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RELATIONAL CLASSES
AND THEIR CHARACTERIZATIONS

IVAN CHAIJDA, Pferov
(Received October 1, 1979)

The concept of a congruence class can be generalized in two different ways for
arbitrary binary relations on an algebra 9. The first is the concept of a block of the
relation (see [3]) and the second is the so-called relational class. Characterizations
of relational blocks of relations (on algebras) satisfying a combination of properties:
reflexivity, symmetry, transitivity, are contained in [1]. The paper [2] is a continua-
tion of [1] and gives the conditions under which a system of subsets of a given algebra
is a system of all blocks of some relation on this algebra with the prescribed combina-
tion of properties: reflexivity, symmetry and transitivity. The characterizations in [1]
and [2] are based on polynomials and algebraic functions of a given algebra (see [6]).
The concept of relational class is advantageous for some investigations of relations
on algebra, see e.g. [8]. The aim of this paper is to give characterizations of relational
classes in the similar way as in [1] and [2] for blocks.

Definition 1. Let R be a binary relation on a set 4 and ze 4. Call [z]z =
= {a e A4; {a, z) € R} an R-class.

Definition 2. Let R be a binary relation on a set 4 and 8 + B = A. Call B a block
of Rif BxB < R (i.e. x, y € B implies {x, y) € R) and B is a maximal subset with
respect to this property.

We will study only relations with the Substltutlon Property on algebras (in [1], [2],
[3], [4] the so called compatible relations), namely:

Definition 3. Let R be a binary relation on a set 4 and % = (4, F) be an algebra.
R has the Substitution Property, briefly (SP), if for each n-ary fe€ F and arbitrary
{a;,by)€eR (a;,bed;i=1,..,n) we have {(f(ay, ..., a,), f(by, ---, b)) € R.

Remark. It is clear that both blocks of R and R-classes coincide with congruence
classes of R whenever R is a congruence on ¥. Hence they both are generalizations
of congruence classes. :
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Notation. Let p be an n-ary polynomial and ¢ an n-ary algebraic function of
% = (A, F) (see e.g. [6]) and B = A. Denote by p(B) = {p(b,, ..., n,); b,e B},
o(B) = {9(b,, ..., b,); b, B}.

Theorem 1. Let U = (A4, F) be an algebra, ze A and 8 + B< A. The following
conditions are equivalent:

(@) B = [z] for some binary relation R with (SP) on U;

(b) for every integer n > 0 and every n-ary polynomial p over W withp(z, ..., z) = z
we have p(B) < B.

Proof. (a) = (b): Let B = [z]g for some R with (SP) on U and p be an n-ary
polynomial with p(z, ..., z) = z. If ay, ..., a, € B, then {a,, z) € R, and by (SP), also

(P(au veey aﬂ),p(zr AARE ] Z)) = <p(als e an)s Z) €R.

Hence p(ay, ---,a,) € [z]g = B, i.e. p(B) = B.

(b) = (a): Let us construct R as a set of all pairs {x, y), to which there exists an
n-ary polynomial p over ¥ and elements a, ..., a, € B such that y = p(z, ..., 2)
and x = p(a,, ..., a,). Clearly R has (SP) on U (it is easy to show by induction over
the rank of polynomial, see [6]). It remains to prove B = [z],. Letx € [z]z. Then
{x,z) € R and, by the definition, there exists a polynomial p and a;e B such
that x = p(ay, ..., a,), z = p(z, ..., z). By (b), xe B, i.e. [z]z & B. Conversely, if
y € B, then {», z) € R (e.g. for p(x) = x). Hence y € [z]x proving B < [z]z.

Theorem 2, Let W = (A, F) be an algebra, 8 + B = A and z € B. The following
conditions are equivalent:

(@) B = [z]g for some reflexive binary relation R with (SP) on Ut.

(b) For every n-ary algebraic function ¢ over Mt with ¢(z, ..., z) = z we have
o(B) < B.

The proof is analogous to that of Theorem 1. It can also be derived directly from
Theorem 1 by adding all elements from A as nullary operations to %r. The polynomials
of this new algebra are algebraic functions of the original one.

Theorem 3. Let Ut = (A, F) be an algebra, ze A and 9 + B < A. The following
conditions are equivalent:

(a) B = [z]g for some symmetric relation with (SP) on Ur.

(b) For every (n + m)-ary polynomial p over Wt we have: ifp(b,, ..., b,, 2, ...,2) =z
_for some b, € B, then p(z, ..., z, a,, ..., a,) € B for each a,, ..., a, €B.

Proof. (a) = (b): let B = [z]; and p be an (n + m)-ary polynomial over J5t with
Py, ..., b, 2, ...,2) = z for some b;e Band ay, ..., a, € B = [z]z. Then {b;, z) €
€ R, {z, a;) € R and, by (SP), the assertion (b) is evident.

(b) = (a): let R be a set of all pairs {x, y) such that x = p(z, ..., z, 4y, ..., a,),
y =pby, .., b,, 2, ..., 2) for some (n + m)-ary polynomial p and some a,, b, € B.
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Clearly R is symmetric and it has (SP). It remains to prove B = [z]x. Let x € [z],.
Then (x,z)€R, i.e. x =p(z,...,z,a,, ..., 8,), z = p(by, ..., by, 2, ..., 2). By (b),
x € B proving [z]zx < B. The converse implication is trivial.

Theorem 4. Let W = (A, F) be an algebra, 8 + B = A, z € B. The following condi-
tions are equivalent: '

(@) B = [z]g for some reflexive and symmetric relation R with (SP) on ¥ (i.e. for
some tolerance on U, see [4]);

(b) for every (n + m)-ary algebraic function ¢ over U, if p(by, ..., b, 2, ..., 2) = z
Jor some b, € B, then ¢(z, ..., 2z, a,, ..., a,) B for every a,, ..., a, € B.

The argumentatién of the proof is the same as in the proof of Theorem 2.
Now, we will investigate transitive relations:

Theorem 5. Let A = (4, F),  + B = A and z € B. The following conditions are
equivalent:

(a) B = [z]g for some reflexive and transitive relation R with (SP) on % (i.e. for R
compatibe quasiorder, [1]);

(b) for each n-ary algebraic function ¢ we have

@(z, ..., 2) € B implies ¢(B) < B.

Proof. (a) = (b): Let B=[z], ¢ be an algebraic function over ¥ and ¢(z, ..., z) €
€ B. Since R is reflexive and has (SP), we obtain (¢(a,, ..., a,), @(z, ..., z) € R when
a,...,a,€ B. As ¢(z, ..., 2) € B = [2]i, also {@(z, ..., 2), z) € R. By the transitivity
-of R, we obtain {¢(a,,...,a,),z)€ R, and thus @(a,, ..., a,) €[z]g = B. This
proves the inclusion ¢(B) < B.

(b) = (a): Let R* be the set of all pairs {x,y) such that x = ¢(ay, ..., a,),
¥y = ¢(z, ..., z) for some algebraic function ¢ over ¥ and elements a,, ..., a, € B.
Let R be the transitive hull of R*. Clearly R* is reflexive and has (SP) on ¥ (by induc-
tion over the rank of polynomial generating @). By Theorem 6 in [5], R is reflexive,
transitive and has (SP) on . It remains to prove B = [z];. If y € B, then by the
definition of R*, (y,z) € R*. Since R* c R, also {y,z) € R, thus ye[z] and
B < [z]x. Prove the converse inclusion. Let x € [z]g, i.e. {x, z) € R. Then there
exist elements x,, ..., x, € A such that x, = x, x,, = z and {x,_,, x,> € R* for
i=1,...,m, ic. there exist ncary algebraic functions ¢, and 4, ..., @}, € B such
that

Xi-1 = @ay, - af,,),

x; =@z, ..., 2).

Since x,, = z € B, we have ¢,(z, .., z) € Band, by (b), also x,,_, = ¢,(af, ..., &) e
€ B. However, Xp_; = @u-1(2, .-+, 2), thus @n_,(z,...,2)€ B and, by (b), also
Xm-2 € B. After m steps we obtain x = x, € B. Hence [z]z < B.

201



The following casses remain:

(1) R is transitive with (SP) on ¥ (but not necessarily reflexive).

(2) R is transitive and symmetric with (SP) on .

(3) R is a congruence on ¥.
In the case (1), no characterization of [z]g is known. This problem remains open.
In the casses (2) and (3), R-classes and blocks of R coincide, i.e. they are solved in
[1, Theorems 3 and 4]. Especially, the case (3) is a classical result of A. I. Mal’cev
in [7].

Now, we can describe the relationship between blocks of R and R-classes in the
case where R is reflexive, symmetric and has (SP) on U, i.e. R is a tolerance on U,
see [4].

Theorem 6. Let A = (A, F), 9 + B < A and R be a reflexive and symmetric binary
relation with (SP) on W. The following conditions are equivalent:

(a) B is a block of R;

(b) B = n{[z]x; z€ B}.

Proof. (a) = (b): Let B be a block of R. If z € B, clearly {x, z) € R for each
x€ B, i.e. B < [z]. Hence B © n{[z]g; z € B}. Conversely, if ae n{[z]z; z€ B},
then {a, z) € R for each z € B. Since R is reflexive and symmetric, also {z,a) € R,
{a,a) € R, {z,z) € R, and thus Cx C < R for C = Bu {a}. However, B is a block
of R, i.e. it is a maximal subset with Bx B = R. Hence C = B, i.e. a€ B proving
the inclusion.

(b) = (a): Let B = n{[z]z; ze B} and a,be B. Thus ae[b]g, i.e. <a,b) € R,
Analogously, ¢b, a) € R and, by the reflexivity of R, also {a,a) € R, {b,b)€R,
i.e. {a,b}x{a, b} = R. Since a, b are arbitrary of B, also BxB < R. By Zorn’s
lemma, there exists a block C of R such that B < C. Let ae C. Then {a, z2)eR
for each z € B. Hence a e n{[z]z; z€ B} = B, i.e. B = C, and so Bis a block of R.

Theorem 7. Let A = (A, F), ze B = A and R be a reflexive and symmetric reIation
with (SP) on . The following conditions are equivalent:

(&) B [z]Rs

(b) B is a set-union of all blocks of R containing z.

Proof. (a) = (b): Let xe[z]z. Then {x,z) € R and clearly also {z, x) €R,
{x, x) € R, {z, z) € R. Hence {x, z} x {x, z} < R and, by Zorn’s lemma, there exists

.a block C of R with x, z€ C. Thus [z]z S D, where D is the set-union of all blocks

of R containing z. Conversely, if y € D, then {y, z) € R, i.e. y € [z]g, thus D € [z],.

The implication (b) = (a) is obvious.
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