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ON AN OSCILLATION CRITERION OF HARTMAN, 
WINTNER AND POTTER 

ERHARD HEIL, Dannstadt 
(Received November 1, 1977) 

SUMMARY 

In §§ 1 and 2 we generalize an oscillation criterion of Hartman, Wintner and Potter 
for the linear second order ordinary differential equation and give some related 
results. In § 3 we compare it with a general form oftheLeighton—Wintner criterion. 
We assume that the coefficients of the differential equation are integrable resp* 
absolutely continuous, since the proofs do not require continuity or differentiability 
as is usually assumed in theorems of this kind. Some of the expressions built from the 
coefficients are known in affine differential geometry and thus are invariant against 
change of the independent variable. Therefore the validity of Potter's criterion for 
finite intervals follows immediately. In § 4 we give a survey of the relevant facts of 
geometry. There we also explain the duality which is -met for instance in Potter's, 
paper. Many of the references can be found in Swanson's book [18]. 

§1. GENERALIZATION OF A CRITERION OF HARTMAN, 

WINTNER AND POTTER 

We consider ordinary linear differential equations of the 2nd order. Such an 
equation is said to be oscillatory in a interval [a, fi\ $ < ao or /? = oo, if some and 
hence every solution oscillates, i.e. has a sequence of zeros tn -> p. By multiplication 
with a suitable factor the equation receives the self-adjoint form 

(1.1) (rtO*)'+*(0*"0. 

We assume that p > 0, q > 0 are absolutely continuous in [a, ff). Setting y =* px 
the equation can be transformed into the system 

x=p~ly 
y « -qx. 

81 



Obviously x oscillates iff y oscillates. The system has continuous solutions which 
are obviously Cl-solutions. Therefore (1.1) as well as 

(1.2) (q~lyy+p-ly~0 

are fulfilled everywhere. There are two distinguished transformations: firstly, 

t , 

(1.3) s(0 = J pCO"1 dr, x'(s) = dx(t(s))/ds. 
a 

This gives 
x' = y 
yf = ~pqx 

and 

(L4) xT + pqx = 0, ((pq)" V) ' + y = 0. 

Secondly, 
t 

(1.5) s(0=J«(T)dT, x'(s) = dx(t(s))/ds, 

which gives 

*' = KPЯ) V 
/ = - x 

and 

(1-6) (pqx')' + x = 0, y"+ (pqY'y = 0. 

Herep(r(s)) q(t(s)) is absolutely continuous for both transformations, since t($) is 
absolutely continuous and monotone (cf. e.g. Caratheodory [2], § 495). 

The following theorem generalizes a criterion which was given in various forms 
by Hartman-Wintner [7], Potter [16], and Breuer-Gottlieb [1]. We define 

lim f(t) = lim ess supf(f) 
t-*fi x-*p t£t 

and likewise lim. The following integrals are to be understood as improper integrals 

with respect to the upper limit. 

Theorem 1: Let p,q>0be absolutely continuous in [a, /?), <md set 

L = Vmp((pqrm)\ I = lim P{(P9Tm)^ 
t->fi t~*p 

(1.7) If JM0~J dr -= oo and L < 2, then (LI) oscillates on [a, #), 

(1.8) //* / > 2, then (1.1) is nonoscillatory in [a, /?). 

(L9) /f jq(t)dt =-oo a/id / > - 2 , then (LI) oscillates on [a, jS). 
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(1.10) If L < - 2 , then (1.1) is nonoscillatory in [a, p). 

Remark 1: The duality between (1.7, 8) and (1.9, 10) is explained in §4. 
B B 

Remark 2: If Jp(t)"* df = oo then L ^ 0, and if )q(t)At = oo then / £ 0. 

These assumptions can therefore be dropped in corollaries 3 ^nd 4 of [l]»x 

compare [16], p. 474. A proof is given after the proof of theorem L In order to 
compare these corollaries with theorem 1 note 

(i.ii) p((pqrll2y = -?-1((p?)1/2>-

which follows from (pq)ll2(pq)~il2 = 1 by differentiation. 

Proof of theorem 1: We first prove (1.7, 8) for p == 1: Let 

(1.12) x" + ex = 0, 

c > 0 absolutely continuous, be given. We have to show 

(1.13) If }im (c -1 /2)' < 2 , then (1.12) oscillates on [a, oo). 
s-+ao • * • . - • • • • • " ' . " . 

(1.14) If Hm (c~l/2)' > 2,* then (1.12) is non-oscillatory on [a, p). 

To show (1.13) we choose A < 2 such that (c~~1/2)' < A for s > s0(A) a.e. (almost 
everywhere). Integration gives 

0 < c(sy1'2 < A(s-s0) +e(s0y
1/2,; . . . . . . 

c(s)> A~2(s + ky2. 

Similarly, to show (1.14) we choose A > 2 such that (c~lf2)' > X for s > st(X) a.e. 
Integration gives 

c(s) < r2(s - Sly
2. 

If we now compare (1.12) with the Euler equation 

x" + y(s -Sy2x = 0, 

we get (1.13,14). From this we get (1.7, 8) by the transformation (1.3). Notice that if 

]p(trldt = ao 
<x 

then t -• ft corresponds to s -• oo. By transformation (1.5) we get (1.6) for y * pjt. 
Since x oscillates iff y oscillates we get (1.9, 10) from (1.13,14) and (1.11). It remains 
to show the assertion of remark 2. If c(s) (> 0) is absolutely continuous and K m 
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= lira (<r1 / 2) ' . then 
a->oo 

(c~1/2)' < K + e for s > s0(e) a.e. 
By integration 

0 < c'1/2 < (K + e) (s - 50) + <r(jor
1/2, 

and therefore K ^ 0. Transformations (1.3, 5) give L ^ 0 resp. / < 0, 

§2. SOME RELATED RESULTS 

We consider (1.1) under the same assumptions as in § 1. 

Corollary 1: Assume L =- / =- \\mp({pq)~t/2)\ 
t^fi 

fi 
(2.1) If | L | < 2 and J(q/p)i/2 dt = oo, then (1.1) oscillates in [a, ft). 

a 

(2.2) If | L | > 2 then (1.1) is non-oscillatory in [a, )8). 

(For an extension to the most general linear second order equation see the end of this 
paper.) 

Proof : This follows immediately from theorem 1 and 

{\(qlp)x/2&t)2<,\p-x*t]qAt. 
• • • • 

Remark: The following lemma shows that corollary 1 is not more special than 
theorem 1 provided L exists. We shall use lemma 1 also for the proof 
of theorem 2. 

fi 
Lemma 1: Let p,q > 0 be absolutely continuous in [a,/7). If $p~x tit =* oo and 

fi • 
p((pqYx/2y *s essentially bounded from above, or if \qtit == oo and p(pqYi/2)' is 

« 
essentially bounded from below, then 

J(«/p)1/2dr-oo. 
« 

Proof: By transformation (1.3) we have a.e. in [a, ff) resp. [0, OQ) 

ti(pqril2y = ((pqr1,2y£M, 

0<(pqrl,2£Ms + N, 

J(qlp)1'1 dt=°](pq)U1 ds £ J(Ms + iV)~!As - oo. 
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<.V,$^larly, by transformation (1.5) we have a.e. in [a, fi) rcsp. [0, oo) 

-p((p<ir1/2y - q^((pq)ll2y - <(w)1/2y * * . ' , ' . . . ' • 

where we have made use of (1.11). The rest follows as above. 

Remark: With lemma 1 we see that the integral condition of Potter's theorem 1.3 
can be omitted, [16] or [18], p. 79. Appearently Rib [17] noticed this already. 

Corollary 1 has a simple form for equation 

(2.3) x + bx + x = 0, b locally integrablc. 

Corollary 2: Suppose lim b exists (lim b = lim b). 
If | lim b | < 2 then (2.3) oscillates in [a, oo). 

l ->oo 

If I lim b | > 2 then (2.3) is non-oscillatory in [a, ft). 
t-P 

Proof: We multiply (2.3) by a suitable factor such that we receive the self-
adjoint form 

(ax)' + ax * 0. 

Obviously a = ab and a is absolutely continuous. The integral condition in (2.1) 
is fulfilled for an infinite interval. Corollary 1 gives the two assertions. 

P 
As is well known l(qlp)xl1 dt =» oo is not sufficient for oscillation; consider 

« 
Eulcr's equation 

x + (2t)~2x « 0. 

It is also not necessary. For there is an unbounded function q with 

00 00 

\qdt « oo, jqmdt < oo. 
I t 

The equation x + qx » 0 is then oscillating in [1, oo) according to the criterion of 
Leighton and Wintner (sec § 3). 

A necessary condition, i.e. a non-oscillation criterion can be derived from 
a theorem of Moore [12], [18] p. 73, which reads under our assumptions p% q > 0 

P P 
as follows: If Jjp"1 dt < oo and J q dt < oo, then (1.1) is non-oscillatory in [a, ft). 

•« a 

Moore establishes this for [a, oo). But the validity for [a, fi) follows from the in-
variance of the conditions under changes of the independent variable. See the 
explanations in § 4. 

P 
Theorem 2: Let p9 q > 0 be absolutely continuous in [a, fi) and / (qlp)m dt < oo. 
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(*)!fp((pq)~i/2y ^ 0orp((pqyll2y < Oa.e. or (b)if\p((pq)~my | is essentially 
bounded, then (1.1) is non-oscillatory in [a, ft). 

Proof: (a) The hypothesis implies that pq is a monotone function. A theorem 
of Leighton [11], [18] p. 71, gives nonoscillation on [a, oo), and since p((pq)~lf2y 
is invariant under changes of the independent variable (see § 4), this is true also on 
finite intervals. 

(b) From Lemma 1 we have 

J/7 1 d f < o o and Jqd t<oo . 
a a 

Moore's theorem cited above gives the assertion. 

§3. COMPARISON WITH OTHER CRITERIA 

If & is absolutely continuous, corollary 2 can be derived from a generalization 
of the well-known criterion of Leighton and Wintner. 

Criterion of Leighton [10], [11] and Wintner [20]: Let p be continuous and > 0, 
and q be locally integrable. If (as improper integrals) 

Jp~1dr = oo and Jgdf=oo , 
; • - ' at a • 

then (1.1) is oscillatory in [a, /?). 
Wintner considered the special case/) = .1 and /? = oo. 
His proof works under our assumptions and transformation (1.3) gives the 

criterion as stated. For/? = 1 and q ^ 0 the criterion was given by Fite [4] and later 
also by Gagliardo [5]. Pfaff [15] gives q. similar criterion for p = 1 and a distribu­
tion q which is the derivative of a locally square integrable function. For literature 
on extension to systems see Etgen and Pawlowski [3]. 

Kreith [8] gives the corresponding criterion for the general second order equation. 
The following corollary is a corrected version of his theorem 2.3, p. 14. 

Corollary 3: Assume that/?! is continuous and > 0, q0 is absolutely continuous 
and p0 is integrable. Then 

-CM)* + qo* + Po* = 0 
is oscillatory on [a, P) if 

J Pi

 x dt = oo 

аnd 
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Kreith proves this (for ft = oo) using a Riccati equation. We derive it here from 
the Leighton-Wintner criterion: By the usual transformation 

x(t) = u(i) exp 

we get 

(One has to be careful not to use more than is required of the coefficient functions.) 
The assertion then follows from the Leighton—Wintner criterion. 

The following nice formulation is a trivial consequence. 

Corollary 4: Let A, B be absolutely continuous, A > 0, and C be integrable. 
If B/A is bounded from above and 

| ( A C - £ 2 ) / A 2 d * = oo, 
a 

then 
Ax + 2Bx 4- Cx = 0 

is oscillatory on [a, oo). 
The following simple example shows that corollary 4, though it is only a special 

case, may have an advantage. 
Consider 

(t2x)' + t2x = 0 in [1, oo). 
00 

Since J t ~2 dt < oo, Leighton's criterion gives no decision, and the same is true for 
I 

Opial's extension [14] of Leighton's criterion. 
On the other hand, B/A = t/t2 = \jt is bounded on [1, oo), and 

](AC - B2)\A2dt = JO4 - *2)/f4d* = J(1 - l/t2)df = oo 
I I I 

so that we have oscillation. The same result is given by theorem 1 since 

f q dt = J t2 dt = oo and p((pq)~1/2)' = t\r2Y = -2/1 -+ 0. 
I - I 

Corollary 5: Let b be absolutely continuous and bounded from above on [a, oo). If 

] (1 -b2/4)d* = oo, 
« 
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then — 

(3.1) . Jc + bx + x - 0 

is oscillatory on [a, oo). 
This is merely the special case A -= C = 1 of corollary 4. We state it explicitly 

because of its relationship to § 1. The question arises whether here or generally it-
corollary 4 the boundedness condition can be omitted. 

If lim b exists and | lim b | < 2, then 
f~>oo f->ao 

J(l-i>2/4)ds=-oo 

so that (3.1) oscillates on [0, oo). This gives the oscillation part of corollary 2. On the 
other hand, if b = 2(1 — l/t)1/2, then lim b = 2 and corollary 2 does not give 

a decision. But 
00 ao лf 

í(l-Ь2/4)d. = î - ^ - = oo, 
1 l Г 

and corollary 5 shows that 

Jc + 2(1 - l/0 1 / a x + JC = 0 

oscillates on [1, oo). 
Corollary 5 even implies the oscillation part of theorem 1, provided that L -» / 

and p and q are, for instance, C2-functions. For the transformation 

(3.2) -<0-f(«(T)/p(t))1/2dT 
at 

gives (1.1) the form 

(3.3) x0 + b(s) xf + x = 0 (' = d/ds), 

where 

* « 0 ) - - l < ( M ) " 1 / 2 ) ' 

is C1. Thus, under these assumptions the oscillation part of corollary 2 is equivalent 
to that of corollary 1 and, in view of Lemma 1, to that of theorem 1. 

§4. RELATIONS TO GEOMETRY 

In the proceeding paragraphs we made occasionally use of the following reasoning: 
If the differential equation and the conditions occurring in a criterion are invariant 
against transformation of the independent variable, then the criterion is not only 
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valid for an infinite interval but also for a finite interval. Appearentjy the validity of 
Potter's criterion for finite intervals has escaped notice, maybe because the invariance 
of p((pqyifly is not evident whereas the invariance of the conditions in Leighton's 
criterion is pretty obvious. Wintner's criterion and its generalization (corollary 4) 
are not valid for finite intervals because the form of the differential equation respective­
ly the integral condition is not invariant. We now give some known facts from affine 
differential geometry which interpret differential equations and conditions and explain 
the duality met in theorem 1 and elsewhere in the literature. Confer also [6], [9], 
and [13], e.g. 

We consider equations (1.1) and (1.2). Two independent solutions of a differential 
equation are considered as coordinates of a plane curve. The introduction of a para­
meter invariant under an affine group amounts to a specific change of the independent 
variable. 

First we choose SL2, the group of unimodular linear mappings. Transformation 

(1.3) s ( 0 - JPttT'dt 
at 

yields a parameter which is invariant with respect to SL2 and can be interpreted 
as twice the area between curve and origin. The differential equation with respect 
to this parameter is 

(1.4) x"+pqx = 0. 

Since y = px = xf we can find a geometric description of the relation between x 
and y: A polarity with respect to the unit circle followed by a rotation of a right 
angle transforms x into y. Thus, the duality can be interpreted as that of projective 
geometry. Transformation 

(1.5) s*(0=J<?(r)dT 

yields also a parameter invariant with respect to SL2. The differential equation now 
becomes 

(1.6) (pqxj + x = 0f f + (pqy1 y - 0 (' « d/d**). 

The last equation shows that s* has the same geometric meaning for y as s has 
for x. Since the equations are determined up to a constant factor, the same is true 
for s, s*. Geometrically this corresponds to the choice of unit area. But conditions 
like J q df = oo are not affected by this ambiguity. 

Now we choose GL2, the group of non-degenerate linear mappings. The invariant 
parameter is given by (3.2) and the differential equation takes the form 

(3.3) x* + bx' + x « 0 or (ax')' + ax =* 0, 
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where a -= ^fpq, b = a'/a = —p((pq) 1 / 2)\ This parameter is also invariant para­
meter of y and one has 

y" - by' + y = 0 or (a"1/)' + a" V = 0. 

This illuminates theorem 1. 
If the differential equation is given in its most general form 

(4.1) Ax + Bx + Cx = 0> 

b and the equation for y can be written in a form which is simpler than is to be 
expected: 

(4.2) s = J (C/Af12 dr, b = -A((AC)-1/2)* + (B - A')/(AC)1/2, 

(C-Xy)' + ((-4- - B)/AC)y + A~V = 0, 
or 

Ay + (A- - B - AC'/C)y + Cy = 0. 

(4.2) may be used to extend corollary 1 to equation (4.1). 
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