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RELATIONAL CLASSES 
AND THEIR CHARACTERIZATIONS 

IVAN CHAJDA, Pferov 
(Received October 1,1979) 

The concept of a congruence class can be generalized in two different ways for 
arbitrary binary relations on an algebra 21. The first is the concept of a block of the 
relation (see [3]) and the second is the so-called relational class. Characterizations 
of relational blocks of relations (on algebras) satisfying a combination of properties: 
reflexivity, symmetry, transitivity, are contained in [1]. The paper [2] is a continua­
tion of [1] and gives the conditions under which a system of subsets of a given algebra 
is a system of all blocks of some relation on this algebra with the prescribed combina­
tion of properties: reflexivity, symmetry and transitivity. The characterizations in [1] 
and [2] are based on polynomials and algebraic functions of a given algebra (see [6]). 
The concept of relational class is advantageous for some investigations of relations 
on algebra, see e.g. [8]. The aim of this paper is to give characterizations of relational 
classes in the similar way as in [1] and [2] for blocks. 

Definition 1. Let R be a binary relation on a set A and zeA. Call [z]B « 
= {a e A; <a, 2> € R} an R-class. 

Definition 2. Let R be a binary relation on a set A and 0 #= B £ A. Call B a block 
of R if BxB £ R (i.e. x,y G B implies <x, y} e R) and B is a maximal subset with 
respect to this property. 

We will study only relations with the Substitution Property on algebras (in [1], [2], 
[3], [4] the so called compatible relations), namely: 

Definition 3. Let R be a binary relation on a set A and % «• (A, F) be an algebra. 
R has the Substitution Property, briefly (SP), if for each /i-ary / e F and arbitrary 
<a„ 6,>eR (ai9bteA; i » 1,...,n) we have <f(at,...,aH),f(bt,...,K)}eR. 

Remark. It is clear that both blocks of R and it-classes coincide with congruence 
classes of R whenever R is a congruence on tl. Hence they both are generalizations 
of congruence classes. 
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Notation. Let p be an ri-ary polynomial and <p an n-ary algebraic function of 
U m (A>F) (see e.g. [6]) and B £ A. Denote by p(B) = {p(bt9...,*„); bteB}9 

f ( f l ) - { « ( * i , - . . , * J ; M * } -

Theorem 1. Let %^(A9F)be an algebra, ZGA and 0 + BQA. The following 
conditions are equivalent: 

(a) B m [z]K for some binary relation R with (SP) on 2C; 
(b) for every integer n > 0 and every n~ary polynomialp over 21 with p(z9 ...9z) ~ z 

we have p(B) £ B. 
Proof, (a) => (b): Let B = [z]K for some _R with (SP) on 21 and p be an »-ary 

polynomial with p(zf ...9z) = z.Ifai9 ...9aHeB9 then <a* 9z}eR9 and by (SP), also 

ip{al9...9a^)9p(z9...9z)y = <jp(a1,...,all),z>€JR. 

HenceiK^, ...,*„)e [z]K = 5, i.e. p(B) s A 
(b) => (a): Let us construct i? as a set of all pairs <x, y}9 to which there exists an 

rt-ary polynomial p over 21 and elements ai9 ...9aneB such that y = P(z, ...,z) 
and x = /K^i>•••>««). Clearly JR has (SP) on 21 (it is easy to show by induction over 
the rank of polynomial, see [6]). It remains to prove B = [z]R. Let* € [z]R. Then 
<#, z> 6 R and, by the definition, there exists a polynomial p and at e B such 
that x**p(ai9...,«„), z =/Kz» • ••»-*)• % 0>)» *ei?, i.e. [z]R £ B. Conversely, if 
y 6 B9 then <y, z> € R (e.g. for p(x) = x). Hence >> € [z]R proving B £ [z]R. 

Theorem 2. £ef 21 = (4, F) 6e an algebra, 0 * B ^ A and zeB. The following 
conditions are equivalent: 

(a) B = [z]K y&r some reflexive binary relation R with (SP) on 2lr. 
(b) For every n-ary algebraic function q> over 2lr with <p(z9 ...9z)=* z we have 

<KB) £ B. 
The proof is analogous to that of Theorem 1. It can also be derived directly from 

Theorem 1 by adding all elements from A as miliary operations to 2tr.The polynomials 
of this new algebra are algebraic functions of the original one. 

Theorem 3. Let 2tr = (A9 F) be an algebra, zeA and 0 4= J? £ A. The following 
conditions are equivalent: 

(a) B m [z]K for some symmetric relation with (SP) on 2lr. 
(b) For every (n + m}-ary polynomialp over 2tr we have: ifp(bt,..., bn, z,..., z) = z 

for some btBB9 thenp(z9 . . . ,z ,a l 9 . . . , am)eBfor each al9..., aM eB. 

Proof, (a) => (b): let B = [z]R and p be an (n + m)-ary polynomial over %t with 
p(btf ...,6„,z, ...,z) = zfor some btBB and al9 ...9amsB = [z]*. Then <ftj,z>e 
€ il, <z, afi € it and, by (SP)9 the assertion (b) is evident. 

(b) ** (a): let il be a set of all pairs <x, y} such that x = p(z9..., z, at,..., a,,,), 
-V »iK*i» •••»&*, z,... , z) for some (« 4- m>ary polynomial /> and some aj9 bte.8. 
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Clearly R h symmetric and it has (SP). It remains to prove B * [z]R. Let x 6 [z\m. 
Then <x,z>eJ?, i.e. x - j<z, ...fzfaif ...,ajf z ** p(bif ...fbmfz, ...,z). By (b), 
xeB proving [z]R s B. The converse implication is trivial. 

Theorem 4. Let % = (Af F)bean algebra, 0 * B & A,zeB. The following condh 
tions are equivalent: 

(a) B « [z]a /or some reflexive and symmetric relation R with (SP) on ft (i.e. for 
some tolerance on % see [4]); 

(b) for every (n + myary algebraic function <p over %f ifq>(bt,..., bnf z,..., z) •» z 
jbr some btB Bf then q>(zf..., z, c^,..., aw) iS/or etwy at, ...fam€ B. 

The argumentation of the proof is the same as in the proof of Theorem 2. 
Now, we will investigate transitive relations: 

Theorem 5. Let % = (Af F)f 0 * B s A and zeB. The following conditions are 
equivalent: 

(a) B SB [z\Rfor some reflexive and transitive relation R with (SP) on % (i.e. for R 
compatibe quasiorder, [1]); 

(b) for each n-ary algebraic function q> we have 

<p(zf ...fz)eB implies q>(B) £ B. 

Proof, (a) => (b): Let B * [z]K, q> be an algebraic function over % and q>(zf..., z) € 
e B. Since .R is reflexive and has (SP), we obtain i<p(at,..., a*), <p(z,..., z> 6 R when 
<*!,..., an e 2?. As <p(zf..., z) e B « [z]R, also <^(z,..., z), z> e R. By the transitivity 
*>f JR, we obtain <Mflif ...fan)f z>e Rf and thus ^(at f...fan) €[Z]JJ * A This 
proves the inclusion <p(B) s B. 

(b)==>(a): Let R* be the set of all pairs <x,>>> such that x «• <p(aif...,«„), 
^ as ^(z,...,z) for some algebraic function q> over fl and elements ai, ...taneB. 
Let J? be the transitive hull of JR*. Clearly R* is reflexive and has (SP) on % (by indue* 
tion over the rank of polynomial generating q>). By Theorem 6 in [5], R is reflexive, 
transitive and has (SP) on %. It remains to prove B « [z]*. If ye Bf then by the 
definition of R*f <jf z> e R*. Since R* s Rf also 0% z> e Rf thus >> € [z]* and 
B £ [z]*. Prove the converse inclusion. Let xe[z]a, i.c <x,z>e J?. Then there 
exist elements x0, ...,xroe.4 such that x0 = x, x,., * z and <X|.,t,Xj>€ J?* for 
i = 1, ...,m, i.e. there exist nrary algebraic functions ^ and dif . . M 4 , 6 * Slick 
that 

x, - q>fcf ...,z). 

Since x,-, = zeJJ, we have ̂ (z , . . . , z)e Band, by (b), also xm„t «• ^ ( o j , . . . , oj^c 
eJJ. However, x ^ » <pm-i(z> •••»*)» t h u s ^„»*i(z, ...,z)€.ff and, by (b), also 
x^-a € B. After m steps we obtain x » x0 e JJ. Hence [z]R £ J. 
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The following casscs remain: 
(1) R is transitive with (SP) on % (but not necessarily reflexive). 
(2) R is transitive and symmetric with (SP) on SI. 
(3) it is a congruence on 91. 

In the case (1), no characterization of [z]* is known. This problem remains open. 
In the casses (2) and (3), It-classes and blocks of R coincide, i.e. they are solved in 
[1, Theorems 3 and 4]. Especially, the case (3) is a classical result of A. I. Mal'cev 
in [7]. 

Now, we can describe the relationship between blocks of R and it-classes in the 
case where R is reflexive, symmetric and has (SP) on 91, i.e. R is a tolerance on 21, 
see [4]. 

Theorem 6. Let 91 « (A9 F)9 0 =f= B s A and Rbea reflexive and symmetric binary 
relation with (SP) on 91. The following conditions are equivalent: 

(a) B is a block ofR; 
(b)B~n{lz-]R;zeB}. 
Proof, (a) «-> (b): Let B be a block of R. If z e B9 clearly <x, z}eR for each 

xe B9 i.e. B £ [z]R. Hence B s n ^ r ] ^ zeB}. Conversely, if a e n{[z]K; zeB}9 

then <af z>eR for each zeB. Since R is reflexive and symmetric, also <z,a>eR, 
<af a> 6 R9 <z, z> e R9 and thus Cx C s R for C = B U {a}. However, B is a block 
of it, i.e. it is a maximal subset with BxB *= R. Hence C = B9 i.e. a € B proving 
the inclusion. 

(b) «-> (a): Let B « n{[z]*; z € J} and a9beB. Thus a e [ft]*, i.e. <a, b} e Rm 

Analogously, <Jb9 d}eR and, by the reflexivity of R9 also <a, a> e R9 <fr, 6> € R9 

i.e. {a, 6} x {a, ft} £ it. Since a9b are arbitrary of B9 also .Bx-B s it. By Zorn's 
lemma, there exists a block C of it such that B c c. Let a e C. Then <af z> e R 
for each z e B. Hence a e n{[z]R; z e B} « B, i.e. .B = C, and so B is a block of R. 

Theorem 7. £e* 91 «• (-4, F)» z € B s -4 am/ it be a reflexive and symmetric relation 
with (SP) on tC. The following conditions are equivalent: 

(a) B - [z]*; 
(b) B is a set-union of all blocks of R containing z. 

Proof. (a)==->(b): Let xe[z]n. Then <x9z}eR and clearly also iz9x}eRt 

<x, x> € R9 <z, z> € R. Hence {*, z} x {x9 z} s it and, by Zom's lemma, there exists 
. a block C of it with x9zeC. Thus [z]n s i>, where D is the set-union of all blocks 
of R containing z. Conversely, if y e D9 then <>>, z> e R9 i.e. j> e [z]R, thus Z) s [z]n. 

The implication (b) «̂  (a) is obvious. 
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