Ladislav Skula
On certain ideals of the group ring $\mathbb{Z}[G]$
ON CERTAIN IDEALS OF THE GROUP RING $\mathbb{Z}[G]$

LADISLAV SKULA, (Brno)
(Received March 3, 1978)

0. INTRODUCTION

This paper deals with certain ideals $\mathfrak{I}, \mathfrak{I}_m$ of the group ring $\mathfrak{A} = \mathbb{Z}[G]$ of the cyclic group G of order $l - 1$ (l an odd prime) over the ring \mathbb{Z} of integers and especially the inclusion $\mathfrak{I} \subseteq \mathfrak{I}_m$. An equivalent condition for this inclusion is given by means of Bernoulli numbers (Theorem 3.4).

The ground of the study of these questions is the class group of the l^{th} cyclotomic field. The elements of $\mathbb{Z}[G]$ act on this group and the elements of the ideal \mathfrak{I} act trivially here. On the irregular class group of the l^{th} cyclotomic field there act the elements of the group ring $\mathfrak{A} = \mathbb{Z}[G]$, where \mathbb{Z} is the ring of l-adic integers. A great meaning for this irregular class group has the subring \mathfrak{A}^- of \mathfrak{A} and the ideal \mathfrak{I}^- of \mathfrak{A}^- which is derived from the ideal \mathfrak{I}. An important role is played by the Iwasawa's class number formula ([3]) expressing the first factor of the l^{th} cyclotomic field as a group index of certain additive group \mathfrak{A}^- in \mathfrak{A} and the group $\mathfrak{I}^- = \mathfrak{I} \cap \mathfrak{A}^-$. Iwasawa proved this result in a more general form, for the l^{n+1}th cyclotomic fields ($n \geq 0$). But we attend only to the case $n = 0$ in this paper.

In the 4th paragraph we deal with the group $\mathfrak{A}^-/\mathfrak{I}^-$ which is expressed as a direct sum of cyclic groups with special properties (Theorem 4.5 and 4.6).

In the 5th paragraph Theorem 5.3 gives some equivalent conditions for the \mathfrak{A}-group H^- to be generated by a single element (over \mathfrak{A}), where H^- means the so called "imaginary irregular class group" of the l^{th} cyclotomic field.

1. NOTATION AND BASIC ASSERTIONS

In this paper we designate by

- l an odd prime number
- \mathbb{Z} the ring of integers
- \mathbb{Z} the ring of l-adic integers
a primitive root modulo \(l^n \) for each positive integer \(n \)

the integer \((i \in \mathbb{Z}), 0 < r_i < l \),

\[r_i \equiv r_i^i \pmod{l} \] for \(i \geq 0 \)

\[r_i^{p-i} \equiv 1 \pmod{l} \] for \(i < 0 \)

\(G \) a multiplicative cyclic group of order \(l - 1 \)

\(s \) a generator of \(G \), hence \(G = \{1 = s^0, s, s^2, \ldots, s^{l-2}\} \)

\[\sum_{i=0}^{l-2} \delta_i = \sum_{i=0}^{l-2} \delta_i \] for suitable symbols \(\delta_i \)

\[\sum_{i \in \mathbb{S}} \delta_i = 0 \] for suitable symbols \(\delta_i \) and \(\mathbb{S} = \emptyset \)

\(\mathbb{R} = \mathbb{Z}[G] \) the group ring of \(G \) over \(\mathbb{Z} \),

thus \(\mathbb{R} = \{ \sum a_i s^i : a_i \in \mathbb{Z} \} \)

\(\overline{\mathbb{R}} = \mathbb{Z}[G] \) the group ring of \(G \) over \(\mathbb{Z} \),

thus \(\overline{\mathbb{R}} = \{ \sum a_i s^i : a_i \in \mathbb{Z} \} \)

\(\mathbb{I} = \{ \alpha \in \mathbb{R} : \exists \ \varrho \in \mathbb{R}, \ \varrho \sum_{i} r_{-i} s^i = l \alpha \} \)

\[= \{ \sum a_i s^i : a_i = \frac{1}{l} \sum x_i r_{-i+1}, x_i \in \mathbb{Z}, \sum x_i r_i \equiv 0 \pmod{l} \} \]

\(\overline{\mathbb{I}} = \{ \alpha \in \overline{\mathbb{R}} : \exists \ \varrho \in \overline{\mathbb{R}}, \ \varrho \sum_{i} r_{-i} s^i = l \alpha \} \)

\[= \{ \sum a_i s^i : a_i = \frac{1}{l} \sum x_i r_{-i+1}, x_i \in \overline{\mathbb{Z}}, \sum x_i r_i \equiv 0 \pmod{l} \} \]

\(\mathbb{R}^- = \{ \alpha \in \mathbb{R} : (1 + s^{\frac{1}{2}}) \alpha = 0 \} \)

\[= \{ \sum a_i s^i : a_i \in \mathbb{Z}, a_i + a_i + a_i = 0 \text{ for } 0 \leq i \leq \frac{l-3}{2} \} \]

\(\overline{\mathbb{R}}^- = \{ \alpha \in \overline{\mathbb{R}} : (1 + s^{\frac{1}{2}}) \alpha = 0 \} = \)

\[= \{ \sum a_i s^i : a_i \in \overline{\mathbb{Z}}, a_i + a_i + a_i = 0 \text{ for } 0 \leq i \leq \frac{l-3}{2} \} \]

\(\mathbb{I}^- = \mathbb{I} \cap \mathbb{R}^- \)

\(\overline{\mathbb{I}}^- = \overline{\mathbb{I}} \cap \overline{\mathbb{R}}^- \)

\(m \) a positive integer,

\(T \) an integer, \(0 \leq T < l - 1 \)

\(\lambda = r^{T_m-1} \)

\(\mathbb{I} = \mathbb{I}_T = \mathbb{I}_{T_m} = \{ \sum a_i s^i : a_i \in \mathbb{Z}, \sum a_i \lambda^i \equiv 0 \pmod{l^m} \} \)

\(\overline{\mathbb{I}} = \overline{\mathbb{I}}_T = \overline{\mathbb{I}}_{T_m} = \{ \sum a_i s^i : a_i \in \overline{\mathbb{Z}}, \sum a_i \lambda^i \equiv 0 \pmod{l^m} \} \)

\(\mathbb{I}^- = \mathbb{I}^- = \mathbb{I} \cap \mathbb{R}^- \)

54
\[\mathfrak{J} = \mathfrak{J}_T = \mathfrak{J}_{Tm} = \mathfrak{J} \cap \mathfrak{R}^- \]

the first factor of the class number of the \(l \)th cyclotomic field over the rational field

\[h^- = l^a, \quad \text{where} \quad h^- = l^a \cdot d, \quad a, \quad d \quad \text{non-negative integers}, \quad l \not\equiv d \]

Obviously, \(\mathfrak{R}^-, \mathfrak{J}, \mathfrak{J}, \mathfrak{J}^-, \mathfrak{J}^- \) are ideals in \(\mathfrak{R} \) and \(\mathfrak{R}^-, \mathfrak{J}, \mathfrak{J}, \mathfrak{J}^-, \mathfrak{J}^- \) are ideals in \(\mathfrak{R}^- \).

We consider these ideals (together with \(\mathfrak{R} \) and \(\mathfrak{R}^- \)) additive groups, sometimes \(\mathfrak{R}^- \) or \(\mathfrak{R}^- \) groups and the symbol \([\mathcal{G} : \mathcal{H}]\) denotes the group index for a group \(\mathcal{G} \) and its normal subgroup \(\mathcal{H} \).

1.1. Theorem (Iwasawa [3]).

\[h^- = [\mathfrak{R} : \mathfrak{J}^-], \quad h^- = [\mathfrak{R}^- : \mathfrak{J}^-]. \]

For the sequence of Bernoulli numbers \(B_n \) we use the "even-index" notation, thus

\[B_0 = 1, \quad B_1 = -\frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_3 = 0, \quad B_4 = -\frac{1}{30}, \ldots, \]

and we shall use their basic properties mentioned in the book [1].

By \(\mathcal{F} \) we denote the set of all odd integers \(T, \; 1 \leq T \leq l - 4 \) such that \(B_{T + 1} \equiv 0 \pmod{l} \). It is well known that for each \(T \in \mathcal{F} \) there exists a positive integer \(h(T) \) such that

\[B_{h(T) - 1} \equiv 0 \pmod{l^{h(T)}} \]

and for integer \(X > h(T) \)

\[B_{X - 1} \not\equiv 0 \pmod{l^X} \]

is satisfied.

1.2. Theorem (Pollaczek [4], Satz IX).

\[a = \sum h(T) \quad (T \in \mathcal{F}). \]

2. **THE IDEALS \(\mathfrak{J} \)**

The following Proposition is easy to see.

2.1. Proposition.

\[\mathfrak{J} = \mathfrak{J} \cap \mathfrak{R}, \quad \mathfrak{J}^- = \mathfrak{J} \cap \mathfrak{R}^- = \mathfrak{J}^- \cap \mathfrak{R}^- = \mathfrak{J}^- \cap \mathfrak{R}. \]

2.2. Proposition. The following statements are equivalent:

(a) \(\mathfrak{I} \subseteq \mathfrak{J} \),
(b) \(\bar{\mathfrak{I}} \subseteq \mathfrak{J} \).

55
If T is odd, then we can add the statements:

(c) $\mathcal{S}^- \subseteq \mathcal{S}^-$,
(d) $\mathcal{S}^- \subseteq \mathcal{S}^-$.

Proof. I. Let (a) hold and let $a \in \mathcal{S}$. Then there exist $x_t \in \mathbb{Z}$ such that $\sum x_t r_t \equiv 0 \pmod{l}$ and $a = \sum a_t s^t$, where $a_t = \frac{1}{l} \sum x_t r_{t-i}$. Put $b_t = \frac{1}{l} \sum y_t r_{t-i}$, $\beta = \sum b_t s^t$, where $y_t \in \mathbb{Z}$, $y_t \equiv x_t \pmod{l^{m+1}}$. Then $\beta \in \mathcal{S}$ and $b_t \equiv a_t \pmod{l^m}$. Therefore $\beta \in \mathcal{S}$ and $0 \equiv \sum b_t \lambda^t \equiv \sum a_t \lambda^t \pmod{l^m}$. Thus $\alpha \in \mathcal{S}$ and the implication (a) \rightarrow (b) holds.

If (b) holds, then according to 2.1 we obtain $\mathcal{S} \subseteq \mathcal{S} \cap \mathcal{R} \subseteq \mathcal{S} \cap \mathcal{R} = \mathcal{S}$. The statements (a) and (b) are equivalent.

II. The implication (b) \rightarrow (d) follows directly from the definition.

If (d) holds, then according to 2.1, $\mathcal{S}^- \subseteq \mathcal{S}^- \cap \mathcal{R}^- \subseteq \mathcal{S}^- \cap \mathcal{R}^- = \mathcal{S}^-$ which gives the implication (d) \rightarrow (c).

III. Let T be odd, $\mathcal{S}^- \subseteq \mathcal{S}^-$ and $a = \sum a_t s^t \in \mathcal{S}$ ($a_t \in \mathbb{Z}$). Then there exist integers x_t such that $\sum x_t r_t \equiv 0 \pmod{l}$ and $a_t = \frac{1}{l} \sum x_t r_{t-i}$. Put

$$y_t = \begin{cases} x_t - x_{t+1} - 1 \frac{1}{2} & \text{for } 0 \leq t < \frac{l-1}{2} \\ x_t - x_{t-1} - 1 \frac{1}{2} & \text{for } \frac{l-1}{2} \leq t \leq l - 2. \end{cases}$$

Then $\sum y_t r_t = \sum x_t r_t - \sum x_t r_{t-1} \equiv 0 \pmod{l}$.

If we put $b_t = \frac{1}{l} \sum y_t r_{t-i}$ and $\beta = \sum b_t s^t$, we get $\beta \in \mathcal{S}$ and

$$b_t = \begin{cases} a_t - a_{i+1} - 1 \frac{1}{2} & \text{for } 0 \leq i < \frac{l-1}{2} \\ a_t - a_{i-1} - 1 \frac{1}{2} & \text{for } \frac{l-1}{2} \leq i \leq l - 2. \end{cases}$$

From this we have $\beta \in \mathcal{S}^-$ and according to the supposition $\beta \in \mathcal{S}^-$, hence $0 \equiv \sum b_t \lambda^t \equiv 2 \sum a_t \lambda^t \pmod{l^m}$, whence we get $\alpha \in \mathcal{S}$. The implication (c) \rightarrow (a) is proved.

2.3. Proposition. For even T the equalities

$$\mathcal{S}^- = \mathcal{R}^-, \quad \overline{\mathcal{S}^-} = \overline{\mathcal{R}^-}$$

are satisfied.
Proof. Let \(\alpha = \sum_{t} a_t s^t \in \mathfrak{R}^-, \mathfrak{R}^- (a_t \in \mathbb{Z}, a_t \in \overline{\mathbb{Z}}) \) respectively. Then \(a_t + a_{t+\frac{i-1}{2}} = 0 \) for \(0 \leq i < \frac{l-1}{2} \) and according to the relation \(\lambda_i \equiv \lambda_{i+\frac{i-1}{2}} \) (mod \(l^m \)), \(0 \leq i \leq l-2 \), we get 0 = \(\sum_{i=0}^{l-3} (a_t + a_{i+\frac{i-1}{2}}) \lambda_i \equiv \sum_{i} a_i \lambda_i \) (mod \(l^m \)), thus \(x \in \mathfrak{F}^-, x \in \overline{\mathfrak{F}}^- \), respectively.

2.4. Lemma The following statements are equivalent:

(a) \(\mathfrak{F} \subseteq \mathfrak{F}^- \),

(b) \(\sum_i (r_{-i+t} - r_{-i-t}) \lambda_i \equiv 0 \) (mod \(l^{m+1} \)) for each \(t \in \mathbb{Z} \).

Proof. Let \(x_t \in \mathbb{Z} \) (0 \(\leq t \leq l-2 \)), \(\sum_i x_t r_i \equiv 0 \) (mod \(l \)), \(a_i = \frac{1}{l} \sum_i x_t r_{-i+t} \) (0 \(\leq i \leq l-2 \)). Then there exists an integer \(y \) such that

\[x_0 = -\sum_{i=1}^{l-2} x_t r_i + ly. \]

From this we obtain

\[\sum_i a_i \lambda_i = y \sum_i r_{-i} \lambda_i + \frac{1}{l} \sum_i x_t \sum_i (r_{-i+t} - r_{-i-t}) \lambda_i. \]

If (b) holds, then \(T \neq 0 \), since otherwise for \(T = 0 \) we have \(\sum_i (r_{-i+t} - r_{-i-t}) \lambda_i = \sum_i (r_{-i+t} - r_{-i-t}) = \frac{l(l-1)}{2} (1 - r_t) \). It holds \(l \sum_i r_{-i} \lambda_i \equiv \sum_i (l r_{-i} - 1) \lambda_i = \sum_i (r_{-i} r_{i-1} - r_{-i+t-1}) \lambda_i \equiv 0 \) (mod \(l^{m+1} \)), hence \(\sum_i a_i \lambda_i \equiv 0 \) (mod \(l^m \)) and \(\alpha = \sum_i a_i s^i \in \mathfrak{F}^- \).

If (a) is satisfied, we put \(x_0 = -r_t, x_t = 1 \) and \(x_t = 0 \) (1 \(\leq t \leq l-2, t \neq \tau \)), where \(1 \leq \tau \leq l-2 \). Since \(\alpha = \sum_i a_i s^i \in \mathfrak{F}^- \), we have \(x \in \mathfrak{F}^- \) and according to \(y = 0 \) we obtain

\[\sum_i (r_{-i+t} - r_{-i-t}) \lambda_i = l \sum_i a_i \lambda_i \equiv 0 \) (mod \(l^{m+1} \)).

The Lemma is proved.

2.5. Consequence. For \(T = 0 \) and \(T = 1 \) the relation \(\mathfrak{F} \not\subseteq \mathfrak{F}^- \)
is satisfied.
Proof. If $T = 0$, then by the proof of 2.4 we have $\sum_i (r_{-i+t} - r_{-i}r_i) \lambda^i \not\equiv 0 \pmod{l^{m+1}}$ for $t \not\equiv 0 \pmod{l - 1}$. From 2.4 it follows that $\mathfrak{I} \not\subset \mathfrak{J}$.

If $T = 1$, then for $t = \frac{l-1}{2}$ we have

$\sum_i (r_{-i+t} - r_{-i}r_i) \lambda^i = \sum_i (1 - r_{-i}) r^{il^{-1}} \equiv -\sum_i r_{-i} r^i \pmod{l} = -(l - 1)$.

Then from 2.4 we obtain the relation $\mathfrak{I} \not\subset \mathfrak{J}$.

3. THE INCLUSION $\mathfrak{I} \subset \mathfrak{J}$ AND BERNOULLI NUMBERS

In this paragraph we designate by

$$c = l^{m-1}(l - T - 1) + 1$$
$$s = 1^c + 2^c + \ldots + (l - 1)^c.$$

3.1. Lemma. If k is an integer, then

(a) $\binom{c}{k} l^k \equiv 0 \pmod{l^{m+1}}$ for $2 \leq k \leq c$,

(b) $\binom{c - 1}{k} l^k \equiv 0 \pmod{l^m}$ for $1 \leq k \leq c - 1$,

(c) $\binom{c + 1}{k} l^{c+1-k} \equiv 0 \pmod{l^{m+2}}$ for $0 \leq k \leq c - 2$ and $l > 3$.

Proof. For $m = 1$ the assertion is clear. Let $m > 1$ and let v be the l-adic exponent.

Put $\alpha = \binom{c}{k} l^k$, $\beta = \binom{c - 1}{k} l^k$, $\gamma = \binom{c + 1}{k} l^{c+1-k}$, where k is an integer in bounds from (a) – (c). We can also suppose $k \leq c - 2$. Further put

$$x = v(c - k) + v(c - k - 1),$$
$$y = v(c - k - 1),$$
$$z = v(c - k - 1) + v(c - k) + v(c + k).$$

It holds

$$\binom{c}{k} = \binom{c - 2}{k} \frac{c(c-1)}{(c-k-1)(c-k)},$$
$$\binom{c - 1}{k} = \binom{c - 2}{k} \frac{c-1}{c-k-1},$$
$$\binom{c + 1}{k} = \binom{c - 2}{k} \frac{(c+1)c(c-1)}{(c-k-1)(c-k)(c-k+1)}.$$
whence we obtain

\[v(\alpha) \geq m - 1 + k - x, \]
\[v(\beta) \geq m - 1 + k - y, \]
\[v(\gamma) \geq m + c - k - z. \]

If \(x = 0 \) (\(y = 0, z = 0 \)), then (a) ((b), (c)) is satisfied.

a) If \(x \geq 1 \), then \(k = l^x \cdot X + \epsilon \), where \(X \) is a positive integer, \(l \nmid X \) and \(\epsilon = 0 \) or \(\epsilon = 1 \). Then \(v(\alpha) \geq m - 1 + 3^x - x \geq m + 1 \).

b) If \(y \geq 1 \), then \(k = l^y \cdot X \), where \(X \) is a positive integer, \(l \nmid X \). Then \(v(\beta) \geq m - 1 + 3^y - y \geq m + 1 \).

c) If \(z \geq 1 \), then \(k = l^z \cdot X + \epsilon \), where \(X \) is a positive integer, \(l \nmid X \) or \(X = 0 \) and \(\epsilon = 0, 1, 2 \). Then for \(l \geq 5 \) we obtain \(c - k \geq 5^z - 1 \), thus \(v(\gamma) \geq m + 5^z - 1 - z > m + 2 \).

The Lemma is proved.

3.2. Lemma. If \(t \) is an integer, then

\[s(1 - r_i) \equiv cr_t^{c-1} \sum_i (r_{i+t} - r_i) \lambda^i (\text{mod } l^{m+1}). \]

Proof. For any integer \(i(0 \leq i \leq l - 2) \) there exists an integer \(u \) such that

\[r_{-i} = r^{l-1-i} + lu. \]

By 3.1(b) we have

\[r_{-i}^{-1} \equiv r^{(l-1-i)(c-1)} (\text{mod } l^m). \]

Since \((l - 1 - i)(c - 1) = (l - 1 - i)l^{m-1}(l - T - 1) \equiv iTl^{m-1}(\text{mod } l^{m-1}(l - 1))\),

we get

\[r_{-i}^{-1} \equiv \lambda^i (\text{mod } l^m). \]

For \(i, t \in \mathbb{Z} \) we have

\[r_{-i+t} = r_{-i}r_t + l \frac{r_{-i+t} - r_{-i}r_t}{l}, \]

from which, according to 3.1(a), it follows that

\[r_{-i+t}^{-1} = r_{-i}^{-1}r_t^{-1} + cr_t^{c-1}lr_{-i}^{-1} \frac{r_{-i+t} - r_{-i}r_t}{l} (\text{mod } l^{m+1}). \]

Thus we get for each \(t \in \mathbb{Z} \)

\[s(1 - r_i) = \sum_i r_{-i+t}^{-1} - \sum_i r_{-i}^{-1}r_t^{-1} \equiv cr_t^{c-1} \sum_i l\lambda^i \frac{r_{-i+t} - r_{-i}r_t}{l} (\text{mod } l^{m+1}) = cr_t^{c-1} \sum_i (r_{-i+t} - r_{-i}r_t) (\text{mod } l^{m+1}). \]

Thus, the Lemma is proved.
3.3. Remark. The proof of Lemma 3.2 is realized according to the model of Pollaczek [4], proof of Satz VIII).

3.4. Theorem. For \(T = 0 \) and \(T = 1 \) the relation \(\mathcal{I} \subseteq \mathcal{I}_{Tm} \) is satisfied.

If \(T \neq 0 \), \(T \neq 1 \), then for \(T \) odd it holds

\[
\mathcal{I} \subseteq \mathcal{I}_{Tm} \Leftrightarrow B_{m-1(1-T-1)+1} \equiv 0 \pmod{l^m},
\]

for \(T \) even and \(m > 1 \) it holds

\[
\mathcal{I} \subseteq \mathcal{I}_{Tm} \Leftrightarrow B_{m-1(1-T-1)} \equiv 0 \pmod{l^{m-1}}
\]

and for \(T \) even and \(m = 1 \) the inclusion

\[
\mathcal{I} \subseteq \mathcal{I}_{Tm} = \mathcal{I}_{T1}
\]

is satisfied.

Proof. By 2.5 \(\mathcal{I} \subseteq \mathcal{I}_{Tm} \) for \(T = 0 \) and \(T = 1 \). Let \(0 \neq T \neq 1 \). Then \(2 \leq T \leq l - 2 \) and \(l > 3 \). According to 2.4 and 3.2 the relation \(\mathcal{I} \subseteq \mathcal{I}_{Tm} \) is equivalent to the relation \(s \equiv 0 \pmod{l^{m+1}} \). Using 3.1(c), we see that

\[
(c + 1)s = \sum_{k=0}^{c} \binom{c + 1}{k} B_k l^{c+1-k} \equiv \\
= \binom{c + 1}{c - 1} B_{c+1} l^2 + \binom{c + 1}{c} B_c l \pmod{l^{m+1}} = \frac{(c + 1)c}{2} B_{c-1} l^2 + (c + 1) B_c l,
\]

thus

\[
s \equiv \frac{c}{2} l^2 B_{c-1} + l B_c \pmod{l^{m+1}}.
\]

Since \(c, c - 1 \not\equiv 0 \pmod{l - 1} \), \(B_c, B_{c-1} \) are \(l \)-integers.

In case \(c = 2 \) we have \(m = 1 \), \(T = l - 2 \), \(s \equiv \frac{1}{6} (1 - 3l) \not\equiv 0 \pmod{l^{m+1}} \) and \(B_{m-1(1-T-1)+1} = B_2 \equiv 0 \pmod{l^{m+1}} \).

If \(c > 2 \), we have, in case \(T \) is odd, \(s \equiv l B_c \pmod{l^{m+1}} \), and in case \(T \) is even, we get \(s \equiv \frac{c}{2} l^2 B_{c-1} \pmod{l^{m+1}} \).

It follows the Theorem.

4. THE GROUP \(\mathcal{R}^-/\mathcal{I}^- \)

4.1. Proposition. The groups \(\mathcal{R}/\mathcal{I}_{Tm}, \mathcal{R}^—/\mathcal{I}_{Tm} \) are cyclic groups of order \(l^m \).

If \(T \) is odd, the groups \(\mathcal{R}^-/\mathcal{I}_{Tm}^- \), \(\mathcal{R}^-/\mathcal{I}_{Tm}^- \) are cyclic groups of order \(l^m \) and if \(T \) is even, the groups are trivial.
For each element A of these groups ($A \in \mathcal{H}/\mathcal{I}_{T_m} \cup \overline{\mathcal{H}}/\mathcal{I}_{T_m} \cup \mathcal{H}-/\mathcal{I}_{T_m} \cup \overline{\mathcal{H}}-/\overline{\mathcal{I}}_{T_m}$)

$$s(A) = r^{T_m-1}A$$

is valid.

Proof. We can easily see that $\{0, 1, 2, ..., l^m - 1\}$ is a complete system of representatives $\mathcal{H}/\mathcal{I}_{T_m}$ and $\overline{\mathcal{H}}/\mathcal{I}_{T_m}$.

In case T is even we get from 2.3 that the groups $\mathcal{H}/\mathcal{I}_{T_m}$ and $\overline{\mathcal{H}}/\mathcal{I}_{T_m}$ are trivial.

If T is odd, then $\{x(1 - s^{-\frac{1}{2}}) : x = 0, 1, 2, ..., l^m - 1\}$ is a complete system of representatives $\mathcal{H}/\mathcal{I}_{T_m}$ and $\overline{\mathcal{H}}/\overline{\mathcal{I}}_{T_m}$.

Since $r^{T_m-1} - s \in \mathcal{I}_{T_m}$, we have $s(A) = r^{T_m-1}A$ for each element A of given factor groups.

Thus, the proposition is proved.

From 4.1 we immediately get

4.2. Proposition. $\mathcal{I}_{T_m} \cong \mathcal{I}_{T_m+1}$, $\overline{\mathcal{I}}_{T_m} \cong \overline{\mathcal{I}}_{T_m+1}$ and in case T is odd

$$\mathcal{I}_{T_m} \cong \mathcal{I}_{T_m+1}, \overline{\mathcal{I}}_{T_m} \cong \overline{\mathcal{I}}_{T_m+1}.$$

4.3. Lemma. Let $m(T)$ be a positive integer for each $1 \leq T \leq l - 2$, T odd. Then

$$\bigcap \mathcal{I}_{T_m(T)}(1 \leq T \leq l - 2, T \text{ odd}, T \neq \tau) + \mathcal{I}_{T_m(T)} = \mathcal{H}^{-}$$

for each odd integer $\tau(1 \neq \tau \leq l - 2)$.

Proof. Let $a \in \mathcal{H}^{-}$, $a = \sum_i a_i\alpha_i^i$ (with $a_i + a_{i+\frac{l-1}{2}} = 0$ for $0 \leq i \leq \frac{l-3}{2}$).

Put $\lambda_T = r^{T_m(T)-1}$ for $1 \leq T \leq l - 2$, T odd. Since $\det(\lambda_T^i)\left(0 \leq i \leq \frac{l-3}{2}, 1 \leq T \leq l - 2, T \text{ odd} \right) = \prod(\lambda_T - \lambda_T)(1 \leq T < T' \leq l - 2; T, T' \text{ odd}) \equiv 0(\text{mod } l)$,

the system of linear equations

$$\frac{l-3}{2} \sum_{i=0} x_i\lambda_T^i = 0 \quad (1 \leq T \leq l - 2, T \text{ odd}, T \neq \tau)$$

$$\frac{l-3}{2} \sum_{i=0} x_i\lambda_T^i = \sum_{i=0} a_i\lambda_T^i$$

has a solution in l-adic integers $x_0, x_1, ..., x_{\frac{l-3}{2}}$.

If we put $\beta = \sum_{i=0} x_i\alpha^i(1 - s^{-\frac{i}{2}})$ and $\gamma = \sum_{i=0} (a_i - x_i)\alpha^i(1 - s^{-\frac{i}{2}})$, we have $\beta \in \bigcap \mathcal{I}_{T_m(T)}(1 \leq T \leq l - 2, T \text{ odd}, T \neq \tau), \gamma \in \mathcal{I}_{T_m(T)}$ and $a = \beta + \gamma$.

61
4.4. Notation. According to the Iwasawa's class number formula (1.1) we have $[\mathfrak{R}^- : \mathfrak{3}^-] = h^-$ and therefore by 4.1 for each odd T there exists a non-negative integer $m(T)$ such that $\mathfrak{3}_{Tm(T)}^- \supseteq \mathfrak{3}^-$ and $\mathfrak{3}_{Tm(T)}^- \not\subseteq \mathfrak{3}^-$, for integer $m > m(T)$, where we define $\mathfrak{3}_{T0}^- = \mathfrak{R}^-$.

4.5. Theorem. The \mathfrak{R}-group $\mathfrak{R}^-/\mathfrak{3}^-$ is \mathfrak{R}-isomorph to the direct sum of the \mathfrak{R}-groups $\mathfrak{R}^-/\mathfrak{3}_{Tm(T)}^-$ (T odd). For T odd it is satisfied

$$m(T) = \begin{cases} h(l - 1 - T) & \text{for } T \neq 1, B_{l-T} \equiv 0 \pmod{l} \\ 0 & \text{otherwise.} \end{cases}$$

Further, $\mathfrak{3}_{Tm(T)}^- (T$ odd $) = \mathfrak{3}^-$.

Proof. Let S be the direct sum of the \mathfrak{R}-groups $\mathfrak{R}^-/\mathfrak{3}_{Tm(T)}^-$, T odd. For $X = \ldots, X_t, \ldots \in S$ (τ odd, $1 \leq \tau \leq l - 2$) there exists $a_t \in X_t \cap \mathfrak{3}_{Tm(T)}^-$ ($1 \leq T \leq l - 2$, T odd, $T \neq \tau$) by 4.3. The mapping $X \mapsto \Sigma a_t$ (τ odd, $1 \leq \tau \leq l - 2$) + $\mathfrak{3}_{Tm(T)}^-$ (T odd, $1 \leq T \leq l - 2$) is an \mathfrak{R}-isomorphism of S on the \mathfrak{R}-group $\mathfrak{R}^-/\mathfrak{3}_{Tm(T)}^-$, $1 \leq T \leq l - 2$, T odd), which has order l^n by 4.1, where $\mu = \Sigma m(T)$ ($1 \leq T \leq l - 2$, T odd). From 3.4 we get for T odd

$$m(T) = \begin{cases} h(l - 1 - T) & \text{in case } T \neq 1, B_{l-T} \equiv 0 \pmod{l} \\ 0 & \text{otherwise.} \end{cases}$$

From Pollaczek's result 1.2 we obtain that the order of the group $\mathfrak{R}^-/\mathfrak{3}_{Tm(T)}^-$ ($1 \leq T \leq l - 2$, T odd) is equal to h^-, which follows the Theorem according to the Iwasawa's formula 1.1.

From 4.5 and 4.1 we obtain

4.6. Theorem. The \mathfrak{R}-group $\mathfrak{R}^-/\mathfrak{3}^-$ is a direct sum of \mathfrak{R}-groups $\mathfrak{R}_T (T \in \mathcal{T})$, where \mathfrak{R}_T is a cyclic group of order $l^{\mu(T)}$ and for each $X \in \mathfrak{R}_T$

$$s(X) = r^{(l-1-T)} l^{\mu-1} X$$

is valid.

5. THE IRREGULAR CLASS GROUP
OF THE lTH CYCLOTOMIC FIELD

We can consider the group G the Galois group of the lth cyclotomic field over the rational field, where s is the automorphism fulfilling

$$s(e^{\frac{2\pi i}{l}}) = e^{\frac{2\pi i}{l} \tau}.$$

This automorphism s acts on the divisor class group $\Gamma = (\Gamma, +)$ of the lth cyclotomic field in the natural way and so the elements of the group ring $\mathfrak{R} = \mathbf{Z}[G]$ act on Γ as homomorphisms.
From Hilbert's "Zahlbericht" ([2], Kapitel XXIV) we obtain the following assertion going back to Kummer.

(1) \(\varphi(\gamma) = 0 \) for \(\varphi \in \mathfrak{J}, \gamma \in \Gamma \).

The \(l \)-Sylow subgroup of the group \(\Gamma \) is said to be the \textit{irregular divisor class group of the \(l \)-th cyclotomic field} and we shall denote it by \(H \).

By Pollaczek ([4], Satz III) the group \(H \) is the direct sum

\[
H = \sum_{i=1}^{n} H_i
\]

of cyclic groups \(H_i \) of orders \(l^{m_i} \) (\(m_i \) are positive integers). We shall denote a generator of \(H_i (1 \leq i \leq n) \) by \(\chi_i \). For each \(1 \leq i \leq n \) there exists an integer \(T_i, 0 \leq T_i < l - 1 \) such that

(2) \(s(\chi_i) = r^{T_i l^{m_i-1}} \chi_i \).

Using equality \{\(\varphi \in \mathfrak{R} : \varphi(\chi) = 0 \) for each \(\chi \in H_i \)\} = \(\mathcal{J}_{T_i} \), we obtain \(\mathfrak{J} \subseteq \mathcal{J}_{T_i} \) and we get from 3.3:

5.1. Theorem. Let \(1 \leq i \leq n \). Then \(0 \neq T_i \neq 1 \).

If \(T_i \) is odd, then \(B_{l^{m_i-1}(l-T_i-1)+1} \equiv 0 \text{(mod } l^{m_i}) \).

If \(T_i \) is even and \(m_i > 1 \), then \(B_{l^{m_i-1}(l-T_i-1)} \equiv 0 \text{(mod } l^{m_i-1}) \).

5.2. Remark. The assertion of 5.1 about odd \(T \)'s is due to Pollaczek ([4], § 6) (see also Remark 3.3).

Put

\(\varnothing = \{ 1 \leq i \leq n : T_i \text{ odd} \} \)

and denote by

\(H^- = \sum_{i \in \varnothing} H_i \)

the direct sum of the groups \(H_i \) \((i \in \varnothing) \). The subgroup \(H^- \) of \(H \) is said to be the \textit{imaginary irregular divisor class group of the \(l \)-th cyclotomic field}.

The elements of the group ring \(\mathfrak{R} = \mathbb{Z}[G] \) act on the group \(H \) in the natural way and from (1) we get

(3) \(\varphi(\chi) = 0 \) for \(\varphi \in \mathfrak{J}, \chi \in H \).

For \(\chi \in H^- \) set \(\mathfrak{J}_\chi = \{ \varphi \in \mathfrak{R}^- : \varphi(\chi) = 0 \} \).

5.2. Proposition. The following statements are equivalent for \(\omega \in H^- \):

(a) \(\mathfrak{J}_\omega = \{ \varphi \in \mathfrak{R}^- : \varphi(\chi) = 0 \text{ for each } \chi \in H^- \} \),

(b) \(\omega = \sum x_i \chi_i \) \((i \in \varnothing) \), where \(x_i \) are integers such that for each \(i \in \varnothing \) there exists \(j \in \varnothing \) with the property \(T_i = T_j, m_j \geq m_i \) and \(l \nmid x_j \).
Proof. Obviously, \(S_\omega \supseteq \{ \varphi \in \mathcal{R}^- : \varphi(\chi) = 0 \text{ for each } \chi \in H^- \} \). Let \(0 < l_i < l^m \) be integers \((i \in \Theta) \) such that \(\omega = \Sigma x_i \chi_i \) \((i \in \Theta) \).

I. Let \((b)\) hold and let \(\varphi = \sum a_k s^k \in S_\omega(a_k \in \mathbb{Z}) \). For \(i \in \Theta \) there exists \(j \in \Theta \) such that \(T_i = T_j, \ m_j \geq m_i \) and \(l \nmid x_j \). We have \(x_j \varphi(\chi_j) = 0 \), which follows

\[
\sum_k a_k r^k \prod_{T_i} t_m^{m_j-1} \equiv 0 \pmod{l^{m_j}}, \quad \text{hence} \quad \sum_k a_k r^k \prod_{T_i} t_m^{m_j-1} \equiv 0 \pmod{l^{m_j}}
\]

and consequently \(\varphi(\chi_j) = 0 \). Thus \(\varphi(\chi) = 0 \) for each \(\chi \in H^- \).

II. Let \((b)\) not hold. Then there exists \(j \in \Theta \) such that \(l \nmid x_j \) and \(m_j < m_i \) or \(m_j = m_i \) and \(l \mid x_j \) for \(i \in \Theta, \ T_i = T_j \).

For \(i \in \Theta \) put

\[
\varphi_i = \begin{cases}
 r^{T_i} t_m^{m_i-1} - s & \text{for } T_i \neq T_j, \\
 r^{T_i} t_m^{m_j-1} + l^{m_j-1} - s & \text{for } T_i = T_j.
\end{cases}
\]

If \(T_i \neq T_j \), we have \(\varphi_i(\chi_i) = 0 \). In the case \(T_i = T_j \) we get \(\varphi_i(\chi_i) = l^{m_j-1} \chi_i \). Put

\[
\varphi = \left(1 - s^{l-1} \right) \Pi \varphi_i, (i \in \Theta) \quad \text{(in the case } \Theta = \emptyset, \Pi \varphi_i (i \in \Theta) = 1). \text{ Then } \varphi(\omega) = 0 \text{ and consequently } \varphi \in S_\omega. \text{ But } \varphi(\chi_j) = 2 \chi_j, \text{ where } y \text{ is an integer, } l \nmid y.
\]

Thus the Proposition is proved.

5.3. Theorem. The following statements are equivalent:

(a) The \(\mathcal{R} \)-group \(H^- \) is \(\mathcal{R} \)-isomorphic to the \(\mathcal{R} \)-group \(\mathcal{R}^- / \mathcal{R}^- \).

(b) The \(\mathcal{R} \)-group \(H^- \) is generated (over \(\mathcal{R} \)) by a single element.

(c) \(\mathcal{R}^- = \{ \varphi \in \mathcal{R}^- : \varphi(\chi) = 0 \text{ for each } \chi \in H^- \} \).

(d) \(1 \leq i \neq j \leq n \Rightarrow T_i \neq T_j \).

(e) If \(T \) is odd, \(3 \leq T \leq l - 2 \), and \(m \) is a positive integer such that \(B_{m-1} t_{l-1} = 0 \pmod{l^m} \), then there exists \(1 \leq i \leq n \) so that \(T = T_i \) and \(m \leq m_i \).

If these conditions are satisfied, then the element \(\Sigma x_i \chi_i \) \((i \in \Theta) \) \((x_i \text{ integer}) \) is a generator of \(H^- \) over \(\mathcal{R} \) if an only if \(l \nmid x_i \) for each \(i \in \Theta \).

5.4. Remark. The equivalence of the statements \((a), (b)\) is due to Iwasawa [3], paragraph 4).

Proof of 5.3. I. Let \((d)\) hold. Let \(\emptyset \neq \Theta_0 \subseteq \Theta \) and \(\chi = \Sigma y_i \chi_i \) \((i \in \Theta_0) \), where \(y_i \) are integers, \(l \nmid y_i \). For \(j \in \Theta_0 \) we have \(s(\chi) = r^{T_i} t_m^{m_j-1} \chi_i = \Sigma y_i (r^{T_i} t_m^{m_j-1} - r^{T_i} t_m^{m_i-1} - r^{T_i} t_m^{m_j-1}) \chi_i \) \((i \in \Theta_0) = \Sigma z_i \chi_i \) \((i \in \Theta_0 - \{j\}) \), where \(z_i \) are integers, \(l \nmid z_i \).

It follows that every element \(\omega \in H^- \) of the form \(\omega = \Sigma x_i \chi_i \) \((i \in \Theta) \), where \(x_i \) are integers, \(l \nmid x_i \), is a generator of \(H^- \) over \(\mathcal{R} \).
Thus, (b) holds.

Let $\omega = \Sigma x_i \chi_i \ (i \in \Theta)$ be a generator of H^- over \bar{R}, where x_i are integers and let $1 \leq j < k \leq n$ so that $T_j = T_k$. Then there exist l-adic integers $a_u (0 \leq u \leq l - 2)$ such that $\chi_j = \sum_u a_u s^n(\omega)$. Since

$$\chi_j = \sum_u a_u \sum_{i \in \Theta} x_i r^n T_i u m_i - 1 \chi_i = \sum_{i \in \Theta} x_i \chi_i \sum_u a_u r^n T_i u m_i - 1$$

we have

$$1 \equiv x_j \sum_u a_u r^n T_j (\text{mod } l),$$

$$0 \equiv x_k \sum_u a_u r^n T_k (\text{mod } l),$$

consequently $x_k \equiv 0 \ (\text{mod } l)$ and $x_j \not\equiv 0 \ (\text{mod } l)$. On the other hand we can also show the contrary relation, which is a contradiction.

Thus, (d) holds.

The statements (b) and (d) are equivalent and according to 5.2 the assertion about the form of a generator of H^- holds, too.

II. Let ω be an element of H^- of the form from 5.2 (b). In a similar way as in [3] (p. 177) we put for $\varphi \in \bar{R}^-$

$$f(\varphi) = \varphi(\beta).$$

Obviously, f is an \bar{R}-homomorphism from \bar{R}^- to H^- with the kernel $\mathfrak{I}_\omega = \{ \varphi \in \bar{R}^- : \varphi(\chi) = 0 \text{ for each } \chi \in H^- \}$ (by 5.2). For $\varphi = z \left(1 - s \frac{l - 1}{2} \right)$, where z is an integer such that $2z \equiv 1 \ (\text{mod } l^m) \ (i \in \Theta)$, we have $f(\varphi) = \beta$. The factor group $\bar{R}^\sim / \mathfrak{I}_\omega$ is embedded into the factor group $\bar{R}^\sim / \mathfrak{I}^\sim$ and also into H^-. From I, 1.1. and 5.4 we obtain the equivalence of statements (a), (b), (c).

III. For $i \in \Theta$ put $U_i = l - T_i - 1$. According to 3.4 $U_i \in \mathcal{S}$ and $h(U) \geq m_i$, hence $\mathcal{S} \supseteq \{ U_i : i \in \Theta \}$. According to 1.2 $\Sigma m_i \ (i \in \Theta) = \Sigma h(U) \ (U \in \mathcal{S})$.

If (d) holds, we have $\mathcal{S} = \{ U_i : i \in \Theta \}$ so that (e) holds, too.

Let $j, k \in \Theta, j \neq k, T_j = T_k$. Then there exists $U \in \mathcal{S} - \{ U_i : i \in \Theta \}$. The integer $T = l - U - 1$ is odd, $3 \leq T \leq l - 2, T \not\equiv T_i$ for each $1 \leq i \leq n$ and $B_{i-T} \equiv 0 \ (\text{mod } l)$. Consequently, it follows from the statement (e) that

$$i, j \in \Theta, \quad i \neq j \Rightarrow T_i \neq T_j$$

and according to the well-known Theorem of Pollaczek ([4], Satz VI) the statement (d) holds. Thus, the statements (d) and (e) are equivalent.

The Theorem is proved.
REFERENCES

L. Skula
662 95 Brno, Jandčkovo nám. 2a
Czechoslovakia