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1. INTRODUCTION

One of the most useful tool in valuation theory is the approximation theorem
for independent valuations on the field. This theorem was subsequently generalized
by Jaffard [5] and Fukawa [2], some generalization and the independent theorem
were given by Ribenboim [13]. A lot of interesting results concerning approximation
theorems were given by Griffin [4]. On the other hand, Miiller [10], Jaffard {6}
and Nakano [12] extended approximation theorems for lattice ordered groups and
their results are in close relation with approximation theorems for valuations.

T. Nakano [11] introduced ring-like system called ‘‘d-group™ which includes
lattice ordered groups and rings and he showed that many theorems generalizing
theorems in both systems there should be proved. Hence it is natural to find some
approximation theorem in this system. In this note we show the existence of several
types of approximation theorems for d-groups and it has been shown that d-groups
have similar properties with respect to these approximation theorems to those of
ordinary integral domains and abelian lattice ordered groups. It should be noted
that some of the proofs are adaptions of well-known proofs of approximation
theorems for valuations.

2. DEFINITIONS AND BASIC FACTS

In this note all rings and groups are commutative integral domains and abelian
groups,

At first, we repeat some basic facts about d-groups (see [117). ‘

A d-group is a partially ordered group (G, .) with an element oo ¢ G which admits
a multivalued addition @, i.e. to every ordered pair of elements (a, b) € (G L {00}) x
x (G U {}) is assigned a no-void subset a @ b of G U {0} such that
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NDadb=>bDa,
Daddd®)=@BdOC,

(3) aeb® cimpliesbea @ c,
@WDa.bdc)=a.bDa.c,

(5) weadbifand only ifa = b,

(6) a,b=cand xea ® bimply x > ¢,

for any @, b, ce G.

An m-ring is a commutative semigroup (M,.) with identity and an element
oo ¢ M that admits a multivalued addition and satisfies (1)—(5). In this note all
m-rings are required to obey the cancellation law. Let 4 be an m-ring, U(A4) its
group of units. Then all the quotients ab™! with a, b € 4, form a group Q(4). It is
easy to see that the factor group G(4) = Q(A4)/U(A) is partially ordered and becomes
a d-group. G(A) is called a d-group relative to A.

A subset J of an m-ring A is called a m-ideal of A provided thata ® b < J, are J,
for every a,be J, re A, and it is called a prime m-ideal if ab € J implies ae J or
beJfora,be A.

Let (4, ®) be a m-ring and let J be-a m-ideal of A. For two elements a, b e 4
we define
a=bmodJ) if (a@a®bnJ#0.

By [11]; § 4, this relation is an equivalence relation on 4. All the cosets a ® J,
ae A, form a factor m-ring A/J with respect to the multivalued addition

@b )={cdJ:ceadb}
and multiplication
@ado).bdH)=a.bodJ

and infinity element J as a coset.

Let G be a d-group, G, = {ge G :g = 15 = 1}. A subgroup H of G is called
d-convex if it is convex and H.G, ® H.G, = H.G,. Any directed convex
subgroup of G is d-convex ([11]; Lemma 5) and for any d-convex subgroup H of G
it is easy to see that the factor group G/H plus the infinity element co = oo H becomes
a d-group (called factor d-group) with respect to the multivalued addition

aH ®' bH = (aH @® bH)/|H
and the factor ordering.

A d-group (G, @) is called local provided that the multivalued addition @ is
exact, i.e. for every a,be G, a > b, a® b = {b} holds. A d-convex subgroup H
of G is called prime if the factor d-group G/H is local. For a d-group G we denote by
M(G) the set of all directed prime d-convex subgroups of G. By [8]; Lemma 2.1.,
there is a bijection Y between IN(G) and the set of all prime m-ideals of G, such that
H, € H, < y(H)) 2 '/’(Hz)-r
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Let (G, @,), (H, ®,) be d-groups. A map f from G into H is called a d-homo-
morphism if it is an o-homomorphism of partially ordered groups (i.e. f(G.) < H,
and fis a group homomorphism) and f(a @, b) < f(a) ®, f(b) for every a,be G; f
is called a d-epimorphism if it is an o-epimorphism (i.e. 0-homomorphism and f(G ) =
= H,) and d-homomorphism, and it is called a d-isomorphism if it is an
o-isomorphism (i.e. group isomorphism and f(G,) = H,) and f(a®,b) =
= f(a) @, f(b) for every a,be G.

Further, a d-group G is called a Priifer d-group if for any minimal (with respect
to inclusion) H e M(G), G/H is totally ordered.

An important example of a d-group was given in [11]: Let G = (G, ., £) be
a lattice ordered group (nota"tibn: I-group). Then it is possible to define a multivalued
addition @,, on G in the following way:

X®ny={zeG:xAy=zAy=zAx}, where x A y = inf (x, y) in G. Then

(G v {0}, ., £, ®,,) is a d-group and every prime /-ideal of G is a prime d-convex
subgroup. ' '

3. APPROXIMATION THEOREMS FOR D-GROUPS

We begin this section with several simple lemmas.

3.1. Let G be a totally ordered local d-group, G, totally ordered group such that
there exists an o-homomorphism f: G — G,. Then f is a d-homomorphism with respect
to the multivalued addition ®,, on G,.

The proof will be omited.

3.2. Let (G, ®,), (G,, ®,) be totally ordered local d-groups and let f: G, - G,
be a d-epimorphism such that ker f # {1}. Then ker f is a prime d-convex subgroup
of G, and G/ker f is d-isomorphic with G,.

Proof. Since ker fis a convex directed subgroup of Gy, it is d-convex and G,/ker f

is o-isomorphic with G,. Let f be the canonical o-isomorphism of G,/ker f onto G,.
It is easy to see that fis a d-homomorphism. Let f(gH)é& f(aH) @, f(bH), where
H = kerf. If aH > bH, then bea @, b, f(aH) ®, f(bH) = {f(bH)}, hence gH =
= bHeaH ®' bH, where @’ is the factor multivalued addition on G,/H. If aH =
= bH, then a = bh for some he H. Since H # {1}, there exists # € H, h' < 1,
and we may find an element #"e H with g >ah’ . h" =b.h.h .h". Thus, ge
€a. b .h"®, b.h.H .h andwehavegH eaH ®' bH. Hence, fis a d-isomorphism.
Now, since G,/H is d-isomorphic with the local d-group G,, it is local and H is prime.
It should be observed that “ker f # {1}” cannot be removed from 3.2. In fact, let
(G, @) be a totally ordered local d-group such that there exists an element ae G
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with a ¢ a @ a. Then the identity map i : (G, ®) — (G, ®,,) is a d-epimorphism but
not a d-isomorphism.

The following simple lemma shows that in totally ordered local d-group only two
multivalued additions are possible.

3.3. Let (G, ®) be a totally ordered local d-group. Then either @ = @ or ® = ®n»
where for a,beG,a # b, a ®,b=a®,b, a®,a=a®,a— {a}.

Proof. Let a, b, c € G be such that ae b @,, ¢, a¢ b @ c. Since the multivalued
addition @ is exact, it follows @ = b = ¢, a ¢ a @ a. Then for every x € G we have

x=xa"'a¢xa '@®a)=xP x.

Then for every xey @, z we have x = min(y, z) < max(y, z). Hence, x€
e min (y,z) @ max(y,z) and xe y @ z. It follows @ = @,,.
Now, for a d-group G we set

T(G) = {(G', ¢') : G’ is a totally ordered local d-group,
¢ : G - G' is a d-epimorphism},

and we set (G,, ¢,) = (G,, &,) if there exists a d-isomorphism ¢ from G, onto G,
such that o.¢, = ¢,. Further, we set (G,, &;) £ (G, &,) if there exists a d-epi-
morphism ¢ from G, onto G, such that 6.¢&, = ¢;.

3.4. The ordered set (T(G), <) is an inf-semilattice.

Proof. At first, we need to show that (T(G), <) is an ordered set. We suppose
that (G,, ¢,) < (G,, &,) < (G,, &) and let 74, T, be the d-epimorphism such that
1,6 = &3, T, = &,. Then t; is an o-isomorphism. For every y € G,, x € G,, such
that 7,(x) = y we have

X@;x =17,(x @y x) € 15(1,(x) B, 71,(x)) € x D, x,
(0 @B,y = Tz(fx(x) D, t1()‘)) =x®,; x = 1,00) ®, 120)

Hence, 7, is a d-isomorphism and (G,, ¢,) = (G,, &,).

Now, let (G,, &,), (G,, &;) € T(G), H; = ker¢;, G’ = G/H,H,and leto;: G; > G’
be the canonical map. Henceforth we shall assume that for the ordered group G,
G; = G/H;. On G’ we define a multivalued addition @’ in the following way.

@.., when for every x,y,zeG,, a,b,ce G, such that ¢,(x) = 0,(y) =
@ =] =02, 04a) = 0,(b) = 0,(c), We have x ¢y ®, z,a¢ b @, c;

®n, otherwise.
Then (G', @) is a d-group and it is easy to see that o; is a d-epimorphism. Then
for the canonical map &' : G —» G’ we have ¢’ = g;¢; and (G', ¢') € T(G). Let (K, @) €
€ T(G) be such that (K, g) < (G, &), (G, ;) and let 7; be a d-epimorphism such
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that ¢ = 7;¢;. Then a map o defined by o(gH, H,) = ¢(g) is an o-epimorphism and
o¢’ = 0. We need to show that o is a d-homomorphism. There are two cases to be
considered. :

(1) & = @y If ®Bgx = ®m, 0 is a d-homomorphism by 3.1. Let &y = D,
and suppose that o is not a d-homomorphism, i.e. there exist aH,H, > bH,H,
such that o(aHH,) = o(bH,H,). Then 1,(aH,) = oo,(aH,) = d(aHH,) =
= o(bH,H,) = o60,(bH,) = t,(bH,), aH, > bH, and from the facts that bH, €
€aH, ®, bH, and 7, is a d-homomorphism it follows t,(bH,) € 7,(aH,) ®,, T,(bH)),
a contradiction.

2) &' = @,,. We may suppose that there exist aH,, bH;, cH, € G, such that
o,(aH,) = o,(bH,) = 0,(cH,), aH, e bH, @, cH, . Since 1, is a d-homomorphism,
we have t,(aH,) e 7,(bH,) ® t,(cH,), t,(aH,) = 1,(bH,) = 7,(cH,) and it follows
@k = ®n. Thus, ¢ is a d-homomorphism by 3.1. Hence, (K, ) £ ((G', ®'), &)
and (G, &) = (G,, &) A (G, &) in T(G).

Now, let G be a d-group, (g, ..., g,) € G". We say that (g,, ..., g,) is compatible
with respect to ((Gy, &), .-~ (Ga, &) € T(G)" if for every 1 £ i,j < n, (Gyy, &) =
= (Gy, &) A (G, ¢)), we have

Gu(g D =g j(g j)-

In what follows we denote by a;; the d-epimorphism such that ¢;; = g, ;€1 Further,
for T' = T(G) we set

G(T)={geG:¢(g) =1 forevery (G',¢e)e T'}.

Then the following proposition is a simple modification of [4]; Proposition 5.

3.5. Let G be a d-group and let T' <= T(G). Then the following conditions are
equivalent.

(1) For any N = ((Gy, &), ..., (Ga, &) € T and every (gi, - .., &) € G" compatible
with respect to N and such that eg)) = 1,i = 1, ..., n, there exists g € G\T") such that
&g =elg),i=1,...,n

(2) For every (G, &), (G}, &) € T',a € G, such that 6;(a) = 1 there exists b € G(T")
such that e(b) = 1, ¢,(b) 2 a.

Proof. (1) = (2). Let (G, &), (G;,e)e T', a€ G,, 0;/(a) = 1. Let b’ € G be such
that g,(b") = a. Then 6,,e/(b") = &;(b") = oe(b’) = 1 and (1, b’) is compatible with
respect to ((G;, &), (G;, ¢;)). Then there exists be G(T") with g(b) = g(1) = 1,
&,(b) = £/b) = a.

(2) = (1). The proof is by induction on n. Let (g,, ..., g,) € G* be compatible
with respect to N, /(g;) = 1. Then we may suppose that (Gy, &) £ (G, &) for k # ji.
Further, if we suppose that there exists j, 2 < j < n, with ker o;, = {1}, from the
fact that (g4, ..., g;, ..., g,) is compatible with respect to (G, &y), ..., (Gy;, ¢, ...,
..+, (G,, &)), where (G,;, &) = (G;, &) A (G}, &), and by the induction it follows
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that there exists g € G(7”) such that £(g) = ¢,(8,), 1 <t < n, t # j. Since (Gyj, &) £
< (G;, &) we have £(g) = £'(g)). Then 0;,6(8) = £'(g) = ¢'(g) = 0;(8,), and
eig) = efg).

Thus, we may suppose that for every j > 2 thereexistsd; € G, d; > 1,0,,(d;)) = 1.

Then it is possible to show for every i, 1 £ i £ n, the existence of a; € G(T") with

&i(a;) = €dg),
ea) > &gy, k #1i,

(see the proof of [11]; Prop. 5).. Let
gea; @ ... D a,.

Since ¢; is a d-homomorphism, we have £(g) 2 min (e(a)) = €i(@) = &(g). If
&i(8) > &i(g:), we have ¢(g:) € (@ &(a)) @ &i(g) and since G, is a local d-group, we
ki

obtain ¢,(g;) € @ e&i(ay) and g(g;) = min,‘“(s,-(a,()) > ¢,(a;) = £(8:), a contradiction.

k#i
3.6. Let G be a d-group and let T' = T(G) be such that for every (G,e)eT kere¢
is a directed subgroup of G. Then the equivalent conditions of 3.5. are satisfied.

Proof. Let (G;, &), (Gj,¢) € T, ae G;, be such that g;(a) = 1. By the proof
of 3.4. we may suppose that for ordered group G;;, G;; = G/ker¢; . ker¢; and o;
is the canonical map from G/ker ¢; onto G;;. Hence, there exist b, a;, a;€ G such
that a; e ker ¢;, a; e kerg;, b = a,a;, £i(b) = a. Since ker ¢; is directed, there exists
cekere; such that ¢ 2 1, ¢ 2 a;. Then g(c) = 1, gfc) 2 gf(@) = &b . a; ') =
= ¢g;(b) = a.

Corollary. Let G be a I-group, {H; : i € J} be a set of prime l-ideals of G such that
N {Hi:ieJ} = {1}. Let for i, ...,i,€ J, (g, ..., &) € G" be such that g H; H; =
=g H, H;, gH, 2 H;, k,t = 1,...,n. Then there exists g € G, such that gH; =
=gH,,k=1,...,n

It should be observed that this corollary may be proved using the theorem of
Krull, Kaplansky, Jaffard and Ohm which states, that for any l-group G there exists
a Bezout domain 4 with G as its group of divisibility. In fact, in this case for every
i € J, the composition w; of canonical maps

K* % G5 G/H,

is a valuation on the quotient field K of A and by [4]; Prop. 5, {w; : i € J} is a defining
family for A satisfying the weak approximation theorem. Then for iy, ..., i, e J,
(815 --.»8) €G" such that g, H, H; = gH, H,, the family (fi,(81);...,/i,(8x)€
€(G/H;), x...x(G/H;), is compatible and there exists 4 € 4 such that w;(a) =
= fi(8), t = 1, ..., n. Hence, v(a) H;, = g,H;,, va)eG,.
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3.7. Let G be a d-group and let (G;,e)e T(G), i=1,...,n, ae G. Then there
exists b € G such that

eid) = 1 Jor g(a) 2 1,
&) < ei(a) for gfa) < 1.

Proof. (Cf. [3]; 18.7) Let (@) 2 1 for 1 S i< k,efa) < lfork + 1 Zi s n.
Forne Z, and c e G we set

nc=c®...0c (n times),
and for 1 £ i < k we set
P;={ceG:elc)>1}.
Now, if there exist n; ;, ..., n; ,,€ Z, such that for some c; € G we have
ce(1®na®..0n, d"dad*")nP,
we set B; the first set in the intersection. Otherwise, we set f; = {1}. Further, let
*bel @ d’cy...c,

wherec; = 1for B; = {1}.If B; = {1} foreveryi,thenbe 1 @ a* Hence for &i(a) 2 1
we have ¢(b) = 1 and since 1 @ a®> N P; = 0, we obtain &(b) = 1. If ga) < 1,
then from the fact ¢i(b) € | @ e:(a?) it follows g(b) = e(a?) < &i(a).

Let g; # {I}fori=1,...,p,1 £ p £ k. We set

A= @ (ny,5 .. np,,a) =
J=s1+...+5p

=1®na®...®&n_,ad '@da,
where t =t; + ... + t, + p,njo=n; 44y =1,0=5; = t; + 1. Then
bel@a’c,...c,c 1 @®a’p,...,c 1®a*. A

Letl <i < k. Thepeia) 2 1.1ff; = {1}, wehave 1 @ a4 N P; # Dand &,(b) = 1.
If B; # {1}, we have ei(a’cy ... ¢,) 2 &ic;) > 1and it follows gi(b) = 1. Letk + 1 <
< i £ n, Since

pel@®dOond®..®n_a*' @at?
there exist x, € 1103, ..., X,_, € n,_;a'*" such that
bel @’ ®x,®...0x,_, a2
Since &,(x;) enjei@i*?), j=1,...,1t — 1, ea’*?) > gy(a'*?), we have

ax) > e@*?),  j=1,...,t—1
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and
efa'*?) < gfx), 1, 8@?), j=L..,t—1L

Therefore e/b) = e(a**?) < e(a).
3.8. Let G be a d-group, (G,, &) € T(G), i = 1, ..., n, &.€ & (G;). Then the follow-
ing conditions are equivalent.

(1) There exists g € G such that e(g) = efg)), | S i s n.
(2) (g4, ..-5 8) is compatible with respect to

((Gl ’ 8l)a ceey (Gm 8,,))-

Proof. (2) = (). Let G/, ﬂ ¢ 1(G;) and let G’ be a d-group relative to G,

Hence, G’ = {gU : ge U}, where U {heG:e(h) =1,i=1,...,n}. For every i
we define

e(gU) = &(g), gUeG"

It is easy to see that (G, &) € T(G’). Further, ker ¢ is a directed subgroup of G'.
For, by 3.7. for every gU € ker ¢, there exists 4 € G such that g;(h) = 1 for g/(g) 2 1
and g(h) < e(g) for g(g) < 1. Then hUekere, and hU = U, gU in G'. We set

T = {(Gl ’ ell)a AR ] (Gn’ solu)} S T(G’)

Let (g, ..., g&,) € G" be compatible with respect to ((G,, &), ..., (G,, &)) and let
for 1 <i,j £ n,i#}j (Gi,e) = (Gi, &) A (Gj, &) in T(G). Then for the canonical
d-epimorphism ¢’ from G’ onto G;; we have

(th. g) = (Gi, &) A (G, ¢)

in T(G'). Since &(g;) = &(g;), we obtain &'(g;U) = ¢'(g;U). We obtain the proposition
by 3.5., 3.6.

(1) = (2). Trivial.

39. Let G be a d-group, H, H,, ..., H,e WG), H{ n...n H} < H*. Then
there exists i, | £ i < n, such that H; < H.

Proof. The proof is by induction on n. Let n = 2, H n Hf < H* and suppose
that H;' ¢ H*. Hence there exist xe H — H, ye HY — H. Since H is prime, we
have by [11]; Lemma 6, x®@ yn H=0 and x®yn (H{ n HY) =0, Let ze
ex®y Then xez® yn H,, y¢ H, and we have ze H; . Analogously, ze H;
and zex ® y n (H{ n HY), a contradiction. Let n > 3. If for some i, ] £ i < n,
N(H*VH)s H* UH}, then () H} < H* and the induction hypothesis
J*i j#i
implies that H, < H for some k. Now, suppose that for every i, 1 £ i £ n, there
exists zye (Y (H* UH}) — (H* UH]). Letzez, @ z, ... z,. Since H is convex

it
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and prime, we obtain z ¢ H. Hence, there exists i such that z ¢ H;. Since H, is convex
and prime, it is easy to see that we obtain a contradiction, and the conclusion of 3.9.
follows by the case previously considered and by induction.

3.10. Let G be a d-group, (G, e)eT(G), i=1,...,n, and let G' be a d-group
relative to (") {&; (G;'): i = 1, ..., n}. Then G’ is a Prilfer d-group.

Proof. Let H, be the quotient subgroup of a semigroup G’y — {gU € G';:&(g) >
> 1}. By [8]; Lemma 2.1, H;e M(G’) for i = 1, ..., n. Then G'/H, is o-isomorphic
with G;. In fact, in the proof of 3.8. it has been shown that ¢; is an o-epimorphism
from G’ onto G; and ker ¢; is a directed subgroup of G’. Then we have

(kere)), = kere; n G, = H. n G, = 'H,f
and kere; = H;. Let He MM(G) be a minimal element of (G’'). Then {U} =
= h H}! < Hand ‘by' 3.9. we have H; = H for some i. Hence, G/H is totally ordered
anzizlG’ is Priifer.

Problem. Let G be a /-group, then G is a d-group with respect to the addition @,,.
Let (G;,e)€ T(G), 1 =i £ n, and let G’ be the same as in 3.10. It is easy to see that
G’ is a [-group. The problem we want presented here is the following: Does for the
multivalued addition @ in G’, @ = @,, hold? It is easy to see that this is equivalent
to the following: '

For every prime lideals Hy, ..., H, of G, x,y,z€ G, a,be (| H; such that
i=1

xAy=alx Ay)=b(y A 2),
) . | ]
there exist ¢, d € () H; such that

i=1

ex Ady=2z A cex =2z Ady.

3.11. Let B be a m-ring, J,, ..., J, m-ideals of B such that for every i,j,i # J,
Ji®J;={zeB:3aelJ;, beJ, with zea® b} = B holds. Then the canonical
map S
B — BjJ; x...xBlJ,

is a surjection.

The proof is a straightforward modification of [1]; Ch. 2, § 1, Prop. 5, and will
be omited.

Let (Gy, &), (G,, &) € T(G). We say that these elements are independent provided
that (G', ¢') = (G,, &1) A (G2, &) is a'trivial pair, i.e. G’ — {co} is a trivial group.

3.12. Let G be a d-group, (Gy, &), .-, (G,, &,) € T(G) be such that they are pairwise
independent and let g5, ---> &n> by, ..., b,€G. Then there exist x, ¥y, ..., Yn € G such
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that
VIEX @ bh

e () 2 &(g), i=1,...,n

Proof. {Cf. [1]; Ch. 6, § 7, Th. 1) Let G’ be a d-group relative to [ & (G
i=1

There is no loss of generality in assuming b;U € G’, and &,(g:) > 1. We set

J’- = {gUe G’ . s;(g) Z ei(g;)}.

It is easy to see that J; is a m-ideal of G, . We admit that for some i, j, i # j, Ji @' J; #
# G’, holds, where @’ is the addition on G'. Then there exists a maximal m-xdeal I
of G, such that J; @’ J} c P. Then y ~'(P) is a minimal prime d-convex subgrouf*
of G’ and by the proof of 3.10., there is an index k, 1 < k < n, such that y ~}(P) =
= H,. Let for every i, | £ i < n, T; be the quotient subgroup of a semigroup

{8U € G, : e(g") < ei(g;) foranyne Z,}.

Then by [8]; Lemma 2.1., T; € M(G"). If we suppose that there are H; , H;, € {Hi}
such that H;,, H;, < T, then the canonical map ¢’ : G’ » G'/T; is a d-epimorphism-.
Since g,U ¢ Ti, we obtain that G'/T; is not trivial. In this case we have (G, &)
(Gi,, &) 2 (G'/T;, @i,6:,), where ¢;, is the canonical d-epimorphism from G,
onto G’/T;, a contradiction. Hence,

HsT, H&T, j#i
LetgUe H, . IfgU ¢ T;', thereexistsn € Z,, such that &,(g") 2 ¢(g.),g"Ue J, c P

and since P is prime, gU € P, a contradiction. Thus, H, € T; and analogously we
can see that H, c T;, a contradiction. Therefore, J; @' J; = G';. Then it is easy to
seethat J; = {geG:gUe J}}isam-idealof B = {geG: gUe G,}and J; ® J; =
= B, i # k. By 3.11. there exist x, y,, ..., y, € G such that y;€ x ® b; n J; which

completes the proof.

Corollary. Let G be a l-group, H,, ..., H, prime l-ideals of G such that H;H; = G,
i#j,andlet g,,...,8 > by,...,b,€G. Then there exist x, y,, ..., ¥ € G such that

XA}’i:=.Vt Aby=x A b,
yH,2gH;,, i=1,...,n

Again, it should be observed that this corollary may be proved using the notion
of a group of divisibility. In fact, let 4 be a Bezout domain such that its group of*
divisidility is G and let w; be the composition of canonical maps as it was mentioned
before. Then w; are pairwise independent valuations on the quotient field X of A4.
Let B,, ..., B, € K be such that «(8;) = b,, where v is the canonical map from K*
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onto G. By the approximation theorem for independent valuations there exists « € K
such that

wia — B) = gili, i=1..,n
We set x = v(a), y; = (e — B;). Since

(@ a = B) = (2 — Bi, B) = (& B,
where (a, f) is an ideal of A generated by «, f, we have
XAYi=yiAbi=x A Db

and yH; = wla — B,) 2 g:H,.
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