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- REDUCIBILITY THEOREMS
FOR DIFFERENTIABLE LIFTINGS
IN FIBER BUNDLES

DEMETER KRUPKA, Brno
(Received October 5, 1977)

1. INTRODUCTION

Let 2, be the category whose objects are n-dimensional, Hausdorff differential
manifolds satisfying the second axiom of countability, and whose morphisms are
injective immersions. Let 24, be the category formed by all principal fiber bundles
over the manifolds from 2,, and by the homomorphisms of principal fiber bundles
Recall that a homomorphism of a principal G,-bundle (Y,, n,, X,) into a principal.
G,-bundle (Y,, n,, X,) is by definition a triple (o, 64, v), where v: G; - G, is
a homomorphism of Lie groups and ¢ : ¥; = Y,, g, : X; = X, are maps such that
7,6 = gon, and o(y . g) = 6(y) . W(g) for all ye Y, and ge G,. If G is a Lie group
then #%,(G) will denote the subcategory of ##, formed by principal G-bundles
and their G-homomorphisms.

This paper is devoted to the theory of liftings in fiber bundles. Our approach is
in accordance with Nijenhuis’ “‘natural bundles” [11] with only minor modifications
consisting in the use of principal fiber bundles. We work with the following

Definition 1. A covariant functor t: 92, -+ P#,(G) is called a lifting to the
group G, if it has the following properties:
" 1. For every X e Ob 2,, tX has X for its base space, i.e. ©X = (t,X, 1y, X), and
for every a € Mor 9,, ta has a for its projection, i.e., ta = (1,2, «; id ).

2. For every X € Ob 9, and every open submanifold U of X the relations -

e

(0)} ToU = my l(U), Ty = Ty leor» To(idy lv) = idmx I:ou
hold. '

- Similar definitions are used in the papers by Salvioli [13], Krupka and Trautman
[10], Krupka [8], and Chuu-Lian Terng [3]. In these papers, the concept of lifting

93




is applied to the theory of geometric objects and their Lie derivatives, the invariant
variational problems in fiber bundles, the classification of natural vector bundles
and invariant differential operators. In [5], the jet prolongations of the lifting
functors associated with the frame lifting are discussed, and in [7] the differential
invariants are interpreted as natural transformations of liftings. The ideas of the
lifting theory either in a “‘classical” fashion or in a “modern™ one have been used
in various branches of applied mathematics—in the theory of invariant variational
problems, the field theory, and the general relativity (see, e.g., [1], [5] [el, (81,
[10], [12D.

The main results of this paper consist in proving the finite order theorem for
differentiable liftings in principal fiber bundles and the reducibility of a differentiable
lifting to its covariance group, or, which is the same, to a transitive lifting. Further,
we shall show that every lifting in the category of fibre bundles, associated with
a differentiable lifting, can be considered as associated with the r-frame lifting #,
where r = 0 is an integer.

All manifolds and maps considered in this paper belong to the category €.

2. ELEMENTARY PROPERTIES OF A LIFTING

Let us consider the categories 2, and 24%,(G). For Xe Ob 9, let 2 denote
the full subcategory of 9, whose objects are open submanifolds of X. Denote by R"
the real, n-dimensional Euclidean space. Let #%y.,; be the full subcategory of
P2,(G) whose objects are restrictions of the trivial principal G-bundle (R" x G, n, R")
to open submanifolds of R".

Propeosition 1. Let t : 2, - P%#,(G) be a lifting. For each o € Mor 9,, a : X; —
— X,, and each U e Ob Dy,

2 ) To(® ly) = T |ou-
Proof. (2) is a direct consequence of (1).

Let t: 9, » 2%,(G) be a lifting and consider the principal G-bundle R" =
= (1oR", g, R"). Choose a point y e 1, (0). To each y € ng,'(0) it is related an
element v(y) € G by the formula y = y, . v(y). The arising map v : n.(0) - G is
a diffeomorphism. From now on let ¢, denote the translation x’ - x' — x of R".
It is easily verified that the formula

(3) 30(}') = (x’ V(Totx(y)))s

where x = ng.(y), defines an isomorphism & = (go, idgn, idg) of TR" onto (R*x G,
#, R), i.e., a trivialization of the principal G-bundle R". The inverse isomorphism
is defined by &5 '(x, g) = 7o¢_ (), . £)- This proves the following
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Proposition 2. The principal G-bundletR" is trivial.

Lett: 9, » 23,(G) bea lifting, e = (go, idgn, id) a trivialization of the principai
G-bundle TR". The correspondence U — (Ux G, n, U), a — (7%, a, idg), where

1) : » toa =gy 0T 0 &y}

and the restnctnons of the maps =, &,, and g5 ! are not denoted, is a covariant functor
from the category Pp. to PBr..c. We call this functor the e-functor associated
with the trivialization ¢ and denote it by 1°. The equality

7o(idgn lp) = idgaxg luxe

holds for each U € Ob Dg.. ‘
Consider a principal G-bundle (Y, 7, X). To each x, € X there exist a chart (U, ¢)
on X such that x, € U, a diffeomorphism & : n~'(U) - ¢(U) x G such that for each
-yen '(U)and ge G, &(y) = (on(»), $(»)), ®(y . g) = #(3) . g. The pair ((U, ¢), P)
will be called the fiber chart on (Y, 7, X). A system ((U,, ¢,), 9,), ¢ € I, of fiber charts
on (Y, n, X) such that (U,, 9,), i € I, is an atlas on X, deﬁnes in a’ well-known way
the differential structure of the manifold Y. Such a system is called a fiber atlas

on (Y, n, X).

Proposition 3. Let Xe Ob 9, and let (U, ¢,), 1€, be an atlas on X. Then the
system ((U,, 9,), & 109.), v€ 1, is a fiber atlas on. the principal G-bundle tX.

Proof. Obvio{xsly €00 To@, 0 (6 0 To@,) ~* = 15(0, 05 '), where 1°is the e-functor
associated with ¢, holds for all ¢, x € I such that the expressmns on both sndcs are
defined. Our assertion 1mmed1ately follows from this relatlon

The following proposition establishes a method of co_nstructmg the liftings by
extending the functors from the category. @. into the category #®gn« . Its proof
is elementary, and we give it in a shortened form because of the formulas needed
later.

Proposition 4. Let 7: Q. — PBraxc be a covariant functor assigning to Ue
€ Ob Dg. the principal G-bundle TU = (1,U, ny, U), where 1,U = Ux G and ny : U x
x G — U is the natural projection on the first factor, and to o € Mor D g. a morphism
7o = (7o, a, idg). Assume that for every U e Ob Dga '

&) ?o(idxn |U) = idkﬂxc loxg-

Then there exist a lifting 1 : 9, - PB.(G) and a trivialization & of tR" such that
t* = 7. For two such liftings <, o and trivializations e, v satisfying 1* = " = 7 there
exists a natural transformation X — Ny of the functor t to ¢ (in the category P3,)
such that for every X € Ob 9,, Ny is an isomorphism of principal G-bundles.

Proof. With the aid of a general construction [2, p. 62] we define to each Xe
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€ Ob 9, a principal G-bundle 1X = (oX, x, X). Let X€ Ob 2, let (U,; 9,), t€ 1,
be a countable atlas on X. In the set of all triples (x, g, ¢), where x € U,, g € G, there
is defined an equivalence relation such that the triples (x,, 81,8, (x2; g2, %) are
equivalent if one only if x; = x3, (@1(%1), 81) = 7o(®,0x 1) (9.(x2), £2). 'Let 1,X
denote the corresponding quotient and [x, g, ¢] the equivalence class of a triple
(x,8,0). Foryet, X,y = [x, g, ¢] put nx(y) = x. We obtam a surjection ny : ToX —
— X. The formula

© ?.0) = (9.(x), 8)

defines a bijection @, : nx '(U,) — ¢,(U,) x G. There exists one and only one dlﬂ'erent-
ial structure on 1oX such that all the maps &,, « € I, are diffcomorphisms. Further,
put for yet1,X, y = [x,g,¢], and g'€G, y.g' = [x,g.g’,¢]. This formula gives -
rise to a right action 1oL Xx G 3 (3, 8) = ¥ . g € 1,X of G on 1, X. It is readily checked
that the triple X = (10X, 7y, X) becomes a principal G-bundle.

Let a € Mor 2,, a: X; — X,. There exists one and only one map 7qa : 70X, —
- 1,X, satisfying the following condition: For every atlas (U,, 9,), t€ I, on X, and
every atlas (V,, ¥,), x€ K, on X;,

" To® la;:w.n--lw.» =¥ o to(Wa9, ) 0 P,
where 1€ ], x€ K, and ®,, ¥, are defined by (6). It follows that ta = (7,2, , idg)
is an injective homomorphism of tX; into tX,, i.e., 1@ € Mor 2%,(G).

The correspondence X — 1X, & — 1a is a lifting from @, to 24#,(G). Using ihe
canonical trivialization & = (g, idga, idg) of 7R" one easily obtains from (7) that
for every a € MOr Dpa, T4 = £9 0 To 0 &5 ' = Tolt.

Let (U,, ¢,), 1€ 1, be an atlas on a manifold X € Ob 9,. According to Propos:-
tion 3, ((U,, @,), ¢ © 109,), t € I, is a fiber atlas on X, and ((U,, 9,), Vo © @o®.): t € 1,
is a fiber atlas on oX. For each ¢ € I there is defined a map (vo o 20®,) ™" © £ © 7@,
from 7,U, to g,U,. Assume that 1* = @' = 7. Then for every ¢, x € I such that the
considered.oxpsessions make sense,

¥0000®, 0 (Vo 0 Qo) ™! = Vo 0 2o(@,0x D o v5 ! = @i(0,05 ") =
= 7o(@,Px*) = 2 0 7@, 0 (60 © T0P) ™"
This shows that there exists an isomorphism Ny = (N, idy, idg) of X onto oX
such that for every t€ J,
® NP = (v 0 000,)™" 0 8 © ..

To show that the correspondence X — Ny, X € Ob 9,, is a natural transformation
of functors we should verify that for each « € Mor D,, & : X; = X3, N{) o 192 =
= gok O N‘, This follows, however, from (7), Proposition 3, and (8). This completes
the proof. '
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Let G be a Lie group, e its identity, and consider the trivial principal G-bundle
(R"x G, m, R®). Let (&, 0, idg) be a local automorphism of (R"x G, n, R"), 0 : U — R*.
There is one and only one map G : o(U) = G such that for each (x,g8)e UxG,
a(x, g) = (o(x), Ga(x) . g). If (,, 04, idg), (&,, 73, idg) are two local automorphisms
of (R"x G, n, R") such that the composed map 0,0, is defined then for every x
from the domain of definition of o,

9 182(x, 8) = (6,0(%), 50,0,(x) . 7,0,(%) . g).

Consider a lifting 7 : 9, - 24#,(G) and a trivialization & of TR". Let a € Mor 9,,
o : U— R" Then 15a (4) is of the form
(10) To(x, g) = (a(x), Ta(a(x)) . g),
where (x, g)€ Ux G and 7% maps a(U) to G. For a,, a, € Mor @,. such that a,a,
si defined, (9) gives the identity
(11) THog@;) (@4@5(%)) = Ty (a5 25(x)) . Top(@a(x)).

Obviously, T° idga(x) = e.
As before let ¢, denote the translation of R”® sending the point x € R” to the origin
Oe R"

Proposition 5. Let ©: 9, —» P#(G) be a lifting, let ¢ be a trivilisation of TR".
For every x, x" € R",

(12) () = e

Proof. Let a e Mor Dgn, ¥o € n;..‘(O), and consider the ¢-functor t* defined by the
trivialisation (3) of TR". Since 7 is a covariant functor we obtain for every g € G and x,
from the domain of a, THa(Xo, 8) = (€(Xo), WTo(faqxoy@! - x,) (Vo - 8))). Putting a = 1,
we get .

(13) T:)tx(xoa g) = (’x(xo)» v('o(’so-x’xt-xo) (yo . g))) - (xo - X, v(yﬂ . g))'

But vy, . g) satisfies the relation yo.g = yo. (¥ . g) which gives Wy, .g) = g.
On comparing (10) and (13) we obtain 7°,(x, — x) = e. This shows that (12) holds
for the trivialisation (3). Let now v = (v,, 1d,,., idg) be any trivialisation of tR".
Since for every a € Mor 9,

(149) ‘ THL = Vo 0 To& 0 Vg ! = Voeg ! o That o0 8yvg *,
the formula (9) immediately leads to the relation 7°%,(x") = e proving Proposition 3,

Let 1 : 9, — #4,(G) be alifting, ¢ a trivialisation of TR", x, € R" a point. Denote
by of,, the set of all « € Mor 2. defined at x, and leaving x, fixed, and by G, the
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set of all g € G which can be expressed as 7°a(x,) for some a e, It is easily seen
that G, is a subgroup of G.

- Furtherlet x,, x, € R". Every B € Mor 9. sending x, to x, defines an 1somorph1sm
of G, and G*, as follows. Leta € &, . Then ap~! € o, and, by (11), 7*(Bap~ ') (x,) =
= TB(x,) . T'a(x,) . T (x,), 7B '(xy) = (°B(x;)) ", and we have (BB~ 1) (x,) =
= TP(x;) . T°a(x,) . (t°B(x2))~*. The desired isomorphism is established as the map
(15) G, 28 > B0 . 8. (TA(x,) ! € G,

Proposition 6. Let t : D, - P#,(G) be a lifting, ¢ a trivialisation of tR". The
Jollowing assertions hold.

1. There exists a subgroup G° of G such that G°. = G* for every x € R".
2. For every a. € Mor Dy, o : U = R", the map t°a : o(U) — G takes values in G*.
. 3. If v is another trivialisation of TR" then the groups G* and G” are similar.

Proof. Let x,, x, € R". From (12) we conclude that for § = 1, _,, the map<(15)
becomes the identity map which proves the first assertion. Let « € Mor Dg., a(x,) =
= x,. Then t,,_, o € o, sothat7’(t,,_, o a)(x,) e G%,. Now (11) and (12) give

t (txz ~-x; © a) (xl) = T txz xl(x ) T a(x2) = T “(xz) .
which shows that t°a(x,) € G, . This proves the second assertion. The thll‘d statement
follows from (14) :

Accordmgly, we deﬁnc

Definition 2. Let t : 2, — 24,(G) be alifting. Each group G®, where ¢ is a trivialis-
ation of the principal G — bundle tR", is called the covariance group of the llftlng 1.

The liftings which we now mtroduce are of prlmary importance.

Definition 3. We say that aliftingt : 9, - 2%,(G) is transitiveif for any Xe Ob 2,
and y,, y, € 1,X there exists « € Mor @ such that t,0(y,) = »,. .

Clearly a lifting 7 : 9, - 24,(G) is transitive if and only if it is transitive on
7tz (0), where Tgn is the projection map of TR". This leads to the followmg con-
sequence. :

Theorem 1. A necessary and sufficient condition for a lifting © : 9, - P#,(G) to
be transitive is that its covariance group is equal to G.

Proof. Let ¢ be a trivialisation of 7R". It follows from (10) that t is transitive
on ng(0) if and only if to every g,, g, € G one can find a € &4, 0 € R", such that
7*2(0) . g, = g,. This is, however, equivalent to the condition G§ = G.

Let G and G, be Lie groups, 7 : 2, - 28,(G) and ¢ : 9, —» P%,(G,) liftings.
Assume that G, is a Lie subgroup of G.
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Definition 4. We say that t is reducible to g, or that t is reducible to the subgroup
G, of G, if there is a natural transformation N of the functor ¢ to t such that for
every Xe Ob Z,, Ny : oX —» X is a reduction of the principal G-bundle tX to the
principal G,-bundle pX. N is called a reduction of the lifting t to @ or a reduction of ©
to the subgroup G, of G.

Proposition 7. A sufficient condition for a lifting t : 9, —» PR ,(G) to be reducible
to alifting ¢ : D, —» PR, (G,) is that there exist a trivialization ¢ of tR", a trivialization v
of 0R” and a natural transformation N of the functor @” to 1 such that Ny, : ¢"U — ©°U,
U € Ob Dy. is a reduction of the principal G-bundlie t*U to the principal Gy-bundle ¢°U.

Proof. Assume that ¢, v, and N satisfy the conditions of Proposition 7. We shall
construct a natural transformation N :¢ — t such that for each Xe Ob 2,,
Ny :0X = tX is a reduction of the principal G-bundle tX to the principal
G,-bundle oX.

Let X€ Ob 9,, let (U,, ¢,), te I, be an atlas on X. According to Proposition 3,
((U., 9), €00 109,), t€1, is a fiber atlas on <X and ((U,, @,), Voo @o®,), t€1, is
a fiber atlas on pX. For every « e I we hiave a map

(16) 20U, 3y > N(y) = (00 700,) ' o N¢.(U.) 0 ¥g 0 0o®,(¥) € ToU,.
There exists one and only one map N’ : goX — 7,X such that
(17) NY leu, = N

It follows from the definition of N that the triple Ny = (N D, idy, A), where 1 : Gy —
— G is the natural injection, is an injective homomorphism of the principal Gy-bundle
oX to the principal G-bundle 1JX; i.e., a reduction of 7X to gX.

In order to show that the correspondence X — Ny, X € Ob 9,, is a natural trans-
formation of functors we shall check that for every ® € Mor 2,, a : X; = X,,

(18) 100 o N = N 002 '

Let (U,, ¢)), te1, be an atlas on X;, and let (V,, ¥,), x € K, be an atlas on X,.
According to (16) and the properties of the natural transformation N =

— (N© 7 . . .
= (N, idg., idg), for each 1€ I, x € K such that the considered expressions make
sense,

-1
€0 o To¥, o Tox o (g 0 ToP,) ' o NL?()U.) 0V 0Qo®, =
= 1% -1 (0) 0 -
oW ) o Noluy o Vo 0000, = N, ° Qo(¥,20; ") o vy 0o, =

— K}0)
which gives = Nyewovoo 0¥ © eoc,

To% o (80 0 To0,) "1 o, F(O
‘ 2(U)° V00 Qo®, = (g9 0 To¥r,) ! 0)
This proves (18), o Wiy oo oo 0o




3. DIFFERENTIABLE LIFTINGS

‘We shall now formulate a condition ensuring that the covariance group of a
lifting 7 : 9, -» #2,(G) is a Lie subgroup of G.

Definition 5. A lifting 7 : 9, - #%,(G) is said to be differentiable if it has the
following property:

For each X € Ob 2, each openinterval I, open submanifold U in X, and differenti-
able map « : Ix U — X such that for each ¢ € I the map «, defined by a,(x) = a(t, x)
is a morphism of the category 2, the map I x 1, U 3 (¢, y) = 1o2,(y) € 1, X is differenti-
able.

Let 1 : 9, —» 24#,(G) be a lifting, ¢ a trivialization of TR".

Proposition 8. For 1 to be differentiable it suffices that the following condition is
satisfied:

For every open submanifold U of R", every open interval I and differentiable map
a:IxU - R" such that a,€ Mor Dg., t€l, the map Ix U3 (1, x) - t°a (2,(x)) e G
is differentiable.

Proof. The statement follows from the local representation of t,x, by means
of fiber charts ((U, @), & o 109), (¥, ¥), & o To¥) and from (10).

Let us now introduce some notation. We shall de;mte by jxf the r-jet of a map f
atapoint x,r = 1,2, ..., oo, and by * the composition of jets. L will denote the
group of all invertible r-jets with source and target at the origin 0 € R". For finite r,
we shall consider this group with the natural structure of a Lie group. For r = o
the group L;° will be considered with its algebraic structure.

Let (Y;, m;, X;) be a principal G;-bundle, i = 1, 2, (g, 64, v) a homomorphism of
(Yy, my, X,) into (Y,, 75, X,). The restriction of the map ¢ to n; '(x), x € X;, will
be denoted by ¢ |,.. For X, , X, € Ob 9,, denote by #°(X,, X,) the set of all invertible
oo-jets with source in X, and target in X,.

Proposition 9. Let t : 2, » PAB,(G) be a lifting, e Mor 9, a : X, - X,. Then
the map tya |, x € X,, depends only on j}a.

Proof. See [3].
As a consequence of Proposition 10 we obtain

Proposition 10. Let t: D, > P%#,(G) be a lifting, ¢ a trivialization of TR". The
relation

(19) g(jra) = za(a(x))
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defines a map & : #F°(R", R") — G which has the following property: For each j{a €
€ F°(R" R")

(20) e(jTo) = 8(j 5 (tamt-2);

and for each s,, s, € F*(R", R") such that s, * s, is defined,

(¥3)) &(sy * 53) = &(s5,) - &(52)-

Proof. It follows from (10) and Proposition 10 that z°«(«(x)) depends only on ja.
From (11) and Proposition 5 we deduce that 7°x(a(x)) = T*(f,(,yxf-,) (0) which
proves (20). (21) follows from (11).

Let g, be the restriction of & (19) to the subset LY of #(R", R"),
@2) 50 = 5 us-

It follows from (21) that g, is a homomorphism of groups. In establishing a more
precise result than that one of Proposition 9 we shall use a lemma about normal
subgroup structure of L. Let Ker g, denote the kernel of the natural group homo-
morphism g, : L;” = L.

Lemma. If N is a nontrivial normal subgroup of L? then there is an integer k > 0
such that Ker g, = N.

Proof. See [3].

Theorem 2. Let t: 9, - 24%,(G) be a differentiable lifting, ¢ a trivialization of
TR". There exist an integer r > 0 and a homomorphism ¢, : L, = G of Lie groups such
that

(23) € = & 0 Q-

Proof. 1. Let k > 0 be an integer, and denote by ¢, : Lf — LZ the natural injection
of sets assigning to a k-jet (a}, aj,;,, ..., @}, ;) the co-jet (@}, a},;,, ..., a), 4,0,
0,...). Let a € L* be any point, J an open interval containing the origin 0 € R, and
J 3t - Y(t) e Lk any differentiable curve passing through a, i.e., such that y(0) = a.
There is a neighbourhood U of 0 e R" and a differentiable map Jx U3 (¢t, x) -
~ oft, x) = a(x) € R* such that (1) for each t the map «, belongs to the class
Mor Dz., (2) a,0) = 0, 3) ¥(t) = ji,, and (4) jFa, = 4 (j&a,). This map is easily
constructed by means of polynomials whose coefficients depend on t. Let ¢ be
a trivialization of TR". Evidently, &, (1) = 7(0). Since the lifting 7 is by assumption
differentiable we see that the curve f — gou¥(f) in G must be differentiable at the
point 0 € R. The curve ¥ being arbitrary, the map ggt, is by a well-known theorem
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differentiable at the point @ = Y(0). We have thus proved that the map got, : L} - G
is differentiable. '

2. Let us consider the group homomorphism g, : L® — G, and assume that g,
is injective. Then for every k, gy : L% = G is an injection and, by the first part of this
proof, an immersion of differential manifolds. Using the arbitrariness of k and the
dimensional arguments one obtains a contradiction showing that ¢, cannot be an
injection. We conclude that the kernel Ker g, of the group homomorphism g, is
nontrivial.

3. The kernel Ker g, is a normal subgroup of L”. By virtue of the above Lemma
there is an integer r > 0 such that Ker g, = Ker g,. The quotient L?/Ker g, = L] has
a natural structure of a Lie group, and the equality ¢, = &, o ¢, defines a group
homomorphism ¢z, : L, - G. The differentiability of &, follows from the equality
€ = &g o ¢, and from the first part of this proof. This shows that g, is a homomorphism
of Lie groups, and the proof is complete.

Let us pass to a description of the covariance group of a differentiable lifting.

Theorem 3. The covariance group of a differentiable lifting ©:2, —» PB,(G) is
a Lie subgroup of G. If ¢ is a trivialization of tR" then the covariance group G* is equal
10 go(LY).

Proof. Let ¢ be a trivialization of tR", and define &, by (22). By virtue of Proposi-
tion 6, the covariance group of a lifting t:92, - #%,(G) is defined by G* =
= {ge G| g = 1°%(0), x € #,}. According to (19) and (22), G° = {ge G | g = &o(5),
seLy} = g(Ly).

It thus remains to show that go(L) is a Lie subgroup of G. According to Theorem 2
there is an integer r > 0 and a homomorphism g, : L, - G of Lie groups such that
& = & 0@,. For this r, let L'(*’ denote the maximal connected subgroup of L.
Since LI{*’ is linearly connected, to each s e L’{*’ one can find a curve [0,1]3¢ —
— s, L") such that s, = jgidg. and 5, = s. The differentiability of 7 implies that
the curve t — zyt(s,) = &,(s,) is differentiable. Further, g,(jjidg.) = e, where e is
the identity element of G, and we see that the element &,(s) € G can be joined to the
identity e by a curve lying in £,(L;'*’). This implies, however, that the algebraic sub-
group (L") is a Lie subgroup of G [4, p. 275]. Let L;{? be the complement of
L in LI, s, e L™, The map s — s, * s defines a diffcomorphism of L") and
L™ which shows that &(L]{ ) and hence ,(L}) is a submanifold of G. This means
that go(L>) is a Lie subgroup of G.

Let t: 9, - #4,(G) be a differentiable lifting, ¢ a trivialization of TR". Using
the notation of Theorem 2 we define:

Definition 6. The smallest number r such that there is a homomorphismg, : L, - G
of Lie groups satisfying &, = &, o g, is called the order of the lifting t.
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Clearly the order of a lifting 7 is defined independently of the choice of the trivializ-
ation ¢&.

Let us return to the dependence of 1y« |, on j X« (Proposition 9). The differentiabil-
ity condition leads to the following result:

Theorem 4. Let 1 : 2, — PR,(G) be a differentiable lifting, « € Mor &, o : X; —»
— X,. Then the map 142 |,, x € X,, depends only on jia, where r is the order of the
lifting <.

Proof. Choose a trivialization ¢ of tR” and consider a fiber atlas (U, @,), £ © T0®,),
tel, on tX, and a fiber atlas ((V,, ¥,), & o To¥,), * € K, on 1X,. For each (e,
x€K such that the considered expressions make sense, £ o To¥, 0 To% 0 (€9 0 To@,) "' =
= th(y, 2@, ). According to (10) and Proposition 10

T:,(lll,‘a(,o‘— 1) (x,’ g) = (Wxa‘pt_i(x’)’ Eo(jg(twnav:‘(x’)wxa‘P:1’"‘1’)) * g)
Theorem 2 and Definition 6 imply that
Eo(jso(t&.ao;’(x’)'ﬁua(pn_1t~x')) = gr(j:)(tw,.up;l(x’)'llua(p: 1t'-x'))’

where r is the order of the lifting 7. This relation shows that 74« |, is a function of jia.
By virtue of the identity 7o = oWy ! o To(¥,29, ') o 7o¢,, this function is inde-
pendent of the trivialization ¢. This finishes the proof.

Theorems 2—4 can be called the finite order theorems for differentiable liftings
in principal fiber bundles.

We shall end this section by proving a theorem concerning the reducibility of
a differentiable lifting.

Theorem 5. Every differentiable lifting is reducible to its covariance group. The
reduction is unique up to a natural transformation.

Proof. Let 1 : 9, —» 2%,(G) be a differentiable lifting, ¢ a trivialization of TR",
1" : Dn = PBrax g the corresponding e-functor (Section 2), G* the covariance group
of 7, and ¢, : G* — G the natural injection. In order to show that < is reducible to G*
it suffices, according to Propositions 7 and 4, to find a functor @ : Dgn = PBrnxge
and a natural transformation N of g to * such that N, : gU — 7*U is a reduction
of 1°U to gU for each U e Ob Dy.. Let us define such a functor satisfying (5). For
U € Ob Dy, we set gU = (Ux G*, =}, U), where 7}, : Ux G* = U is the natural pro-
jection. According to Proposition 6, for each a € Mor @ga, a : U = V, the map
T : (U) - G takes values in G°. Consequently, the equality

4 (idy X ) 0 Qo = Tt o (idy X ¢,)
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defines a morphism ga = (goa, a, idg.) from gU into gV. It is directly seen that the
correspondence U — gU, a — ga is the desired functor.

According to Proposition 4, there exist a lifting ¢ : 2, — P%,(G") and a trivializ-
ation v of gR" such that ¢* = ¢. We shall show that 7 is reducible to ¢. By Proposition7,
it suffices to find a natural transformation N of ¢” to 7° such that N, 10U - 1°U,
Ue Ob Dy, is a reduction. Let Ue Ob Dg., (x,8) € Ux G We set N{%(x, g) =
= (x,1(g)). For each aeMorPy., a:U =V, and (x, g) € UxG", the equality
@' = ¢ together with (24) imply ¢,(¢"x(a(x))) = 7°a(x(x)) which gives N o g¥a(x, g) =
= (a(x), T°u(x(x)) . ¢(g)). Since a0 NP(x,g) = (a(x), Tx(a(x)) . 1,(8)) we see that
the relation tha o N(® = N{” o gsa must hold. This proves that the correspondence
U - N, = (N, idy, ¢,)is a natural transformation of ¢* to 7°. Applying Proposition7
we see that g is reducible to 7. '

The second part of our assertion follows from Proposition 4.

4. ASSOCIATED LIFTINGS

We begin this section by introducing some categories of fiber bundles.

F &, will denote the category whose objects are fiber bundles associated with the
principal fiber bundles from the category #4,, and whose morphisms are homo-
morphisms of fiber bundles over the morphisms from the category 2,. Let (Y;, =;, X))
be a principal G;-bundle, and let Q; be a left G;-space, i = 1, 2. Denote by
(Yix 6,0, i» X)) the fiber bundle with fiber Q; associated with (Y}, m;, X;). Recall
that a collection ((o, g, v), 6, F) is called a homomorphism of (Y, X ¢,Q, 7, X;)
into (Y, x 4,05, 7,, X;) if (0, 6y, v) is a homomorphism of the principal G,-bundle
(Y;, ny, X,) into the principal G,-bundle (Y,, n,, X,), F: Q, = @, is a map such
that foreachge @, andge G,, F(g.q) = v(g). F(9),and g : Y, x 5,0y = Y, %4,0,
is a map such that for each ze Y, x 5,0, represented (as an equivalence class) by
a pair (y, 9)€ Y, x @y, 6(z) = [a(»), F(q)] (compare with [14]). '

Let G be a Lie group. The subcategory of # 4, formed by all fiber bundles associ-
ated with the principal G-bundles and by their G-homomorphisms, will be denoted
by #2,(G). :

Let t: 9, - ?#,(G) be a lifting and Q a left G-space. For X € Ob 2,, write
10X = (10X x ¢Q, 7x, X) for the fiber bundle associated with the principal G-bundle
X = (10X, nx, X). Leta e Mor 9,,, a : X; = X, 10 = (102, &, idg). If z € 10X %X O,
z = [y, q], then the point 7a(z) = [tox(y), ¢] € 10X X ¢Q is independent of the choice
of the pair (y,q) representing the equivalence class z. The collection Tox =
= ((ro%, @, idg), 7o, idy) is a morphism of the category # #,(G). The correspondence
X — 19X, a — 1o has the properties of a covariant functor from 2, to # %£,(G). We
denote this functor by t,.
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Definition 7. 7, is called the Q-lifting, associated with the lifting <.

Let #' be the r-frame functor. #" is a differentiable lifting from the category 2,
to 2#,(L;). For X€ Ob 2, and a € Mor 9, we write F'X = (¥uX, 0%, X), F, =
= (Foa, a, idL;). The following theorem describes the class of Q-liftings associated
with the differentiable liftings in principal fiber bundles.

Theorem 6. Every Q-lifting 14 :2, —» F#,(G) associated with a differentiable
lifting © : @, — PRB,(G) is associated with the r-frame lifting &', where r is the order
of t. More precisely, there is a lifting ¢, : D, » F B,(L,) associated with F', and
a natural transformation N : ¢, — 14 of functors such that for every X € Ob 9,, Ny is
of the form Ny = ((NY’,idy,v), Ny, idg), where Ny :FoX x 10 = 10X %60 is
a diffeomorphism. .

Proof. Choose a trivialization & = (g, idgs, idg) of tR". The map (s, q) -
— £,(5) . g, where r is the order of 1, defines a left action of L], on Q (Theorem 2).
This action gives rise to a lifting 4, : 2, - #%,(L;) associated with #".

Let Xe Ob 2,, and let e denote the identity of G. According to Theorem 4, to
each y e F4X, y = j§o, there is associated an element £{(y) = 70 o &5 (0, €) € T, X.
For each se L}, s = jgu the relations (4), (10), (19), (22), and (23) give

(25) 9 (y % 5) = To(@a) 089 (0, €) = 190 0&g ' oTin(0, €) =
=100 05 (0, £(s)) = 1o o0& (0, €) . £(s) = £(y) . £5)s

which shows that the triple (¢, idy, ¢,) is a morphism of the category #4,. This
morphism gives rise to a map &y : FoX X L:Q - 10X x Q@ as follows. For ze
€ FoXx 1.0, z=[,q], we set &(z) = [e2(), q]. It follows from (25) that the
element &,(z) is well defined. Obviously, ((e¥”, idy, ,), &x, id) is a morphism in the
category #4,. We shall verify that &y is a bijection. Firstly, we shall show that it is
an injection. Choose z; € F X x vQ zi = s 9:), yi = Jéos, i = 1,2, and assume
that &4(z,) = &x(z,). Then there is an element g € G such that 7,0, o &5 (0, €) =
= 100,065 '(0,€). 8 q, =g '.q,. The first equality leads to. the relation
5(01 '92) (0, €) = (0, g) or, equivalently, T(¢1 '¢,) (0) = &(j5(¢1 '®2)) = g. Using
the second equality we obtain for se L}, s = ji(¢~'¢,),

2 =2, @21 = Usws * 5,421 = [0, 6(5) - 921 = [¥1, 8- 92] = 2,

proving that £, is a bijection. Secondly, let us verify that &y is a surjection. Choose
Ze1oX%¢0, Z =[7,4q], and any element y e X, y = jop, such that g%(y) =
= 7,(z). Then y = 140 o &5 (0, €) € 70X, and Z has a representative of the form (3, q)
for some ge Q. Obviously, for z = [y, q] we have &(z) = Z proving that &, is
a surjection. This means that &, is a bijection, hence a diffeomorphism.

To complete the proof it remains to verify that for eacha €e Mor 2,, « : X; - X,,
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the following two diagrams are commutative:

(0)

» €x, ’ &y,
FoX, — 10X, yoxn"L;Q""“"‘oxxxGQ
Fo 1 © 1 oot Fo l 1 T
& &
¢ :)Xz—ﬁ"foxz fBszL;Q-iHonXGQ

This is, however, a direct consequence of the definitions.

Acknowledgment. The author is grateful to Prof. I. Kolaf for critical remarks
and valuable discussion.

Added in proof. Recently, the finite order theorem was proved by R. S. Palais
and Chun-Lian Terng for smooth locally trivial fiber bundles whose structure
groups are not a priori specified (Topology, 16 (1977), 271-277).
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