 0. Then / is a negative 
and decreasing function and y(t) <* /(d) (' - d) + y(d) holds on [d9 oo) which is 
a contradiction with y > 0. If y" > 0 for all t > d9 we have from (S) 

y*(0 « ~P(t)y"(t) - 2-4(0/ (0 - (A1'(0 + K0)y (0 > 0, 

thus y"(t) «• y"(d) -and by integration of this inequality from d to / we obtain 
y'(0 = y"(d) (t - d) + /(d) which is a contradiction for y' < 0 on [d9 oo). 

Thus we proved that y(0/(0 > 0 on [c9 oo). 

Lemma 5. Let A(t) ^ 0, p(t) ^ 0, A'(t) + b(t) S 0 twd b(t) - A(t)p(t) g 0. 
00 

If I (A(t)p(t) — 6(0) L(t9 a) At -= oo andy(t) is a nontrivial solution of the equation 
a 

(S) satisfying the inequality F[y9 a] > 0, then y(t) is an oscillatory solution. 

Proof: Let>> =$= Obe a nonoscillatory solution of the equation (S) and F[y9 a] > 0 
on [a9 oo). By Lemma 4 there exists ce [a9 oo) such that y(0y'(0 > 0 on [c, oo). 
We can suppose without loss of generality that y > 0. Then for abritrary d ^> c 
there exists a positive constant K such that we can put y(t) = K on [d, oo). From 
(F) we have 

t 

ftF(c), c] ̂  K2 J (A(s)p(s) - 6(s)) L(s, c) ds -> oo as / -» oo 
c 

which is a contradiction and j>(0 cannot be nonoscillatory. 

Lemma 6. Let A(t) ^ 0, p(t) S 0, A'(t) + b(t) = 0, b(t) - A(t)p(t) g 0. / / 
•CO 

J (.A/? — 6) L(/, #) d/ =3 oo then a nontrivial solution y(t) of the equation (S) is 
a 

nonoscillatory iff ce[a9 oo) exists such that F[y(c)9 c] S 0-

Proof: The necessity follows from Lemma 5. 
Under the given supposition the function F[y9 c] is strictly decreasing, thus 

F[y9 c] < 0 on [d9 oo), d = c. 
Let y(t0) = 0 for t0 e [d9 oo). Then F[y(t0)9 c] = y,2(t0)L(t0, c) = 0, which is 

a contradiction. The solution y must be nonoscillatory. Thus the assertion is proved. 

Theorem 2. Let A(t) ^ 0, p(t) g 0, A'(t) + 6(0 S 0, 6(0 - A(t) p(t) ^ 0. If 

J (Alp — b) L(t9 a) dt = oo fhe/i the equation (S) has two linearly independent 
a 

oscillatory solutions. 
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Proof: Let the solutions yi(0> y2(0> y3(0 of the equation (S) be determined by 
the initial conditions 

v<J>(a)-5.. , = {° ' ^ I ' + ' l ' = 1.2,3. 
•' ( a ) - ' - + 1 \l i=y+lj j = 0 , l ,2 . 

Let n > a be positive integers, btn9 b3n and c2n9 c3n constants such that the solutions 
vn and wn of the equation (S) defined by 

vn(t) = bi„yi(0 + b3ny3(t\ b\n + b\n = 1, 
wn(t) = cZny2{t) + c3„y3(t), c\n + c\„ = 1, 

'3n 

"In "r* c
3n 

satisfy vn(n) = wn(«) = 0. Then F[vn(n), a] = 0, F[wn(n)9 a] ^ 0 and since F[y, a] 
is a decreasing function, there holds 

(1) F[vn(t)9 a] > 0, F[wn(t)9 a]>0 on [a, n). 

By Lemma 1 the sequence {nk} exists such that {v„k(t)} converges for nk -* oo on 
every finite subinterval from [a, oo) uniformly to a function v(0 and there holds 
t><s> = btu[s) + b3w3

s), s = 0, 1, 2; b* + *| = 1. From (1) it follows that F[v9 a] = 0 
on [a, oo). As F[j>, a] is a decreasing function, there must be F[v, a] > 0 on [a, oo). 
Otherwise F[v, a] obtains negative values which is a contradiction. We can prove 
similarly that F[w, a] > 0 and c\ + c3 = 1 on [a, oo). 

Solutions v(0, w(t) are oscillatory by Lemma 5. Let the solutions v9 w be depen
dent. As b\ + b\ = cf + c\ = 1 is satisfied, there holds v(t) = K>3(0 for some 
K ?-= 0. Then v(t) is nonoscillatory by Lemma 6, because F[y3(a), a] = 0 by definition 
of y39 which is a contradiction. We have proved that v(0, w(0 are linearly indepen
dent solutions. 

This completes the proof. 

4. Applications to the canonical form 

Now we consider the equation (U) on / = [a9 oo) where A(t) = (1 + a2(r))/2 > 
> 1/2 and p(0 = A'(t) + b(t) = - a(t)/oc(t). Then b(t) = 2A(t)p(0. 

Lemma 7. I/1 a'(0 S 0 #«^ rco/1 identically zero on any subinterval of [a, oo), then 
the equation (U) has a nonoscillatory solution. 

Proof: If a'(0 ~* 0, then we obtain p ^ 0 and b — Ap = Ap |> 0, and not 
identically zero on any subinterval of [a, oo). The equation (U) has a nonoscillatory 
solution by Lemma 3. 

We shall prove similarly 

Theorem 3. Let a'(t) g 0 be not identically zero on any subinterval of [a, oo). If 
Urn a(0 = const > 0 as t -* oo, then any solution which vanishes at some point is 
oscillatory. 

Proof: It is a(0 > 0, a'(0 S 0 and lim cn(t) = const >̂ 0 there exists as / -> oo. 
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Then we have \p(t)dt = lim ln(a(a)/a(t)) < oo if lim a(t) > 0, as t -> oo. The 
a 

assertion follows from Theorem 1. 
Theorem 4. Ifct'(t) g; 0 and lim a(t) = oo as t -+ oo, then 

(i) a nontrivial solution y(t) of the equation (U) is nonoscillatory iffc e[a, oc) exists 
such that F[y(c)9 c] <: 0, 
(ii) the equation (U) has two linearly independent oscillatory solutions. 

Proof: It must be A'(t) + b(t) = p ( 0 <: 0 and 6(0 - A(t)p(t) =A(t)p(t) <: 0 
for <x'(t) = 0, A(t) = (1 + a2(0)/2 > 1/2. Then we obtain (i) from Lemma 6, 

00 00 

(ii) using Theorem 2 with | (Ap - b) L(t, a) dt = J A(-p) L(t, a) dt = (a(a)/2) x 
oo a a 

x J (1 + a2) a'/a2 dt > (a(a)/2) lim (a(t) - a(a)) = oo as t -> oo and this 
a 

completes the proof. 
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