Jiří Rosický
Categories of models of infinitary Horn theories

Archivum Mathematicum, Vol. 14 (1978), No. 4, 219--226

Persistent URL: http://dml.cz/dmlcz/107014

Terms of use:
© Masaryk University, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
Our aim is to characterize underlying functors of categories of models of infinitary Horn theories. The characterization is, in fact, an infinitary version of one result of O. Kean ([2], Prop. 1.4.1).

Infinitary Horn theories are theories of a language $L_{\infty, \infty}$. The language $L_{\infty, \infty}$ has a set (possibly empty) of n-ary function symbols for each cardinal number $n \geq 1$, a set (possibly empty) of n-ary relation symbols for each cardinal number $n \geq 1$ and a set of constant symbols. Further, we have a proper class V of variables. If n is a cardinal number, then the string $(x_i)_{i \in n}$ of variables will be denoted by x and sometimes x will be identified with a map $x : n \to V$. Terms and atomic formulas are defined as usual. Formulas are built up from atomic formulas by means of a negation, conjunctions $\bigwedge_{i \in I} \varphi_i$, where I can be an arbitrary set and quantifiers $\forall x$, where $x : n \to V$ and n is an arbitrary cardinal number. Remark that no genuine occurrence of a quantifier will appear in our considerations because all formulas will be universal. Concerning infinitary logic consult [1].

An infinitary Horn theory H is a theory of $L_{\infty, \infty}$ whose axioms are all of the form (where we will assume that the following formulas all have their free variables universally quantified in front):

1. φ where φ is an atomic formula
2. $\bigwedge_{i \in I} \varphi_i \to \Theta$ where φ_i, $i \in I$ and Θ are atomic formulas.

Let \mathcal{A}_H be the category of all models of a given infinitary Horn theory H (morphisms are homomorphisms, i.e. maps which preserve atomic formulas). Let $U_H : \mathcal{A}_H \to \text{Set}$ be the forgetful functor. Our permission of a class of function and relation symbols can cause two inconveniences. The functor U_H need not have a left adjoint and U_H need not be fibre-small (i.e. there can be a proper class of models on the same underlying set). The first inconvenience can be easily excluded syntactically by the assumption that there is only a set of n-ary terms in H for each cardinal number n. Namely, then the algebraic reduct of \mathcal{A}_H (if we consider operations only) is varietal
in the sense of [3] and if we endow the free algebra over a set X by the weakest relational structure we get the free \mathcal{A}_H-object over X (see [2], 1.6.). The syntactical counterpart of the second inconvenience is not clear and so we adopt the following convention.

Definition: A fibre-small functor $U : \mathcal{A} \to \text{Set}$ will be called a Horn functor if there is an infinitary Horn theory H such that for each cardinal number n there is only a set of n-ary terms and an equivalence $M : \mathcal{A} \to \mathcal{A}_H$ such that $U_H \cdot M = U$.

We are going to give a characterization of Horn functors analogous to the characterization of varietal functors from [3]. We say that pushouts preserve onto morphisms if in a pushout

![Diagram of pushout](image1)

Uf onto infers that $U\bar{f}$ is onto. This condition implies that U carries coequalizers on epics for

![Diagram of coequalizer](image2)

is a coequalizer iff the following diagram is a pushout

![Diagram of pushout for coequalizer](image3)
Theorem: \(U : \mathcal{A} \to \text{Set} \) is a Horn functor iff \(\mathcal{A} \) is cocomplete and co-well-powered, \(U \) is faithful, has a left adjoint and the following conditions hold:

(i) Pushouts preserve onto morphisms

(ii) If \(U f_i : UA_i \to UB_i \) are onto, then \(U \sum_i f_i : U \sum_i A_i \to U \sum_i B_i \) is onto.

Proof: Necessity is a matter of a direct verification. Let \(U \) fulfil the mentioned properties. Denote by \(F \) a left adjoint of \(U \), by \(\varphi = \varphi_{n,A} : \mathcal{A}(Fn, A) \to \text{Set}(n, UA) \) the adjunction isomorphism, by \(\eta : 1 \to UF \) the unit and by \(\varepsilon : FU \to 1 \) the counit of the adjunction. Consider the language \(L_{\infty, \infty} \) which has morphisms \(f : Fn \to Fm \) as \(n \)-ary function symbols (constants will be treated as 0-ary function symbols) and morphisms \(p : Fn \to X \) such that \(Up \) is onto as \(n \)-ary relation symbols. If \(g : Fn \to Fm \) and \(i : 1 \to n \) maps the unique element of 1 on \(i \in n \), then the composition \(g . Fi \) will be denoted by \(g_i \). Consider the Horn theory \(H \) with the following axioms:

(A1) (a) If \(F1 \xrightarrow{f} Fm \xrightarrow{g} Fn \), then

\[
(gf)(x) = f(g_1(x), g_2(x), \ldots)
\]

(b) If \(i : 1 \to n \), then \((Fi)(x) = x_i \).

(A2) If

\[
\begin{array}{c}
Fm \\
\downarrow p \\
X \\
\downarrow f \\
Fn \\
\uparrow q \\
Y
\end{array}
\]

commutes and \(Up, Uq \) are onto, then

(a) \(p(x) \to q(xg) \)

Moreover, if the square is a pushout, then

(b) \(p(x) \leftrightarrow q(xg) \)

(A3) If \(Fn \xrightarrow{f} Fm \xrightarrow{p} X \) is a coequalizer, then

\[
p(x) \leftrightarrow \bigwedge_{i \in n} f_i(x) = g_i(x)
\]

221
(A4) If Fig. 5 is a pushout, U_p, U_q are onto and $r = w \cdot p$, then

$$r(x) \leftrightarrow p(x) \land q(x).$$

(A5) If I is a set and $p_i : F_{n_i} \to X_i$, U_{p_i} onto for any $i \in I$ and $u_i : n_i \to \sum_{i \in I} n_i$ are injections, then

$$(\sum_{i \in I} p_i)(x) \leftrightarrow \bigwedge_{i \in I} p_i(x \cdot u_i).$$

Here, (i) was used in (A3), (A4) and (ii) in (A5).

Define the functor $M : \mathcal{A} \to \mathcal{A}_H$ as follows. Consider $A \in \mathcal{A}$. Let $M(A)$ have UA as the underlying set, interpret $f : F_n \to X$ as $^h(A)$, any $u \in X$ such that $p \cdot u = a$. It is easy to verify that $M(A)$ is a model of H. Clearly $U_h : M(A) \to M(B)$ carries a homomorphism of models for any $h : A \to B$. Thus M is a functor. M is faithful and we will show that it is full. Consider a homomorphism $h : M(A) \to M(B)$ of models. Since $e^{MA}_A(1_{UA})$ holds, we get $e^{MB}_B(U_h h)$. Thus there is $g : A \to B$ such that $U_h h = \varphi(g \cdot e_A) = U_g$. Hence $h = M(g)$ and M is full. It remains to show that M is an equivalence, i.e. that any $C \in \mathcal{A}_H$ is isomorphic to $M(A)$ for some $A \in \mathcal{A}$.

Let $C \in \mathcal{A}_H$ and denote by p^C the interpretation of in C for each relation symbol p. The map Ue_A is onto for each $A \in \mathcal{A}$ because $Ue \cdot \eta U = 1$ (see [4] p. 80) and thus we may put $C(A) = (e_A)^C$. By (A2) (a) applied to the square e_B. $FUF = f \cdot e_A$ we get that $Set(Uf, U_H C)$ induces a map $C(f) : C(B) \to C(A)$ for any $f : A \to B$ in \mathcal{A}. Hence we get a functor $C : \mathcal{A}^{op} \to Set$. Let $A = \sum_{i \in I} A_i$ in \mathcal{A}, $t_i : A_i \to A$ be injections and denote by $k : \sum_{i \in I} UA_i \to UA$ the canonical map. Let $e : FUA \to E$ be the coequalizer of $FUF \sum_{i \in I} A_i \xrightarrow{\varepsilon_{FUA \cdot FUF}} FUA$. Since e_A equalizes FUE_A, ε_{FUA}, there is a unique morphism $v : E \to A$ such that
\[v \cdot e = e_A. \] Hence \(v \cdot e \cdot Fk = e_A \cdot Fk = \Sigma e_{A_i}. \) Let the left square in the following diagram be a pushout and \(\overline{u} \) be the unique morphism such that \(\overline{u} \cdot \overline{v} = v \cdot e \) and \(\overline{u} \cdot u = 1. \)

\[
\begin{array}{ccc}
\Sigma e_{A_i} & \xrightarrow{u} & \Sigma e_{A_i} \\
\downarrow \overline{v} & & \downarrow \overline{v} \\
A & \xrightarrow{\overline{u}} & A
\end{array}
\]

Then the outer rectangle is a pushout. Namely, we have to prove that \(r \cdot e \cdot Fk = s \cdot \Sigma e_{A_i} \) implies \(s \cdot v = r. \) But it follows from \(r \cdot e \cdot FU \Sigma e_{A_i} = r \cdot e \cdot FUFk = s \cdot e_{F\Sigma e_{A_i}} = s \cdot e_{F\Sigma e_{A_i}} = s \cdot v \cdot e \cdot Fk \). Hence \(FUFk = s \cdot v \cdot e \cdot Fk \) because \(FUFk \) is epi by (ii). Hence the right square is a pushout. Following (A2) (b), (A5), (A4) and (A3) we have that

\[(1) \quad \varepsilon_A(x) \leftarrow (\bigwedge_{i \in I} e_{A_i}(x \cdot U_i)) \wedge (\bigwedge_{j \in U F \Sigma e_{A_i}} x_{\Sigma e_{A_i}}(j)) = \varphi^{-1}(j)(x \cdot k) \]

Consider the canonical map \(t : C(A) \rightarrow \prod_{i \in I} C(A_i) \) which is given by \(t(c) = \langle c \cdot U_{i_1} \rangle_{i_1} \) for any \(c : UA \rightarrow U_H \) from \(C(A) \). Since \(U \Sigma e_{A_i} \) is onto, \(r = U \Sigma e_{A_i}(j) \) for any \(r \in U A \). Following (1) \(c_r = \varphi^{-1}(j)(c \cdot k) \) for any \(c \in C(A) \). Hence \(t \) is injective. Let \(\langle c^i \rangle_i \in \prod_{i \in I} C(A_i) \) and let \(\overline{c} : \Sigma U A_i \rightarrow U_H C \) be determined by \(c^i \). By (A5) \((\Sigma e_{A_i}) \varepsilon (\overline{c}) \) holds. Let \(j_1, j_2 \in U F \Sigma U A_i \) and \(U \Sigma e_{A_i}(j_1) = U \Sigma e_{A_i}(j_2) \). Then \((\Sigma e_{A_i}) \varphi^{-1}(j_1) = (\Sigma e_{A_i}) \varphi^{-1}(j_2) \) \(Fj_1 = e_A \cdot FUFk = s \cdot e_{F\Sigma e_{A_i}} = s \cdot e_{F\Sigma e_{A_i}} = s \cdot v \cdot e \cdot Fk \). Hence \(\overline{c} \) is a coequalizer of \(\varphi^{-1}(j_1), \varphi^{-1}(j_2) \). Since \(\Sigma e_{A_i} \) can be factorized through \(e, p^C(\overline{c}) \) holds by (A2) (a) and \(\varphi^{-1}(j_1)(\overline{c}) = \varphi^{-1}(j_2)(\overline{c}) \) by (A3). Hence \(c_r = \varphi^{-1}(j_1)(\overline{c}) \), where \(r = U \Sigma e_{A_i}(j) \) defines \(c : UA \rightarrow U_H C \) and \(c \in C(A) \) by (1). Thus \(t \) is bijective and \(C \) preserves products.

Let \(A \xrightarrow{f} B \xrightarrow{g} D \) be a coequalizer diagram in \(A \). Since \(U e \) is epi, the canonical map \(t \) from \(C(D) \) into an equalizer of \(C(B) \xrightarrow{f} C(A) \) is injective. We will prove that it is onto. Let \(y : UB \rightarrow U_H C \in C(B) \) and \(y \cdot Uf = y \cdot Ug \). Let \(h : UB \rightarrow E \) be an
equalizer of \(Uf, Ug \) and \(k : E \to UD \) be the unique map such that \(k \cdot h = Ue \). We are going to show that the following square is a pushout

![Fig. 7](image)

Consider \(u : B \to X \) and \(v : FE \to X \) with \(u \cdot \varepsilon_B = v \cdot Fh \). It holds \(u \cdot f \cdot \varepsilon_A = u \cdot \varepsilon_B \cdot FUf = v \cdot Fh \cdot FUf = v \cdot Fh \cdot FUg = u \cdot g \cdot \varepsilon_A \) and thus \(u \cdot f = u \cdot g \). There is a unique \(r : D \to X \) such that \(r \cdot e = u \). Further \(r \cdot \varphi^{-1}(k) \cdot Fh = r \cdot \varepsilon_D \cdot F(k \cdot h) = = r \cdot \varepsilon_D \cdot FUe = r \cdot \varepsilon_B \cdot \varepsilon_B = u \cdot \varepsilon_B = v \cdot Fh \) and thus \(r \cdot \varphi^{-1}(k) = v \) because \(Fh \) is epi. By (A4)

\[
(\varepsilon \cdot \varepsilon_B)(y) \leftrightarrow (\varepsilon_B(y) \land (Fh)(y))
\]

Since \(Fh \) is a coequalizer of \(FUf, FUg \), (A3) implies that

\[
(F(h)(y)) \leftrightarrow \bigwedge_{i \in UA} y_{Uf(i)} = y_{Ug(i)}
\]

Since we have supposed that \((\varepsilon_B)^C(y)\) and \(y \cdot Uf = y \cdot Ug\), we get by (2) and (3) that \((\varepsilon \cdot \varepsilon_B)^C(y)\) and hence \((FUe)^C(y)\) holds following (A2)(a). Further, \(Ue \) is a coequalizer of its kernel pair \(r, s : Z \to UB \). Thus \(FUe \) is a coequalizer of \(Fr, Fs \) and by (A3)

\[
(FUe)(y) \leftrightarrow \bigwedge_{i \in Z} y_{r(i)} = y_{s(i)}
\]

Hence \(y \cdot r = y \cdot s \) and there is a unique \(x : UD \to U_HC \) such that \(x \cdot Ue = y \). The following rectangle is a pushout because we have proved that the left square is a pushout and the right square is a pushout for \(Fk \)

![Fig. 8](image)

epi. By (A2)(b) \((\varepsilon_B)^C(x \cdot Ue) \leftrightarrow (\varepsilon_B)^C(x)\). Hence \(y = t(x) \).

We have proved that \(\mathcal{C} \) preserves limits. Since \(\mathcal{A}^{op} \) is complete, well-powered and \(F1 \) is its cogenerator, \(\mathcal{C} \) is representable by the Freyd's theorem (see [4], p. 126).
Denote by $N(C)$ a representing object and by $\zeta : \mathcal{A}(-, N(C)) \to \mathcal{C}$ a representing isomorphism. We will prove that $\mathcal{C} \cong MN(C)$. Namely, we will show that the following mapping carries the isomorphism of models $MN(C) \to \mathcal{C}$.

$$\alpha : UN(C) \xrightarrow{\varphi^{-1}} \mathcal{A}(F1, N(C)) \xrightarrow{\zeta} C(F1) \xrightarrow{(U_HC)^{n_1}} U_HC$$

Clearly ϵ_{F_n} is a coequalizer of $1_{FUf_n}, F\eta_{n} \cdot \epsilon_{F_n}$ for any set n. By (A3)

(4)

$$\epsilon_{F_n}(x) \mapsto \bigwedge_{i \in Uf_n} x_i = \varphi^{-1}(i) \cdot \eta_n$$

for $(F\eta_{n} \cdot \epsilon_{F_n})_i(x) = (F\eta_{n} \cdot \varphi^{-1}(i))_i(x) = \varphi^{-1}(i) \cdot \eta_n)$. Hence $(U_HC)^{n_1} : C(F1) \to U_HC$ is bijective and therefore α is bijective. Let $f : F1 \to F_n$ be an n-ary function symbol. We denote by f^D the interpretation of f in a model D of H. The diagram

commutes by the definition of $f^{N(C)}$, the naturality of ζ and by (4) because $f^C(c, \eta_n) = \epsilon_{Uf \cdot \eta}(c)$ for any $c : UF_n \to U_HC \in C(Fn)$. Hence α preserves f because for any $x : n \to UN(C)$ and $i \in n$ it holds $\alpha^n(x)(i) = \alpha(x \cdot i) = \zeta(\varphi^{-1}(x \cdot i)) \cdot \eta_1 = \zeta(\varphi^{-1}(x)) \cdot \eta_1 = \zeta(\varphi^{-1}(x)) \cdot UFi \cdot \eta_1 = (\zeta(\varphi^{-1}(x)) \cdot \eta_n)(i)$.

Let $p : F_n \to X$ be an n-ary relation symbol and consider $\alpha : n \to UN(C)$. Let $p^{N(C)}(a)$ hold. Then there is $g : X \to N(C)$ such that $\varphi(g \cdot p) = a$. Further, $\alpha^n(a) = \zeta(\varphi^{-1}(a)) \cdot \eta_n = \zeta(g \cdot p) \cdot \eta_n = \zeta(g) \cdot Up \cdot \eta_n$. Since $\epsilon_X \cdot F(Up \cdot \eta_n) = p$, following (A2) $\zeta_X(x) = p(x \cdot Up \cdot \eta_n)$. Since $(\epsilon_X)^C(\zeta(g))$, we have $p^C(\alpha^n(a))$.

Let the both squares in the following diagram be pushouts
Then the outer rectangle is a pushout and since the top row is equal to 1_{F_n}, one gets that $v = p$. Hence $(p(x, \eta_n) \land \varepsilon_{F_n}(x)) \iff v(x) \land \varepsilon_{F_n}(x) \iff (p \cdot \varepsilon_{F_n}) (x) \rightarrow (FU_p)(x)$.

Let $p^{\xi}(x^{\eta_n}(a))$. Then $p^{\xi}(\zeta(\varphi^{-1}(a)) \cdot \eta_n)$ and $\varepsilon_{F_n}^{\xi}(\zeta(\varphi^{-1}(a)))$. Therefore $(FU_p)^{\xi}(\zeta(\varphi^{-1}(a)))$. In the same way as in the proof that C preserves equalizers it can be shown that there is $b : UX \rightarrow UH_C$ such that $b \cdot Up = \zeta(\varphi^{-1}(a))$. Now,

![Fig. 11](image)

is a pushout because $u \cdot p \cdot \varepsilon_{F_n} = v \cdot FU_p$ implies $u \cdot \varepsilon_X \cdot FU_p = u \cdot p \cdot \varepsilon_{F_n} = v \cdot FU_p$. Hence $\varepsilon_X(x) \iff (p \cdot \varepsilon_{F_n}) (x \cdot Up)$. All these facts together yield $\varepsilon_X^{\xi}(b)$. Finally, $\varphi^{-1}(a) = \zeta^{-1}(b \cdot Up) = \zeta^{-1}(b)$. p and $p^{N(C)}(a)$ is true.

We have proved that α carries an isomorphism and thus M is an equivalence.

To compare the just proved Theorem with Prop. 1.4.1 of [2] we remark that \mathcal{A}^{op} plays a role of Kean’s abstract Horn theory with F_1 as its M and onto morphism as its monies. We gave a complete proof of the Theorem for the proof is only sketched in [2]. The associated Horn theory H in our paper differs slightly from that one of the paper [2]. The reason for this change is the fact that the author was unable to succeed with the Kean’s original H_t.

Our Theorem shows that topological spaces are given by an infinitary Horn theory. It would be useful to find a convenient presentation of it.

REFERENCES

J. Rosický
662 95 Brno, Janáčkovo nám. 2a
Czechoslovakia